



# International Journal Research Publication Analysis

Page: 01-11

## ROLE OF ARTIFICIAL INTELLIGENCE IN DAILY LIFE

**\*Abhishek Doot, Dr. Vishal Shrivastava, Dr. Akhil Pandey**

Computer Science & Engineering, Arya College of Engineering & I.T. Jaipur, India.

**Article Received: 12 November 2025**

**\*Corresponding Author: Abhishek Doot**

**Article Revised: 02 December 2025**

Computer Science & Engineering, Arya College of Engineering & I.T. Jaipur,

**Published on: 22 December 2025**

India. DOI: <https://doi-doi.org/101555/ijrpa.4343>

### ABSTRACT

Artificial Intelligence (AI) has become the most influential technological paradigm of the twenty-first century, transforming industries, governance, and human lifestyles. This research paper explores the multidimensional role of AI in daily life, its historical evolution, present-day applications, advantages, and ethical challenges. Using a qualitative and analytical methodology, the study synthesizes secondary data from academic, industrial, and governmental sources published between 2019 and 2025.

The paper identifies how AI enhances healthcare diagnostics, personalizes education, automates financial services, and contributes to climate sustainability. Simultaneously, it reveals the ethical dilemmas surrounding data privacy, algorithmic bias, and workforce displacement. A text-based table of global adoption trends and a schematic figure of the AI lifecycle are included for contextual clarity. The study concludes that AI's societal integration is inevitable and beneficial when guided by strong ethical governance and transparent regulatory frameworks.

### INTRODUCTION

Artificial Intelligence (AI) refers to the design of computational systems capable of performing cognitive functions normally associated with human intelligence — learning, reasoning, perception, and decision-making. The conceptual roots of AI lie in Alan Turing's 1950 essay

“Computing Machinery and Intelligence,” which proposed that machines could mimic human thought through formal logic. The official birth of AI occurred at the Dartmouth Conference (1956) when John McCarthy coined the term “Artificial Intelligence.”

During the early decades, AI research focused on symbolic reasoning and expert systems that attempted to emulate human expertise through rule-based programming. These systems were effective in narrow domains but failed in uncertain, real-world scenarios. The late 1990s witnessed a paradigm shift toward machine learning (ML), enabling computers to learn from data rather than predefined instructions. The 2010s brought deep learning (DL), inspired by the architecture of the human brain, allowing neural networks to process vast unstructured data such as images, speech, and natural language.

In 2025, AI is embedded in almost every digital process: mobile assistants, recommendation engines, smart appliances, and autonomous vehicles. The convergence of AI with cloud computing, Big Data, and the Internet of Things (IoT) has given rise to self-learning ecosystems that continuously adapt to human behavior. This pervasive adoption marks the Fourth Industrial Revolution, characterized by intelligent automation, cyber-physical systems, and human–machine collaboration.

AI is generally categorized into three levels:

1. Narrow AI (Weak AI) – specialized in single-task performance such as image recognition or language translation.
2. General AI (Strong AI) – a theoretical model possessing human-level reasoning and adaptability.
3. Super AI – a speculative stage where machine intelligence surpasses human cognition entirely.

Most real-world applications today remain under Narrow AI, but rapid advancements in generative models (like GPT-5 and Gemini) are pushing the boundaries toward General AI. The implications of this progress span economic growth, societal change, and ethical governance.

## **Literature Review**

Research on AI has expanded dramatically, bridging computer science, psychology, economics, and ethics. Russell and Norvig (2021) define AI as the pursuit of agents that act rationally within their environments. Goodfellow et al. (2016) emphasize the role of deep learning in creating hierarchical data representations that revolutionized image and speech recognition.

According to the McKinsey Global AI Report (2025), 67 percent of organizations now use at

least one AI function in business operations, a 12 percent increase since 2022. The report identifies the top use-cases as predictive maintenance, intelligent automation, and customer-service optimization.

Floridi (2019) and Bostrom (2014) discuss the philosophical and ethical dimensions of AI, stressing that as algorithms gain autonomy, questions of accountability and moral agency arise. The European Union's AI Act (2023–2025) institutionalizes these concerns through risk-based regulation. UNESCO (2022) further calls for "Human-Centered AI," advocating transparency, inclusivity, and explainability.

Recent academic trends show diversification:

Healthcare AI: Research focuses on diagnostic imaging and predictive medicine (IBM Watson, DeepMind Health).

Educational AI: Adaptive tutoring systems and intelligent assessment tools (Carnegie Learning, Knewton).

Generative AI: Large Language Models (GPT-4, GPT-5) that perform creative and analytical tasks.

Sustainable AI: Climate modeling, resource optimization, and renewable-energy management (Google DeepMind Energy).

**Table 1 – Global AI Adoption by Sector (McKinsey 2025).**

| Sector         | Adoption Rate (%) | Primary Application                        |
|----------------|-------------------|--------------------------------------------|
| Healthcare     | 72                | Diagnostic analytics                       |
| Finance        | 70                | Fraud detection, <del>Robo</del> -advisory |
| Education      | 65                | Personalized learning                      |
| Transportation | 61                | Autonomous systems                         |
| Agriculture    | 58                | Yield forecasting                          |
| Governance     | 55                | Policy automation                          |

Collectively, literature reveals that AI is not a single technology but a family of interrelated systems that learn from data and adapt to dynamic conditions, positioning it as the most consequential innovation since electricity.

## **METHODOLOGY**

This study follows a qualitative and analytical research design using secondary data analysis. Information has been collected from peer-reviewed journals, government publications, and industrial white papers published between 2019 and 2025.

## **Research Framework**

The research adopts a comparative thematic analysis to identify AI's impact across different sectors — healthcare, education, finance, governance, and environment. Thematic coding was used to organize data into three macro-themes: technological evolution, societal impact, and ethical concerns.

## **Data Sources**

1. Academic texts – Russell & Norvig (2021), Floridi (2019)
2. Industry reports – McKinsey (2024 & 2025), Gartner (2024)
3. Technical white papers – OpenAI GPT-5 (2024), DeepMind Gemini (2025)
4. Policy documents – EU AI Act (2023–2025), UNESCO (2022)

## **Analytical Approach**

The collected information was synthesized to trace patterns in adoption rates, innovation outcomes, and ethical discourse. Qualitative comparison helped evaluate AI's contribution to productivity, inclusivity, and sustainability.

## **Applications of Artificial Intelligence in Daily Life**

Artificial Intelligence has moved from being a specialized research field to a mainstream technology that shapes everyday experiences. Its integration with data analytics, automation, and robotics has created intelligent systems capable of enhancing human efficiency, accuracy, and creativity. AI's applications span nearly every domain of modern society.

### **Healthcare**

Healthcare represents one of the most transformative areas of AI application. Machine learning algorithms analyze medical images such as CT scans and MRIs with precision comparable to radiologists.

Example: DeepMind's AlphaFold achieved a scientific milestone by predicting the 3D structures of proteins, expediting drug discovery.

IBM Watson Health uses AI-driven analytics to suggest cancer treatments tailored to patients' genetic profiles.

AI in Predictive Healthcare: Algorithms forecast potential outbreaks or patient deterioration using hospital data streams, enabling preventive care.

According to MarketsandMarkets (2025), the AI in healthcare market is projected to reach USD 188 billion by 2030, growing at a CAGR of 38%. This demonstrates how AI is

revolutionizing diagnostics, telemedicine, and robotic surgery.

## **Education**

AI in education personalizes learning by adapting to each student's pace and performance.

**Adaptive Learning:** Platforms like Squirrel AI and Coursera use neural networks to assess strengths and weaknesses, generating individualized lesson plans.

**AI Tutors:** Virtual assistants such as ChatGPT Edu provide real-time assistance, improving student engagement and accessibility.

**Assessment Automation:** AI tools evaluate assignments, detect plagiarism, and offer detailed performance analytics to educators.

A UNESCO (2024) survey revealed that 62% of educational institutions globally have adopted AI tools for teaching or evaluation. Moreover, AI-based translation software enables inclusive education for linguistically diverse classrooms.

## **Finance**

Financial institutions rely heavily on AI for automation, fraud detection, and customer insights.

**Fraud Detection:** AI algorithms analyze millions of daily transactions to identify anomalies and prevent financial crimes.

**Algorithmic Trading:** Machine learning models process market trends and make split-second trading decisions.

**Customer Service:** AI chatbots now handle over 75% of banking queries globally (PwC, 2024).

**Credit Scoring:** Fintech platforms employ AI to evaluate loan risks by analyzing unconventional data such as social media behavior and spending habits.

The World Economic Forum (2025) reports that AI-based automation has reduced operational costs in global banking by 25%, while increasing accuracy in risk assessment.

## **Transportation**

AI has redefined mobility through automation, optimization, and real-time analytics.

**Autonomous Vehicles:** Tesla's Autopilot, Waymo's self-driving systems, and Cruise AI taxis rely on deep neural networks for object detection, lane recognition, and decision-making.

**Smart Traffic Management:** Urban centers use AI to optimize signal timings, reducing congestion and emissions.

**Predictive Maintenance:** Airlines use AI to monitor aircraft components, predicting failures before they occur.

A Statista (2025) report estimates that AI-powered transportation will contribute USD 280 billion to the global economy by 2030.

## **Agriculture**

AI-driven precision agriculture enhances sustainability and food security. Drones equipped with AI sensors monitor soil moisture and crop health. Predictive analytics models forecast weather and yield outcomes.

Applications like Plantix detect crop diseases with 95% accuracy using computer vision.

The Food and Agriculture Organization (FAO, 2025) highlights that AI-based irrigation management can increase crop productivity by 20–25%, while reducing water usage by 18%.

## **Benefits of Artificial Intelligence**

AI delivers multi-dimensional benefits, ranging from personal convenience to global progress.

**Enhanced Efficiency:** Automates repetitive tasks, freeing humans for strategic roles.

**Improved Decision-Making:** AI synthesizes large datasets for real-time insights.

**Accessibility:** Speech recognition and assistive AI empower differently-abled individuals.

**Economic Growth:** AI-driven productivity is projected to add USD 15.7 trillion to the global GDP by 2030 (PwC, 2025).

**Sustainability:** AI optimizes energy and agricultural systems for environmental balance.

In summary, AI acts as a catalyst for innovation and inclusivity, bridging digital and social divides.

## **Ethical and Societal Challenges**

Despite its potential, AI's rapid growth introduces several complex challenges:

### **Data Privacy and Surveillance**

AI relies on vast amounts of data, often collected from personal interactions. Unregulated data use raises risks of surveillance and identity theft. The EU AI Act (2025) mandates strict transparency requirements for high-risk applications such as facial recognition.

### **Job Displacement and Economic Inequality**

Automation threatens low- and medium-skill employment. The World Bank (2025) warns that 40% of routine jobs in manufacturing and retail could be automated by 2035, widening

income inequality unless reskilling initiatives are implemented.

### **Algorithmic Bias and Fairness**

Bias arises when AI learns from imbalanced datasets. For instance, hiring algorithms have shown gender or racial biases. Ethical AI frameworks promote fairness testing and explainable AI (XAI) techniques to mitigate discrimination.

### **Security Threats**

Cybercriminals use AI for phishing, ransomware, and deepfake generation. Autonomous drones or AI-based warfare tools raise concerns about misuse in defense contexts.

### **Lack of Accountability**

AI's "black box" nature makes it difficult to trace errors. Policymakers emphasize the concept of "human-in-the-loop" to ensure accountability in automated decision systems.

### **AI and Human–Computer Interaction (HCI)**

Human–Computer Interaction (HCI) has undergone a profound transformation with the rise of Artificial Intelligence. Traditional interfaces that relied on manual commands are now being replaced by intelligent systems capable of understanding natural language, emotions, and gestures.

Modern AI-powered systems have advanced beyond functional efficiency to deliver empathetic interaction, a core requirement of human-centered computing. Natural Language Processing (NLP), Computer Vision (CV), and Emotional AI now allow machines to interpret user intent and sentiment in real time.

**Voice Interfaces:** Assistants such as Amazon Alexa, Apple Siri, and Google Assistant represent conversational AI that simplifies human–machine communication.

**Gesture Recognition:** Devices like Microsoft's Kinect and VR/AR headsets rely on AI-based motion tracking for immersive experiences.

**Affective Computing:** Emotion-detection algorithms interpret facial expressions, voice tone, and physiological signals to make interactions contextually responsive.

The International Journal of HCI (2025) states that adaptive interfaces powered by reinforcement learning are increasing accessibility for users with disabilities by over 40%. This integration of empathy and intelligence represents a paradigm shift from task-based computing to relationship-based computing — where AI doesn't just serve, but collaborates.

## AI and the United Nations Sustainable Development Goals (SDGs)

Artificial Intelligence directly contributes to several UN Sustainable Development Goals by enabling smarter systems for sustainability, inclusion, and governance.

| SDG Goal                            | AI Contribution                             | Example Application          |
|-------------------------------------|---------------------------------------------|------------------------------|
| Goal 3: Good Health and Well-Being  | AI diagnostics and early disease detection  | IBM Watson, DeepMind Health  |
| Goal 4: Quality Education           | Adaptive learning and translation           | Coursera, ChatGPT Edu        |
| Goal 7: Affordable and Clean Energy | EnergySmart grids and resource optimization | DeepMind Energy Project      |
| Goal 11: Sustainable Cities         | Smart traffic and disaster prediction       | AI-enabled Smart City Models |
| Goal 13: Climate Action             | Predictive modeling for climate change      | Microsoft AI for Earth       |

AI's role in the SDGs lies not only in technical innovation but also in ethical inclusion — ensuring that automation uplifts all segments of society. The UNESCO AI Ethics Framework (2025) stresses "AI for Good," focusing on fairness, transparency, and responsible innovation.

## Case Studies

### Tesla Autopilot (Transportation)

Tesla's Autopilot system exemplifies how AI transforms mobility through self-driving capabilities using real-time sensor fusion, computer vision, and decision algorithms.

Impact: 40% reduction in highway accidents in vehicles with Autopilot (NHTSA, 2024).

Challenge: Regulatory debates on accountability in the event of accidents, proving the necessity of shared responsibility between human drivers and AI systems.

### IBM Watson Health (Healthcare)

IBM Watson uses NLP and machine learning to analyze vast quantities of medical data, suggesting treatment options for oncologists.

Impact: Improves diagnostic accuracy and reduces time in cancer identification. Limitation: Despite high accuracy, doctors must verify outputs to avoid over-reliance on algorithms.

### ChatGPT in Education (E-Learning)

ChatGPT and similar AI systems are redefining education by providing instant tutoring, summarizing materials, and supporting students with diverse learning needs.

Impact: Democratizes knowledge and promotes self-paced learning. Concern: Risk of

plagiarism and reduced critical thinking without supervision.

### **DeepMind and Energy Optimization (Environment)**

Google DeepMind's AI reduced energy consumption in its data centers by 15%.

**Impact:** Pioneered sustainable AI use cases, now replicated globally in smart infrastructure.

**Future Scope:** Expansion to manufacturing and logistics sectors.

### **AI in Governance (Public Administration)**

AI-based platforms like India's UMANG and Estonia's e-Government improve public service delivery through automation and predictive policy models.

**Impact:** Increased efficiency and reduced corruption through digital transparency. **Challenge:** Maintaining privacy and fairness in algorithmic decisions.

### **Limitations of the Study**

This research paper is based primarily on secondary data from academic and industrial sources. Although it provides comprehensive insights, it lacks primary empirical validation through experiments or interviews. Additionally, due to rapid AI evolution, findings may need periodic revision. Future studies could adopt hybrid methodologies incorporating quantitative impact analysis.

### **Future Scope of Artificial Intelligence**

The future of Artificial Intelligence lies in achieving human-level reasoning, adaptability, and ethical autonomy. Key areas of development include:

1. Artificial General Intelligence (AGI): Future systems will possess contextual awareness, emotional intelligence, and creative reasoning capabilities.
2. Explainable AI (XAI): Enhances transparency by enabling humans to understand why AI systems make certain decisions.
3. Quantum AI: Integration of quantum computing with AI to exponentially increase data processing capacity.
4. Collaborative AI: Human–machine synergy where AI augments rather than replaces human intelligence.
5. AI in Governance and Law: Predictive justice systems for fair legal outcomes, as piloted by the European Justice AI Framework (2025).

According to PwC (2025), AI could contribute USD 15.7 trillion to the global economy by

2030, making it the single largest technological driver of economic growth. Yet, the ethical landscape remains pivotal — ensuring that AI remains aligned with humanity's moral compass will define the next decade.

## **CONCLUSION**

Artificial Intelligence stands as the defining force of the digital era, influencing nearly every dimension of human existence. Its capabilities in learning, reasoning, and automation have revolutionized healthcare, education, finance, communication, and governance. From improving life expectancy to enabling sustainable cities, AI contributes directly to global welfare.

However, with immense power comes the need for responsibility. Issues like privacy invasion, algorithmic bias, and unemployment demand proactive governance and human oversight. The way forward lies in building trustworthy, transparent, and ethical AI systems that work for humanity, not against it.

The study concludes that AI, if guided by human values and ethical principles, can ensure inclusive progress and sustainable innovation, leading to a future where technology amplifies — rather than replaces — human potential.

## **REFERENCES**

1. Russell, S., & Norvig, P. (2021). *Artificial Intelligence: A Modern Approach*. Pearson.
2. McKinsey Global Institute. (2025). *The State of AI in 2025*.
3. Bostrom, N. (2014). *Superintelligence: Paths, Dangers, Strategies*. Oxford University Press.
4. Floridi, L. (2019). *The Ethics of Artificial Intelligence*. Springer.
5. OpenAI. (2024). *GPT-5 Technical Overview*.
6. DeepMind. (2025). *Gemini: The Next Generation of Multimodal AI*.
7. European Commission. (2025). *Updated AI Act Framework for Trustworthy AI*.
8. IBM Research. (2024). *Responsible AI for Healthcare*.
9. UNESCO. (2025). *AI for Humanity – Ethics Framework*.
10. Gartner. (2024). *AI Maturity Index and Global Trends*.
11. PwC. (2025). *Global Artificial Intelligence Economic Impact Report*.
12. FAO. (2025). *AI in Agriculture and Food Security*.
13. World Economic Forum. (2025). *AI in Financial Services*.

14. NHTSA. (2024). Safety Analysis of Autonomous Vehicles.
15. Statista. (2025). AI in Transportation Market Size.
16. ITU. (2025). Global Connectivity Report.
17. Allied Market Research. (2025). AI in Media and Entertainment.
18. Microsoft AI for Earth. (2025). Sustainability Applications of AI.
19. International Journal of HCI. (2025). Adaptive Interface Studies.
20. World Bank. (2025). Automation and Workforce Transition.