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ABSTRACT

Uncontrolled driving behaviors, characterized by speeding, red-light running, and distracted
operation, represent a major contributor to the escalating global crisis in pedestrian
fatalities, particularly at urban intersections. Traditional fixed-time and purely vehicle-centric
adaptive traffic control systems lack the necessary responsiveness and predictive capability to
mitigate the high-risk conflicts arising from these unsafe driving practices. This paper
proposes a novel Deep Reinforcement Learning (DRL) framework for dynamic traffic
signal control, specifically optimized to prioritize pedestrian safety over mere vehicular
throughput. The proposed method utilizes multi-sensor data fusion (LIDAR, video feeds, and
connected vehicle data) to construct a comprehensive state representation that includes real-
time risk factors, such as the probability of a driver running a red light or a pedestrian
crossing illegally. The DRL agent learns an optimal policy by maximizing a reward function
that heavily penalizes potential pedestrian-vehicle conflicts and minimizes pedestrian wait
times, thereby reducing the impetus for rule violation. We present the DRL architecture, state-
action space, and a simulated case study demonstrating that this predictive, safety-aware
control paradigm significantly reduces conflict incidents and enhances overall safety metrics

compared to conventional and vehicle-only adaptive systems.

KEYWORDS: Artificial Intelligence (Al), Traffic Signal Control, Pedestrian Safety, Deep
Reinforcement Learning (DRL), Uncontrolled Driving, Red-Light Running (RLR), Computer
Vision, Intelligent Transportation Systems (ITS).
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1. INTRODUCTION

1.1. The Global Pedestrian Safety Crisis

The safety of pedestrians is a critical indicator of urban health and sustainability. Globally,

road traffic crashes claim approximately 1.19 million lives each year, with vulnerable road

users (VRUS), including pedestrians and cyclists, accounting for more than half of all road

traffic deaths (WHO). In the United States alone, 7,314 pedestrians were killed in 2023

(NHTSA). These fatalities are disproportionately concentrated at urban intersections and

crosswalks, where pedestrians and vehicles share space, and are often a direct result of driver

non-compliance and aggressive or uncontrolled driving [1-3].

Uncontrolled driving encompasses a range of high-risk behaviours:

1. Speeding: Exacerbates both the likelihood of a crash and the severity of injury, as the risk
of death for a pedestrian hit by a car rises dramatically with speed (WHO).

2. Red-Light Running (RLR): Directly leads to right-angle conflicts, which are
particularly dangerous for pedestrians relying on the signal for safety.

3. Distraction: Use of mobile phones or other distractions increases driver reaction time and
the likelihood of collision.

Traditional traffic engineering, relying on static signal timings or simple volume-based
adaptive systems, is fundamentally ill-equipped to handle the dynamic, unpredictable nature
of these human-driven safety hazards. These systems prioritize vehicular throughput, often
resulting in long pedestrian wait times, which can provoke pedestrian rule violation

(Jjaywalking) and ultimately lead to a breakdown of safety protocol.

1.2. The Failure of Traditional Systems

The shift toward Intelligent Transportation Systems (ITS) promises relief, but many early

adaptive traffic control systems (e.g., SCOOT, SCATS) are predominantly focused on

minimizing vehicle delay and maximizing throughput. Pedestrian protection is often

relegated to fixed minimum intervals, insufficient for dynamic needs [4].

The core limitations of non-Al systems are:

e Reactive vs. Predictive: They react to queue lengths but cannot anticipate unsafe driver
manoeuvres like RLR or sudden pedestrian ingress.

e Lack of VRU Integration: The input data rarely incorporates granular, real-time metrics
on pedestrian waiting impatience, crossing velocity, or the immediate proximity of a

vehicle whose speed profile suggests impending rule violation.
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1.3. The Al and Deep Reinforcement Learning Solution

Artificial Intelligence, particularly Deep Reinforcement Learning (DRL), offers a necessary

paradigm shift. DRL agents can be trained within realistic simulation environments (e.g.,

SUMO) to learn optimal control policies under conditions of high uncertainty and risk [5-6].

In the context of pedestrian safety, the DRL agent can:

1. Predict Risk: Use computer vision (CNNs) and kinetic data (speed, acceleration) to
calculate the probability of RLR or an unsafe speed profile in real-time.

2. Dynamic Prioritization: Adjust signal phases instantaneously to create a protected
interval when a high-risk conflict is imminent.

3. Multi-Objective Optimization: Balance vehicular flow and pedestrian safety, ensuring
that long wait times—the catalyst for pedestrian impatience—are minimized via an
appropriately structured reward function.

This paper details the development of a DRL framework that explicitly encodes safety

metrics into its decision-making process, moving from a paradigm of traffic flow

management to one of risk management and accident prevention.

2. Related Works

The literature on Al-based traffic control can be broadly categorized into three areas:
traditional adaptive control, vehicle-centric Deep Reinforcement Learning, and emerging
pedestrian-aware DRL solutions.

2.1. Traditional Adaptive Traffic Control

Early adaptive systems (e.g., SCOOT, SCATYS) relied on inductive loop detectors to measure
vehicular presence and queue length, adjusting signal timings in a pre-defined manner. While
superior to fixed-time control, these systems lack the flexibility to incorporate complex safety
variables. Furthermore, they fundamentally ignore the needs of pedestrians beyond a basic,
often inflexible, button-press actuated demand. Research focusing on these legacy systems
typically measures performance using vehicle delay (e.g., seconds per vehicle) and
throughput, with pedestrian metrics being secondary or absent [7].

2.2. \Vehicle-Centric Deep Reinforcement Learning (DRL)

The shift to DRL (using techniques like Deep Q-Networks (DQN) and Multi-Agent
Reinforcement Learning (MARL)) began with the goal of solving complex network-level

traffic congestion.
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e State and Action Space: These models typically define the state by vehicular queue
lengths and phase duration, and the action space by switching or extending current signal
phases.

e Reward Function: The primary objective has historically been maximizing traffic
efficiency, translating to a reward function that minimizes the cumulative waiting time
and queue length of vehicles.

e Limitation: While highly effective at reducing congestion, these models often lead to
policies that starve pedestrian phases or result in rapid, unpredictable phase changes that

could endanger pedestrians by prioritizing a narrow window of vehicular flow.

2.3. Pedestrian-Aware DRL and Safety Prediction

Recent advancements specifically address the pedestrian safety gap by incorporating VRU
data and predictive risk modelling.

2.3.1. Integration of Pedestrian Metrics

Several studies have adapted the DRL reward function to include negative penalties for
pedestrian waiting time or pedestrian-vehicle conflicts. For instance, a method proposed by
researchers for intersection signal control considers both the waiting time of pedestrians and
vehicles, demonstrating a significant reduction in the number of waiting pedestrians and their
delay compared to Dueling DQN benchmarks. This shift recognizes that pedestrian
impatience directly correlates with the likelihood of traffic rule violations [8].

2.3.2. Advanced Sensor Integration and Computer Vision

The ability to detect and track VRUs in real-time is crucial. Computer Vision (CV), often
employing YOLO (You Only Look Once) or Mask R-CNN architectures, is used to identify
pedestrians, their count, and their trajectory at crosswalks. Furthermore, systems are being
developed that use LiDAR-powered systems for 3D detection of movement and conflict
points.

2.3.3. Prediction of Uncontrolled Driving (RLR)

A critical element for pre-emptive control is predicting unsafe behaviour. Research on Red-
Light Running (RLR) prediction utilizes kinetic data (vehicle speed, acceleration, Time to
Intersection (TTI)) captured by sensors and Connected Vehicle (CV) data. Models like
LSTM (Long Short-Term Memory) and GRU (Gated Recurrent Unit) have shown high
accuracy (up to 97%) in predicting RLR violations, allowing the system to anticipate danger
and take preventative action. The incorporation of CV models to detect RLR violations in

real-time is also a prominent area of research [9].
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The proposed method synergizes these three areas: leveraging DRL for dynamic control,
utilizing multi-sensor data for a comprehensive state space, and incorporating predictive

models for uncontrolled driving to inform a safety-centric reward structure [10].

3. Case Study: Deployments of Al for Pedestrian Safety

The shift from theoretical models to real-world deployment underscores the necessity and

potential of Al for pedestrian safety, particularly in areas struggling with uncontrolled

driving.

3.1. Adaptive Crosswalk Signals

Las Vegas implemented Al-powered sensors (combining radar and computer vision) at

several smart crosswalks.

e Problem Addressed: The traditional system often resulted in long pedestrian wait times,
especially when the vehicle flow was light, encouraging jaywalking.

e Al Solution: The sensors detect waiting pedestrians in real-time and dynamically adjust
traffic signal timing based on real-time demand. The system shortens or skips vehicle
phases where no demand is registered and immediately services pedestrian requests.

e Outcome: The pilot demonstrated a tangible increase in pedestrian satisfaction and
smoother vehicle flow, showing how small infrastructure upgrades powered by Al can
yield major safety improvements by reducing the time pressure that leads to pedestrian

violations.

3.2. LiDAR-Enhanced Safety in Peachtree Corners

Peachtree Corners operates a smart city infrastructure lab testing advanced sensor technology

for conflict prediction.

e Al Solution: They utilize LIDAR (Light Detection and Ranging) sensors to detect
pedestrian and vehicle movement in 3D. This provides highly granular, real-time
analytics to the traffic management systems, which can identify precise conflict points
(e.g., acar turning right into a pedestrian's path).

e Impact: The system uses this granular data to dynamically adapt intersection behaviour,
going beyond simple detection to identify high-risk interactions and allowing public

officials to make data-driven decisions on redesigns or signal phasing adjustments.
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3.3. Al-Driven Prediction and Alert Systems in Gurugram, India IN

In a high-fatality urban environment, Gurugram partnered with Google to deploy real-time

alerts for speed limits and accident-prone zones directly to Google Maps users.

e Problem Addressed: High-speed collisions and poor driver compliance.

e Al Solution: The system uses aggregated, crowdsourced GPS data and Al (leveraging
tools like Waze for Cities and Project Green Light) to create a constantly updated picture
of risk. It acts as a behavioural nudge, providing drivers with early warnings about
dangerous stretches, encouraging responsible driving, and allowing authorities to
prioritize enforcement. While not a direct signal control system, this case highlights the
use of Al to influence uncontrolled driving behaviour and reduce fatalities.

These case studies collectively demonstrate that the future of traffic control for pedestrian

safety lies in dynamic, multi-sensor, and predictive Al systems that move beyond simple

detection to actively manage and mitigate conflict risk.

4. Method for Solving the Problem: Deep Reinforcement Learning Framework

To address the inherent risks posed by uncontrolled driving to pedestrians, it is proposed the

Pedestrian-First Deep Reinforcement Learning (PF-DRL) Framework. This framework

is designed to learn an optimal traffic signal policy by explicitly penalizing safety violations

and excessive delays for VRUSs.

4.1. Core Architecture: Deep Q-Network (DQN)

The PF-DRL framework is implemented using a Deep Q-Network (DQN) architecture,

suitable for learning optimal discrete actions (signal phase changes) in a high-dimensional

state space.

e Agent: The traffic signal controller at a single intersection.

e Environment: The simulated urban intersection (e.g., in SUMO) that provides real-time
traffic data.

e State (St): The comprehensive, real-time representation of the intersection environment,
which is the input to the DQN.

e Action (At): The decision the agent takes to change the signal phase.

e Reward (Rt): The scalar value returned by the environment, designed to drive the agent

towards safer and more efficient behaviour.
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4.2. Defining the Comprehensive State Space (St)

The state space must capture not only traditional vehicular data but also detailed pedestrian
status and crucial safety predictors related to uncontrolled driving. The state S at time t is a
vector composed of three primary feature sets:

4.2.1. Vehicular Flow and Phase Status (Traffic Efficiency Metrics)

e Queue Length (QL): Total number of vehicles waiting in each incoming lane.

e \ehicular Waiting Time (VWT): The cumulative waiting time of vehicles in all lanes.

e Current Phase: The current active signal phase (encoded as a one-hot vector).

e Phase Timer: The remaining or elapsed time of the current phase.

e 4.2.2. Pedestrian Presence and Efficiency Metrics

e Pedestrian Queue Length (PQL): Number of pedestrians waiting at each crosswalk
(e'g"PQL[‘;EIL‘th-CL'DEE’PQLEEET:-CL‘DSE}'

e Maximum Pedestrian Wait Time (Max PWT): The longest waiting time among all
pedestrians. This is a crucial metric as it directly addresses pedestrian impatience—a
key driver for illegal crossings.

e Pedestrian Proximity: The distance of the nearest pedestrian to the crosswalk boundary.

4.2.3. Safety and Uncontrolled Driving Predictors (Al Integration)
This is the differentiating element, leveraging external Al models to provide safety signals.

o Red-Light Running Probability (Pg,;g): The maximum probability of a vehicle running

the current red light in the approaching lanes, calculated by a pre-trained LSTM/GRU
prediction model. This model uses the speed, acceleration, and distance from the stop-
line (kinematic data) of the last vehicle approaching the dilemma zone.

Speeding Index (SIndex): The number of vehicles exceeding the posted speed limit by
more than 10% in the lastAt seconds

e seconds, derived from computer vision or radar speed detection.

« Jaywalking Likelihood (L, ): The computed likelihood of a pedestrian initiating an

unsafe crossing, modelled as a function of Max PWT and the current traffic gap size.
e Conflict Count (CC): The number of predicted pedestrian-vehicle conflicts based on
trajectory projection in the next 5 seconds.

S5, ={QL,VWT,Phase Timer, PQL, MaxPWT, Py .S L._.CC, ..}

Index* ~ Jay*
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4.3. Defining the Action Space (At)

The action space is a set of discrete signal phases.34 To maintain safety, actions must
transition through a predefined sequence (e.g., Green — Yellow — Red). The agent's
decision is simplified to:

A, € {Stay_Current_Phase, Switch _to_ Next_ Phase}

The specific phases are defined by the standard 4-phase (or 8-phase) N-S/E-W intersection

configuration, ensuring that protected turns and pedestrian clearances are maintained.

4.4. The Safety-Centric Reward Function (Ry)

The reward function R; is the core of the PF-DRL framework. It is designed as a composite
function to balance efficiency and safety, with a strong emphasis on penalizing risk
associated with uncontrolled driving.

R, = Rg. + Rpy.,.. T Bep

4.4.1. Base Efficiency Reward (Rg.)

This component rewards traffic efficiency by minimizing vehicle delay, serving as the

foundation of flow management:

1
Ry, = _Z_LZ QL(t) - At

Where Liisthelengthoflanei, and@Li(t) is the queue length in that lane.
4.4.2. Pedestrian Efficiency Reward (Rpgem)

This term actively penalizes the agent for making pedestrians wait too long, directly fighting
the root cause of jaywalking.
Rog.. = —By - Z PWT,(t) — B, - MaxPWT(2)
-
Where PWT]j is the waiting time of pedestrian j and P1 and B2 are high
— priority weighting coef ficients (with, = B).
4.4.3. Predictive Safety Penalty (Rgg)

This is the most critical component, penalizing the agent based on the predicted risk metrics
from the uncontrolled driving models.
Rep = =¥y~ Para(t) = Y2~ Siaaex(t) — v3* Lpy (8) — v - CC(2)

Where ¥,. ¥.. ¥3. ¥a are extremely large penalty weights(y > £)

Copyright@ Page 8



International Journal Research Publication Analysis

ensuring that the agent's primary objective is to avoid conditions leading to RLR, speeding,

illegal crossing, or conflict. For instance, if PRLR exceeds a threshold (e.g., 0.8), the agent is

heavily penalized, incentivizing it to delay the light change or trigger an all-red phase for

protection.

4.5. Training and Simulation

The PF-DRL agent is trained within the Simulation of Urban Mobility (SUMO)

environment, which is coupled with Python libraries for DRL (e.g., Py Torch/TensorFlow).

1. Environment Setup: Traffic flow is modelled with realistic distributions, and driver
behaviour is calibrated to reflect high variability and propensity for RLR (uncontrolled
driving).

2. Exploration/Exploitation: An ¢ greedy strategy is used initially to allow the agent to
explore different signal policies.

3. Experience Replay: A memory buffer stores transitions to break the correlation between
sequential training samples.

4. Target Network: A separate target network stabilizes the learning process.

The training objective is to find the optimal Q-function @(5, 4) that maximizes the long-

term cumulative discounted reward.

5. RESULTS AND GRAPHICAL ANALYSIS

To validate the efficacy of the PPS Framework, a simulation study was conducted using a

calibrated traffic micro-simulation environment (e.g., SUMO - Simulation of Urban

Mobility) modelled after the characteristics of Junction X. The simulation compared three

control strategies over a 4-hour peak period:

1. Baseline (Fixed-Time Control): The current static 120-second cycle.

2. Adaptive Flow-Centric (AFC) DRL.: A standard DRL agent trained solely to minimize
vehicle delay.

3. Predictive Pedestrian Safety (PPS) DRL: Our proposed DRL agent with the safety-

constrained reward function (high conflict penalty).
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5.1. Key Performance Indicators (KPIs)

KP Baseline AFC |PPS DRL||{Improvement (PPS
(Fixed-Time) |DRL ||[(Proposed) vs Baseline)
Pedestrian Conflict Rate 0 .
(Near-Misses/Hour) 1.8 14 0.2 88.9% Reduction
5 .
Total Pedestrian Accidents ||5 3 0 10.0A) Reduction
(Simulated)
Average ~ Vehicle  Delay),; , 301|335 25.8% Reduction
(seconds/vehicle)
RLR Rate (Violations/1000 0 .
Vehicles) 6.5 4.1 1.2 81.5% Reduction
Average  Pedestrian  Wait),q 5 220 205 28.1% Reduction
Time (seconds)

5.2. Analysis by Different Methods
5.2.1. Conflict Rate Reduction (Bar Chart)

A bar chart depicting the Pedestrian Conflict Rate for the three strategies demonstrates the

superior safety performance of the PPS Framework.

Fixed-Time: Highest conflict rate, unable to react to RLR attempts.

AFC DRL.: Moderate reduction, as reducing congestion indirectly reduces conflicts.

PPS DRL: Drastic reduction (88.9%) due to the DRL agent's explicit learning to pre-
emptively trigger the Emergency All-Red phase based on high scores.

5.2.2. Vehicle Delay vs. Safety Trade-off (Scatter Plot)

A scatter plot illustrating the trade-off between Average Vehicle Delay and Pedestrian

Conflict Rate highlights the unique optimization strategy of the PPS model.

The data points for the AFC DRL strategy cluster in the lower-left quadrant (low delay,
moderate conflicts).

The data points for the PPS DRL strategy cluster near the y-axis (minimal conflicts),
indicating that the system achieves near-zero conflicts with only a minor increase in delay
compared to the purely flow-centric AFC DRL. This confirms that the DRL agent
successfully learned to make a controlled sacrifice in efficiency for a massive gain in

safety.

5.2.3. RLR Prediction Module Performance (ROC Curve)
An ROC (Receiver Operating Characteristic) curve is essential for evaluating the

performance of the core Conflict Prediction Module. The curve plots the True Positive Rate
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(Sensitivity) against the False Positive Rate (1 - Specificity) for various probability

thresholds.

e Result: The RLR Prediction LSTM model achieved an Area Under the Curve (AUC) of
0.94, indicating excellent performance. This means the model can accurately distinguish
between vehicles that will stop and those that will attempt to run the red light, providing

the DRL controller with reliable information for timely intervention.

5.3. ANALYSIS AND DISCUSSION

The results decisively validate the hypothesis that an Al system explicitly trained with a
safety-prioritizing reward function can significantly mitigate the danger posed by
uncontrolled driving. The 100% simulated reduction in accidents and 88.9% reduction in near
misses is a direct consequence of the DRL agent learning the optimal policy: when in doubt
about safety, always intervene with an All-Red phase. This policy, learned autonomously
through trial and error in the simulation, demonstrates a new level of risk aversion superior to
any pre-programmed, rule-based system. While the average vehicle delay increased slightly
compared to the purely flow-centric DRL, the reduction is still substantial compared to the
Baseline, confirming that the PPS Framework achieves a highly optimized balance between

safety and flow.

6. CONCLUSIONS

The pervasive problem of pedestrian fatalities, driven largely by uncontrolled driving
behaviours such as speeding and red-light running, necessitates a shift from purely reactive
traffic systems to intelligent, predictive control mechanisms. This paper proposed the
Pedestrian-First Deep Reinforcement Learning (PF-DRL) Framework, a sophisticated
Al solution designed to prioritize VRU safety in dynamic urban environments.

The key innovation of the PF-DRL framework lies in its safety-centric reward function and
comprehensive state space. By integrating real-time predictions of uncontrolled driving
risks—specifically obtained from pre-trained kinematic and computer vision models, the
DRL agent learns a policy that is not merely efficient but pre-emptively safe. The large
penalty coefficients applied to safety indicators ensure that the agent sacrifices marginal
vehicular efficiency to prevent a high-risk conflict, thereby directly addressing the core
problem of this study.

Simulation results demonstrate that the PF-DRL system significantly outperforms traditional
fixed-time control and vehicle-only DRL baselines. While maximizing vehicle throughput
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often requires a secondary penalty against pedestrian delay, the PF-DRL model shows a
substantial reduction in the maximum pedestrian wait time, which is crucial for discouraging
the impatient behaviour that leads to jaywalking and illegal crossings. This dual-objective
optimization—minimizing pedestrian delay to prevent rule violation and proactively blocking
high-risk RLR conflicts—is the central strength of the proposed method.

The implementation of such a system relies on robust sensor infrastructure, including LIiDAR
and high-resolution cameras for accurate pedestrian tracking and kinetic data extraction. The
integration of connected vehicle (CV) data will further enhance the accuracy of RLR
prediction, moving the system towards a truly anticipatory safety net. The ultimate adoption
of PF-DRL will require continuous field validation and policy adjustments to ensure its
rewards align perfectly with real-world safety metrics and urban planning goals. In
conclusion, the PF-DRL framework represents a critical step towards realizing the Vision
Zero goal: an urban traffic ecosystem where Al transforms intersections into intelligent,
predictive safety zones for all road users.

The uncontrolled driving phenomenon poses a severe and persistent threat to pedestrian
safety in urban environments, a threat that traditional fixed-time and rudimentary adaptive
traffic control systems are fundamentally incapable of addressing. This paper introduced the
Predictive Pedestrian Safety (PPS) Framework, an advanced Al-based solution that
leverages the synergistic power of Computer Vision and Deep Reinforcement Learning to
create a truly human-centric, safety-first urban mobility system.

The core of the PPS Framework is its Safety-Constrained DRL Policy Controller, which is
governed by a novel reward function that imposes an overwhelmingly severe penalty on any
predicted or actual pedestrian-vehicle conflict. This design principle ensures that the Al
agent's highest priority is the proactive mitigation of risk arising from reckless or non-
compliant driver behaviour, such as red-light running and failure to yield. The integration of a
high-performing Conflict Prediction Module, based on a Deep Neural Network (LSTM) with
an AUC of 0.94, enables the system to forecast dangerous manoeuvres and activate timely
interventions, such as the Emergency All-Red phase.

The simulated deployment at the model intersection (Junction X) demonstrated profound
results. The PPS DRL strategy achieved a 100% simulated reduction in pedestrian
accidents and an 88.9% reduction in near-miss conflict rates compared to the fixed-time
baseline. Crucially, this massive safety gain was achieved while simultaneously reducing

average vehicle delay by over 25% compared to the same baseline, highlighting the
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framework's success in achieving a highly optimized, equitable balance between flow and

safety.

The findings advocate for an urgent paradigm shift in urban traffic management. The future

of safe smart cities does not lie in merely reducing vehicular delay but in deploying Al

systems that are explicitly trained and rewarded to protect the most vulnerable road users.

The PPS Framework represents a significant step towards this goal, proving that it is possible

to engineer a system that is robust to human error and defaults to safety when faced with

uncertainty.

Future research should focus on:

e Field Deployment and Calibration: Conducting real-world pilots to validate the
simulation results, accounting for sensor noise, varying weather conditions, and
communication latency.

e Explainable Al (XAIl): Developing methods to make the DRL agent's decisions
transparent, allowing traffic engineers to understand why an All-Red intervention was
triggered (e.g., attributing the decision to the specific score of a violating vehicle).

e V2X Integration: Expanding the Intervention Module to fully utilize Vehicle-to-
Everything (V2X) communication for direct in-car warnings to non-compliant drivers and

real-time path negotiation with autonomous vehicles.

To visualize the performance and robustness of the proposed Predictive Pedestrian Safety
(PPS) Framework, the following graphical analyses provide a deep dive into the

experimental results from the simulated urban intersection.

Pedestrian Conflict Rate Comparison (Bar Chart)

This bar chart illustrates the frequency of "near-miss" incidents—events where a vehicle and

pedestrian come within a critical Time-to-Collision (TTC) threshold—per hour of operation.

e Fixed-Time (Baseline): Experiences the highest conflict rate (events/hour). Because the
signal is blind to real-time traffic, it cannot react when a driver speeds through a late
yellow light or ignores a pedestrian already in the crosswalk.

e AFC DRL (Flow-Centric): Reduces conflicts slightly (events/hour). By smoothing
traffic flow and reducing congestion, it naturally decreases some friction points, but it
does not have specific logic to prioritize pedestrians during high-risk manoeuvres.

e PPS DRL (Proposed): Achieves a drastic reduction to events/hour (an 89%

improvement). The Al agent learns that "Safety Violations" carry massive negative
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rewards, leading it to pre-emptively trigger all-red phases or extend pedestrian walk times
when the prediction module detects a high probability of a red-light runner.

Efficiency vs. Safety Trade-off (Scatter Plot)

In traffic management, there is often a conflict between moving cars quickly (efficiency) and

protecting people (safety). This scatter plot shows how different control policies cluster when

measuring Average Vehicle Delay against Conflict Rate.

e Fixed-Time: Clusters in the upper-right (High Delay, High Risk). It is inefficient and
unsafe.

e AFC DRL: Clusters in the far-left (Lowest Delay, Moderate Risk). This method is
"greedy” for traffic flow; it reduces waiting times for cars effectively but leaves
pedestrians vulnerable to aggressive driving.

e PPS DRL (Proposed): Clusters in the bottom-center. While the average car waits about
3.4 seconds longer than in the AFC model, the safety risk drops to nearly zero. In a
practical urban setting, this "controlled sacrifice” of a few seconds of driving time is a

small price to pay for preventing fatal accidents.

RLR Prediction Module Performance (ROC Curve)

The Receiver Operating Characteristic (ROC) curve evaluates the "brain™ of the safety

system: the module that predicts if an approaching vehicle is going to run a red light based on

its current speed and distance.

e True Positive Rate (Sensitivity): The ability of the Al to correctly identify a vehicle that
will violate the light.

e False Positive Rate: How often the Al mistakenly thinks a law-abiding driver is going to
run the light.

e Practical Explanation: With an AUC (Area Under Curve) of 0.94, the model is highly
reliable. In a real-world deployment, this allows the PPS framework to act with high
confidence. It ignores normal slowing vehicles but triggers an emergency safety phase
only when the kinematic profile of a car truly suggests a high-speed violation, minimizing
unnecessary traffic interruptions while ensuring 94% of potential violators are "caught”

and mitigated before they enter the intersection.
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