

International Journal Research Publication Analysis

Page: 01-14

TOPIC NAME: GREEN SYNTHESIS OF NANO PARTICLES

***Patil Ajay Ravindra, Wagh Kalyan Tushar, Patil Uday Pravin, Wagh Harshal Ulkesh**

Nikumbe Jaydeep Manoj, Padvi Harshal Shravan

India.

Article Received: 10 November 2025

***Corresponding Author: Patil Ajay Ravindra**

Article Revised: 30 November 2025

India.

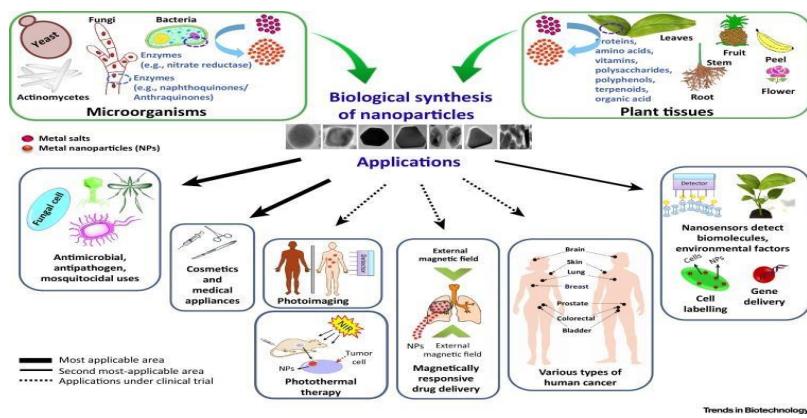
Published on: 20 December 2025

DOI: <https://doi-doi.org/101555/ijrpa.4128>

ABSTRACT

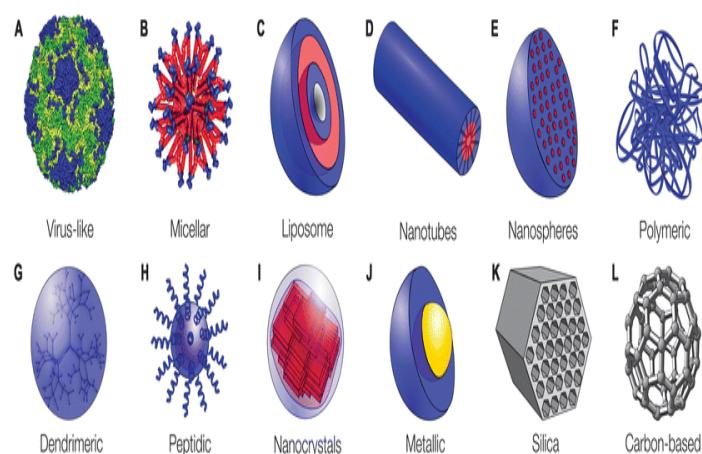
The expanding area of nanotechnology, interested in matter between the 1-100 nanometer range, has transformed various coherent and mechanical realms. Nanoparticles, the critical building blocks of nanotechnology, exhibit unusual physico chemical characteristics based on their height surface location to volume ratio and quantum mechanical effects, leading to applications spanning pharmaceutical, contraptions, catalysis, essentialness, and characteristic remediation. Traditional methods of nanoparticle aggregation, by definition chemical and physical processes, typically involve the use of damaging precursors, harsh reaction conditions, high essentialness consumption, and the duration of harmful byproducts, raising fundamental common and well-being issues. In light of the drawbacks of traditional mix courses, the philosophy of "green union" has emerged as a feasible, environmentally friendly, and biocompatible alternative to the fabrication of aggregated nanoparticles. This inventive method uses the inevitable biochemical machinery of natural materials, scrutinizing microorganisms (organisms, living organisms, green growth), plant extracts (isolated from characteristic parts such as takes off, roots, stems, and usual items), and limited biomolecules (such as proteins, proteins, vitamins, and polysaccharides) to empower the reduction of metal particles and the subsequent stabilization of the produced nanoparticles. Green mix provides an enormous array of inclinations, including the use of readily available, non-toxic, and biodegradable materials; operation under mild reaction conditions (including temperature and weight); reduced essentialness utilization; cost-effectiveness; and the production of nanoparticles with advanced biocompatibility and tailored functionalities for particular uses. In extension, the intrinsic proximity of capping and stabilizing administrators interior the typical systems regularly results in the trajectory of action of more ordered and monodisperse

nanoparticles. This critical review rigorously examines the differential methods and basic disobedient present in the green blend of nanoparticles. We start by presenting a complete sketch of the rare properties of nanoparticles and the key guidelines governing their unique behavior at the nanoscale. Therefore, we dive into the assorted characteristic administrators employed in green union, detailing their individual roles in the metal precursor bioreduction and stabilization of the resulting near-nanoparticles. We on a very fundamental level investigate the influence of important exploratory parameters, including the selection and concentration of metal precursors, the type and concentration of the natural reducing master, reaction temperature, pH, brooding time, and mixing conditions, on the gauge, shape, morphology, strength, and yield of the prepared nanomaterials. Besides, we study the intra- and extracellular union mechanisms obtained by unmistakable normal systems. An integral allocate of this review is dedicated to emphasizing the extensive range of uses of green synthesized metallic nanoparticles, with specific emphasis on their transformational value in the biomedical area. We discursively discuss largely their applications as effective antimicrobial administrators in countering drug-resistant pathogens, state-of-the-art bio-imaging standalone administrators in modern diagnostics, effective and focused on constant motion systems in the treatment of cancer and other contaminations, sensitive biosensors to the field of unique analytes, and tissue planning and regenerative medication. In addition, we examine their emerging components in catalysis for unique chemical transformations and in shared remediation drives, monitoring the degradation of pristine toxins, the removal and recovery of overwhelming metals from contaminated water and ground, and their implications in temperate cultivation. Lastly, this review provides a balanced view by on a very fundamental level canvassing the concerns of interested and ongoing imprisonments of green nanoparticle synthesis and their ensuing applications. We discuss difficulties with respect to the standardization and adaptability of green union customs, extensive characterization of nanoparticles naturally synthesized, and careful consideration of their potential common and toxicological effects. We end by sketching out our future ask nearly headings and openings in the fast-moving area of green nanotechnology, highlighting the need for interest collaborations to maximize union processes, revamp nanoparticle functionalities, secure their safe and conservative use, and in the long term unlock their full potential for nurturing around the globe challenges in unique segments.


KEYWORDS: Green synthesis, Nanoparticles, Nanotechnology, Bionanotechnology, Bioreduction mechanisms, Phytosynthesis, Microbial synthesis, Extracellular synthesis,

Intracellular synthesis, Biocompatible nanomaterials, Biomedical applications (antimicrobial, bio-imaging, drug delivery, biosensors), Catalysis, Environmental remediation, Sustainable nanotechnology, Scalability, Characterization, Toxicity assessment.

INTRODUCTION


NATO is a metric degree of one billionth of a meter and corresponds to a width of 10 molecules. In terms of comparison with genuine objects, an illustration that hair is 150,000 nanometers may be given. The quickly creating nanotechnology is to inter disciplinary inquire about and improvement field of science, chemistry, material science, nourishment, pharmaceutical, gadgets, aviation, medicine, etc., which looks at the plan, fabricate, as simply, characterization of materials that are littler than 100 nanometers in scale, as well as the application of mini sure utilitarian frameworks inferred from these materials. It represents the entire of advancement exercises. As far the NATO biotechnology, on the other hand, it is the result of a combination of biotechnology and nanotechnology branches with a common combined working [1].

- **1.1. Nanoparticles and their properties :** To prepare of evacuating poisonous and squander metals in the envy content incorporates microorganisms, plants and other biological structures; accomplished by implies of oxidation, diminishment or catalysis of metals with metallic nanoparticles. Metallic nanoparticles delivered by organic strategies; are used in the biomedical field for purposes such as securit from hurtful microorganisms, bio-imaging, medicate transport, cancer treatment, therapeutic determination and sensor development because of their special properties such as being covers, optics, antimicrobial, antioxidant, anti-metastasis, biocompatibility, solidness and manipulability. Metallic nanowatts clues, which can be utilized in the mechanical field due to their catalytic action, are of incredible significance these days. Figure 1 appears in detail where metallic nanoparticles gotten by biological strategies are utilized [2, 3].

Figure 1 Application areas of metallic nanoparticles synthesized by biological methods [3].

Nanomaterials, which are the pillar of nanotechnology that serve our lives for numerous a long time much appreciated to the commitments of numerous sciences, can be classified concurring to their roots, dimensions and basic arrangements. Agreeing to their origin; nanomaterials are classified into two fundamental bunches: natural nanomaterials that are found in nature such as viruses, proteins, chemicals and minerals, and counterfeit NATO materials which are not found in nature and require a few processes for their generation. Concurring to their dime signs, nanomaterials are inspected beneath four classes:- hand-sized monocrystals -too known as zero dimensions which incorporates metallic and semiconductor nanoparticles.- one-dimensional nanomaterials incorporate nanowires, NATO bots, and nanotubes.- two-dimensional nanomaterials such as nanocomposites and nameplates; - three-dimensional nanomaterials, bunkers. According to their basic arrangements, nanomaterials are examined beneath four fundamental bunches as metallic nanometer ALS, carbon based nanomaterials, dendrites and composites. Figure 2 appears a few sorts of nanoparticles utilized in NATO technology [4–6].

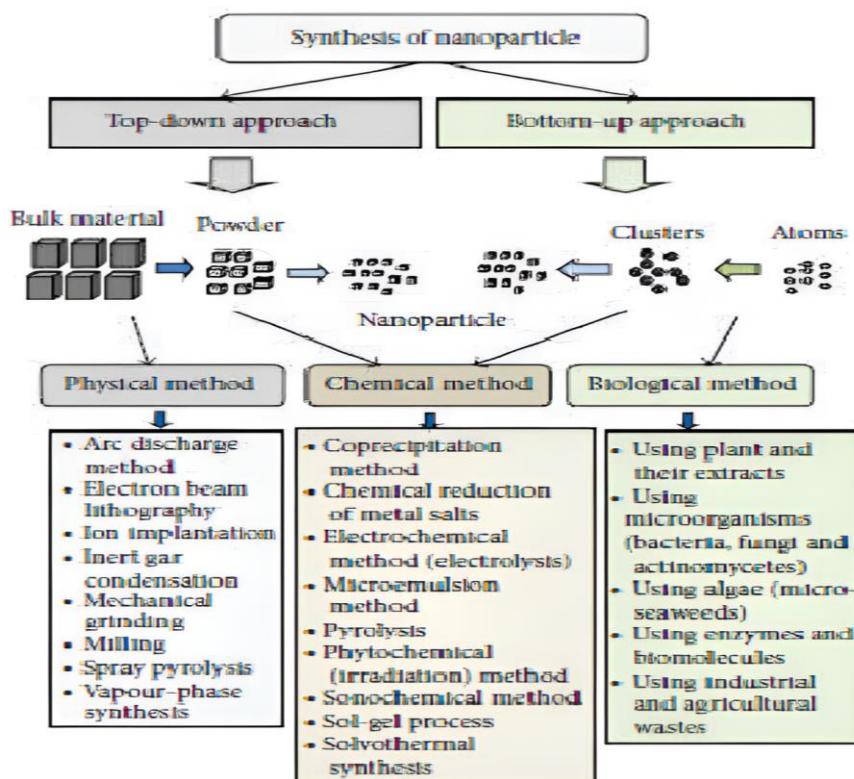


Figure 2 Types of Nanoparticles [5]

The reason for the seriously intrigued of researchers these days in nanoparticles is that nanoparticles can display distinctive properties and capacities than ordinary bulk materials. The most important calculate that empowers generation of nanostructures in desired estimate, shape and properties and gives their utilization in various areas is that the impacts of classical material science are reduced and the quantum material science gets to be dynamic. Other REAS sons for the diverse behavior of nanoparticles in physical, chemical, optical, electrical and attractive behavior incorporate the impediment of stack carriers, estimate subordinate electronic structures, expanded surface / volume proportion, and other variables incurred by the special properties of molecules [7].

- **1.2. Amalgamation strategies of nanoparticles :** In the union of nanoparticles, which can be normal or synthetic beginning and show special properties at the Nano scale, two fundamental approaches that incorporate different preparation strategies and are known from early times are utilized. The to begin with approach is the "top-down" strategy which calls for breaking down of strong materials into little pieces by applying outside drive. In this approach, numerous physical, chemical and warm procedures are utilized to give the essential energy for nanoparticle arrangement. The moment approach, known as "bottom-up", is based on gathering and combining gas or fluid iota or atoms. These two approaches have points of interest and impediments relative to each other. In the up-down approach, which is costlier to actualize, it is inconceivable to get idealize surfaces and edges due to CAV cities and unpleasantness that can happen in nanoparticles; while excellent nanoparticle blend comes about can be gotten by bottom-up approach. In expansion, with the foot up approach, no squander materials that require to be expelled are formed, and nanoparticles having littler measure can be obtained much obliged to the superior control of sizes of the nanowatts clues. The classification of union strategies of nanoparticles is given in Figure 3 [8–10].
- **GREEN SYNTHESIS :** Nature has concocted different forms for the union of NATO and miniaturized scale length scaled inorganic materials which have contributed in the advancement of moderately modern and generally unexplored range of investigate based on the biosynthesis of the nanomaterials. Union utilizing bio-organisms is consistent with the green chemistry principles. "Green synthesis" of nanoparticles makes utilize of natural neighborly, non-toxic and secure reagents. Nanoparticles synthesized utilizing organic procedures or green innovation have assorted natures, with more noteworthy solidness and appropriate measurements since they are synthesized utilizing a one-step method. Nanoparticles can be synthesized using an assortment of

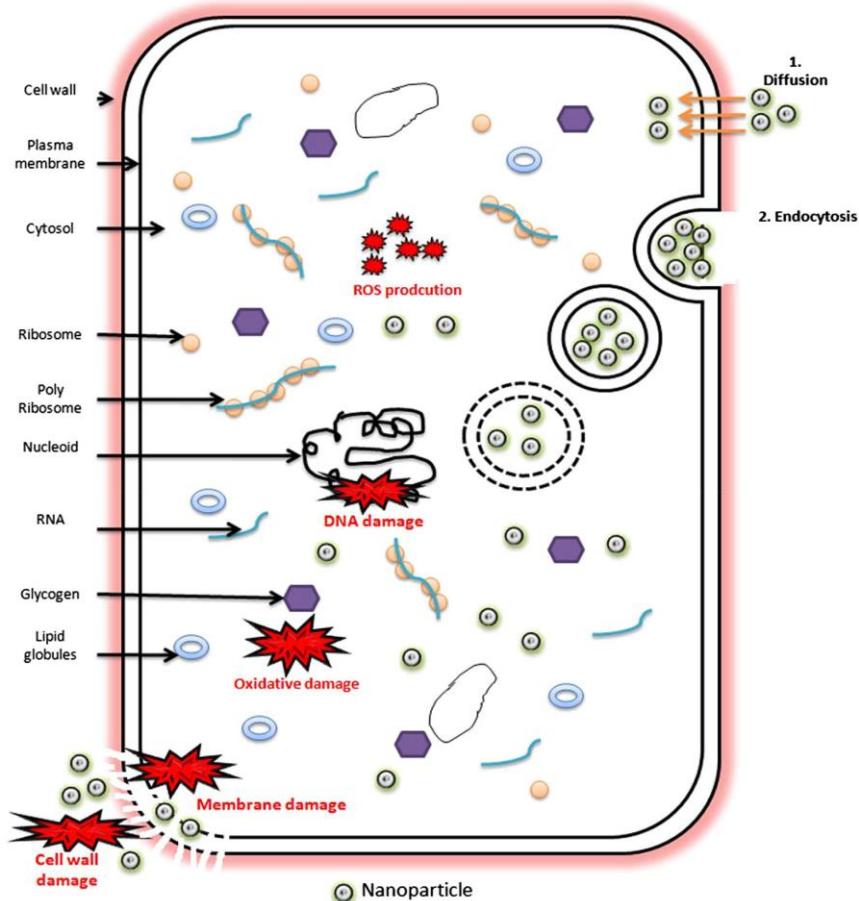
strategies counting chemical, physical, organic, and crossover strategies [11-13]. In common, green nanobiotechnology implies synthesizing nanoparticles or the nanomaterials utilizing biological routes such as those including microorganisms, plants, and infections or their by items, such as proteins and lipids, with the offer assistance of different biotechnological devices. Nanoparticles made by green innovation are distant predominant to those manufactured with physical and chemical strategies based on different viewpoints. For case, green techniques eliminate to utilize of costly chemicals, devour less vitality, and create ecologically kind items and by items. The 12 standards of green chemistry have presently gotten to be a reference direct for analysts, scientists, chemical technologists, and chemists around the world for creating less unsafe chemical items and by products [14 15].

Fig 3. Different approaches and methods for synthesizing nano particles.[11-13]

In like manner, green nanobiotechnology is a promising substitute course for union of biocompatible steady nanoparticles [16]. The common method utilizing plants to deliver metallic nanoparticles employs the dried biomass of the plants and metallic salt, as bio decreasing operator and antecedent, individually. The medicinal and additive characteristics of silver have been known for over 2,000 a long time. Biological-based synthesis of

nanoparticles utilizes a bottom-up approach in which blend happens with the offer assistance of lessening and stabilizing specialists. Three primary steps are taken after for the blend of nanoparticles utilizing a natural framework: the choice of dissolvable medium utilize, the choice of an eco neighborly and naturally generous decreasing operator, and the choice of a nontoxic fabric as a capping specialist is to stabilize the synthesized nanoparticles [17].

❖ **PROPERTIES OF NANOPARTICLES :**


- ✓ **Physical properties of nanoparticles :** Nanoparticles are special since of their huge surface zone and this overwhelms the commitments are made by the small bulk of the fabric [18] Nanoparticles have diverse colors like yellow, gold and gray. The gold ones are melting at much lower temperatures (~300°C for 2.5nm measure) than the gold chunks (1064°C) Particularly silver nanoparticles have unmistakable physicochemical properties, counting a tall electrical and warm conductivity, surface-enhanced Roman scrambling, catalytic action and chemical solidness, and non-direct optical behavior [19]. Absorption of sun based radiation in the photovoltaic cells is much higher in nanoparticles than it is in lean movies of continuous sheets of the bulk fabric - since the particles are littler, they assimilate more noteworthy sum of sun based radiation .
- **Advantages :** The preferences of utilizing nanoparticles for the sedate conveyance result from their two fundamental essential properties. First nanoparticles, since of their little estimate, nanoparticles can enter through littler capillaries and are taken up by cells, which permit productive medicate aggregation at the target destinations. Moment, to utilize of biodegradable materials for nanoparticle arrangement permits maintained sedate discharge inside the target location over the period of days or indeed weeks [20]. But not as it were for drugs are nanoparticles exceptionally imperative. Nanotechnology can really revolutionize a parcel of electronic items, methods, and applications. The zones that advantage by the proceeded advancement of nanotechnology when it comes to electronic items incorporate NATO diodes, NATO transistors, OLED, plasma displays, quantum computers, and numerous more. Nanotechnology can moreover advantage the vitality segment. Such things like batteries, fuel cells, and sun based cells can be built littler but can be made to be more successful with this innovation. Another industry that can advantage from nanotechnology is the fabricating segment that will require materials like aerogels, nanotubes, NATO particles, and other comparable things to deliver their items with. These materials are frequently more durable, more grounded and lighter than those that are not delivered with the offer assistance of nanotechnology [21]. There are a few

more preferences of nanoparticles over their generation and their medicate conveyance process. Nanoparticles are decently simple to get ready that's why they are utilized in medicate after focusing on the range. Due to their small size Nanoparticles enter little capillary and are taken up by the cell which permits for effective drug accumulation at the target locales in the body. Utilizing Nanoparticles in sedate conveyance donate great control over estimate and give great assurance of the typified sedate. Maintenance of the sedate at the dynamic location has longer clearance time. Nanoparticles expanded the helpful productivity as well as bioavailability. They decreased fed/fasted changeability that increased sedate steadiness. Steady measurement shapes of sedate which are either unsteady or have unsatisfactorily low bioavailability in non-nanoparticulate measurement form. While carrying medicate with nanoparticles have no biotoxicity of the carrier. Nanoparticles are do not appear any problem in expansive scale generation and sterilization but they as it were dodged natural dissolvable .

- **Disadvantages :** When handling the focal points and impediments of nanotechnology, we will too require pointing out what can be seen as the negative side of this innovation: Included in the list of drawbacks of this science and its development is the conceivable misfortune of occupations in the conventional cultivating and fabricating industry. Nuclear weapons can presently be more accessible and made to be more effective and more damaging. These can moreover gotten to be more available with nanotechnology. Nanotechnology has expanded hazard to the wellbeing moreover, nanoparticles due to there their little estimate can cause inward breath issue and numerous other lethal infections by fair breathing in for 60 seconds in to discuss contain NATO particles can harm lungs effortlessly. By and by, nanotechnology is exceptionally costly and creating it can fetch you a lot of cash. It is too beautiful troublesome to make, which is likely why items made with nanotechnology are more costly [21]. Nanotechnology has raised the standard of living but at the same time, it has expanded the pollution, which incorporates water contamination, discuss contamination. The contamination caused by nanotechnology is known as NATO pollution. This kind of contamination is exceptionally perilous for living life forms. The impediments of nanoparticles are very poorly investigated. So there are as it were a few more of them based on drugs delivery. Producing Nanoparticles for sedate conveying broad utilize of polyvinyl liquor as a cleanser that make an issue on poisonous quality. Nanoparticles have as it were constrained focusing on capacities that's why cessation of treatment is not possible. Drug conveyance with Nanoparticles appears cytotoxicity, alveolar

irritation. The unsettling influence of autonomic imbalance by nanoparticles having coordinate impact on heart and vascular work. Nanoparticles appear molecule growth, unpredictable relation propensity, startling energetic of polymeric transitions and some of the time burst discharge . [19-22]

Schematic representation of cellular uptake of nanoparticles and the mechanism of particle induced toxicity against bacteria as Follows : [23]

- **Green mix method :** The common procedure, which is talked to as an selective to chemical and physical methodologies, gives an environment tally welcoming way of synthesizing nanoparticles. In addition, this methodology does not require exorbitant, harmful and harmful chemicals. Metallic nanoparticles with diverse shapes, sizes, contents and physicochemical properties can be synthesized thanks to the natural procedure viably utilized in afterward a long time. Synthesis can be done in one step utilizing natural life forms such as organisms, Cyanobacteria, yeasts, molds, green development and plants, or their things. Particles in plants and micro or living beings, such as proteins, chemicals, phenolic compounds, amines, alkaloids and colors perform

nanoparticle synthesis by reducing [24,27–31]. In customary chemical and physical procedures; decreasing agents included in the reducing of metal particles, and stabilize ING masters utilized to dodge undesired agglomeration of the produced nanoparticles carry a chance of hurtfulness to the envy substance and to the cell. Other than, the substance of the created nanoparticles are thought to be hurtful in terms of shape, measure and surface chemistry. In the green amalgamation procedure in which nanoparticles with bio compatibility are delivered, these administrators are really shown in the utilized organic organisms. [32]. Because of quick advancement, sensible refined costs and straightforward control and control of advancement environment, bacteria are clearly targets in the era of nanoparticles. At the same time, it is known that a few species of tiny organisms have exceptional disobedient to smother the hurtfulness of metals or overpowering metals. Minuscule life forms favored for these properties, can perform nanoparticle union in-situ and ex-situ. Through to utilize of biochemical pathways and reducing pros such as proteins, proteins, etc. which show in the minuscule life forms, metal ions can be diminished and quickened for nanoparticle produce ton [33, 34]. Cyanobacteria, which performs the era of auxiliary metabolites such as antimicrobial, are oxygen expending, stationary, and mostly filamentous gram-positive minuscule living beings. They are re far off to the most noxious overpowering metals owing to their detox fiction property. Dissolvable destructive metal particles are detoxified by either being adulterated by intracellular or extracellular reduce ton or precipitation. Subsequently, nanoparticles being antibacterial, anti fungal, anticancer, antioxidant, anti bio-contamination and having catalytic development can be conveyed [35]. Synthesis of nanoparticles can be done as extracellular or intracellular with proteins by utilizing simply-cultured and fast-breeding eukaryotic yeasts and molds with basic bi mass arrange, as. The brooding conditions and the metallic ion courses of action utilized affect the gauge of the nanoparticles produced. Being pathogenic for individuals restrain to utilize of a few molds in nanoparticle era [36]. Algae are eukaryotic maritime photosites and they break down metallic salts into nanoparticles much acknowledged to the shades, proteins, carbohydrates, fat, nucleic destructive and assistant metal flights they contain. The green development remove that exists in an aqua out medium at a certain temperature is supplemented with metal courses of action of the comparing pH and concentration, and along these lines the amalgamation of nanoparticles is finished which may have antimicrobial properties without making any toxic by-products in the midst of the amalgamation. Degree of nanoparticles is chosen by certain parameters such as the

brooding time of the course of action, the enveloping temperature, the pH of the mixture utilized and the metal molecule concentration. Plants, which have magnificent potential for detoxification, reduce ton and collection of metals, are promising, fast and eco ostensible in emptying metal-borne poisons. Metallic NATO particles having distinctive morphological characteristics can be produced intracellularly and extracellularly. Union pro CESS; is begun by development of extricates gotten from plant parts such as clears out, roots and characteristic items into the watery arrangement of metal particles. With the materials appear in the plant extricate, such as sugar, flavonoid, protein, protein, polymer and or freeze destructive, acting as a lessening administrator, takes charge in biotin sell off of metal particles into nanoparticles [25, 26, 27, 37, 39].

REFERENCES:

1. Pearce, J. M. (2012). Make nanotechnology research open-source. *Nature*, 491(7425), 519-521.
2. Schröfel, A., Kratošová, G., Šafařík, I., Šafaříková, M., Raška, I., & Shor, L. M. (2014). Applications of biosynthesized metallic nanoparticles—a review. *Acta biomaterialia*, 10(10), 4023-4042.
3. Singh, P., Kim, Y. J., Zhang, D., & Yang, D. C. (2016). Biological synthesis of nanoparticles from plants and microorganisms. *Trends in biotechnology*, 34(7), 588-599.
4. Byrappa, K., Ohara, S., & Adschari, T. (2008). Nanoparticles synthesis using supercritical fluid technology—towards biomedical applications. *Advanced drug delivery reviews*, 60(3), 299-327.
5. Li, X., Xu, H., Chen, Z. S., & Chen, G. (2011). Biosynthesis of nanoparticles by microorganisms and their applications. *Journal of nanomaterials*, 2011(1), 270974.
6. Nadaroglu, H., Güngör, A. A., & Ince, S. (2017). Synthesis of nanoparticles by green synthesis method. *International Journal of Innovative Research and Reviews*, 1(1), 6-9.
7. Shah, M., Fawcett, D., Sharma, S., Tripathy, S. K., & Poinern, G. E. J. (2015). Green synthesis of metallic nanoparticles via biological entities. *Materials*, 8(11), 7278-7308.
8. Iravani, S. (2011). Green synthesis of metal nanoparticles using plants. *Green chemistry*, 13(10), 2638-2650.
9. Cerjak, H. (2014). Book note: introductions to nanoparticles and nanomaterials.
10. Makarov, V. V., Love, A. J., Sinitsyna, O. V., Makarova, S. S., Yaminsky, I. V., Taliansky, M. E., & Kalinina, N. O. (2014). “Green” nanotechnologies: synthesis of

metal nanoparticles using plants. *Acta Naturae* (англоязычная версия), 6(1 (20)), 35-44.

11. Mohanpuria, P., Rana, N. K., & Yadav, S. K. (2008). Biosynthesis of nanoparticles: technological concepts and future applications. *Journal of nanoparticle research*, 10, 507-517.
12. Tiwari, D. K., Behari, J., & Sen, P. (2008). Time and dose-dependent antimicrobial potential of Ag nanoparticles synthesized by top-down approach. *Current Science*, 647-655.
13. Luechinger, N. A., Grass, R. N., Athanassiou, E. K., & Stark, W. J. (2010). Bottom-up fabrication of metal/metal nanocomposites from nanoparticles of immiscible metals. *Chemistry of Materials*, 22(1), 155-160.
14. Anastas, P. T., & Beach, E. S. (2007). Green chemistry: the emergence of a transformative framework. *Green Chemistry Letters and Reviews*, 1(1), 9-24.
15. Kharissova, O. V., Dias, H. R., Kharisov, B. I., Pérez, B. O., & Pérez, V. M. J. (2013). The greener synthesis of nanoparticles. *Trends in biotechnology*, 31(4), 240-248.
16. Narayanan, K. B., & Sakthivel, N. (2011). Green synthesis of biogenic metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents. *Advances in colloid and interface science*, 169(2), 59-79.
17. Singh, M., Manikandan, S., & Kumaraguru, A. K. (2011). Nanoparticles: a new technology with wide applications. *Research Journal of Nanoscience and Nanotechnology*, 1(1), 1-11.
18. Parveen, K., Banse, V., & Ledwani, L. (2016, April). Green synthesis of nanoparticles: Their advantages and disadvantages. In AIP conference proceedings (Vol. 1724, No. 1). AIP Publishing.
19. Krutyakov, Y. A., Kudrinskiy, A. A., Olenin, A. Y., & Lisichkin, G. V. (2008). Synthesis and properties of silver nanoparticles: advances and prospects. *Russian Chemical Reviews*, 77(3), 233.
20. Shinde, N. C., Keskar, N. J., & Argade, P. D. (2012). Nanoparticles: Advances in drug delivery systems. *Res. J. Pharm. Biol. Chem. Sci*, 3(1), 922-929.
21. Parveen, K., Banse, V., & Ledwani, L. (2016, April). Green synthesis of nanoparticles: Their advantages and disadvantages. In AIP conference proceedings (Vol. 1724, No. 1). AIP Publishing.
22. Yadav, N., Khatak, S., & Sara, U. S. (2013). Solid lipid nanoparticles-a review. *Int. J. Appl. Pharm*, 5(2), 8-18.

23. Hussain, I., Singh, N. B., Singh, A., Singh, H., & Singh, S. C. (2016). Green synthesis of nanoparticles and its potential application. *Biotechnology letters*, 38, 545-560.
24. Shah, M., Fawcett, D., Sharma, S., Tripathy, S. K., & Poinern, G. E. J. (2015). Green synthesis of metallic nanoparticles via biological entities. *Materials*, 8(11), 7278-7308.
25. Iravani, S. (2011). Green synthesis of metal nanoparticles using plants. *Green chemistry*, 13(10), 2638-2650.
26. Makarov, V. V., Love, A. J., Sinityna, O. V., Makarova, S. S., Yaminsky, I. V., Taliantsky, M. E., & Kalinina, N. O. (2014). "Green" nanotechnologies: synthesis of metal nanoparticles using plants. *Acta Naturae (англоязычная версия)*, 6(1 (20)), 35-44.
27. Nadaroglu, H., Onem, H., & Alayli Gungor, A. (2017). Green synthesis of Ce₂O₃ NPs and determination of its antioxidant activity. *IET nanobiotechnology*, 11(4), 411-419.
28. Nadaroglu, H., Gungor, A. A., Ince, S., & Babagil, A. (2017). Green synthesis and characterisation of platinum nanoparticles using quail egg yolk. *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy*, 172, 43-47.
29. Cicek, S., Gungor, A. A., Adiguzel, A., & Nadaroglu, H. (2015). Biochemical evaluation and green synthesis of nano silver using peroxidase from *Euphorbia* (*Euphorbia amygdaloides*) and its antibacterial activity. *Journal of Chemistry*, 2015(1), 486948.
30. Narayanan, K. B., & Sakthivel, N. (2010). Biological synthesis of metal nanoparticles by microbes. *Advances in colloid and interface science*, 156(1-2), 1-13.
31. Mukhopadhyay, N. K., & Yadav, T. P. (2011). Some aspects of stability and nanophase formation in quasicrystals during mechanical milling. *Israel Journal of Chemistry*, 51(11-12), 1185-1196.
32. Hussain, I., Singh, N. B., Singh, A., Singh, H., & Singh, S. C. (2016). Green synthesis of nanoparticles and its potential application. *Biotechnology letters*, 38, 545-560.
33. Korbekandi, H., Iravani, S., & Abbasi, S. (2009). Production of nanoparticles using organisms. *Critical reviews in biotechnology*, 29(4), 279-306.
34. Gao, Y., Wei, Z., Li, F., Yang, Z. M., Chen, Y. M., Zrinyi, M., & Osada, Y. (2014). Synthesis of a morphology controllable Fe₃O₄ nanoparticle/hydrogel magnetic nanocomposite inspired by magnetotactic bacteria and its application in H₂O₂ detection. *Green Chemistry*, 16(3), 1255-1261.

35. Manivasagan, P., Venkatesan, J., Sivakumar, K., & Kim, S. K. (2016). Actinobacteria mediated synthesis of nanoparticles and their biological properties: A review. *Critical reviews in microbiology*, 42(2), 209-221.
36. Boroumand Moghaddam, A., Namvar, F., Moniri, M., Md. Tahir, P., Azizi, S., & Mohamad, R. (2015). Nanoparticles biosynthesized by fungi and yeast: a review of their preparation, properties, and medical applications. *Molecules*, 20(9), 16540-16565.
37. Siddiqi, K. S., & Husen, A. (2016). Fabrication of metal and metal oxide nanoparticles by algae and their toxic effects. *Nanoscale research letters*, 11, 1-11. Siddiqi, K. S., & Husen, A. (2016). Fabrication of metal and metal oxide nanoparticles by algae and their toxic effects. *Nanoscale research letters*, 11, 1-11.
38. Karaduman, I., Güngör, A. A., Nadaroğlu, H., Altundaş, A., & Acar, S. (2017). Green synthesis of γ -Fe₂O₃ nanoparticles for methane gas sensing. *Journal of Materials Science: Materials in Electronics*, 28, 16094-16105.
39. Park, S., Sung, H. K., & Kim, Y. (2016). Green synthesis of metal nanoparticles using sprout plants: pros and cons. *Journal of nanoscience and nanotechnology*, 16(5), 4444-4449.