\“\emaho,,,do
3 Z

B2, 2025 Volume: 01 Issue: 07 www.ijrpa.com ISSN 2456-9995 Review Article

“DOM MANIPULATION AND EVENT HANDLING IN JAVASCRIPT”

*Aditya Raj Thakur, Dr. Vishal Shrivastava, Dr. Akhil Pandey

Computer Science & Engineering, Arya College of Engineering & I.T. Jaipur, India.

Article Received: 30 October 2025 *Corresponding Author: Aditya Raj Thakur

Article Revised: 19 November 2025 Computer Science & Engineering, Arya College of Engineering & I.T. Jaipur,
Published on: 10 December 2025 India. DOI: https://doi-doi.org/101555/ijrpa.4845

ABSTRACT

Document Object Model (DOM) manipulation and event handling are fundamental concepts
in JavaScript that enable developers to create dynamic, interactive, and user-friendly web
applications. The DOM represents the structure of a webpage as a hierarchical tree, where
each element can be accessed, modified, added, or removed using JavaScript. developers can
improve performance, usability, and maintainability of web applications while ensuring

seamless interaction between users and systems.

INTRODUCTION
One of the most unique and useful abilities of JavaScript is its ability to manipulate the
DOM. But what is the DOM, and how do we go about changing it? Let"s jup right.

Lesson overview

This section contains a general overview

of topics that you will learn in this lesson.

e Explain what the DOM is in relation to a webpage.

e Explain the difference between a “node” and an “element”.

e Explain how to target nodes with “selectors”.

e Explain the basic methods for finding, adding, removing, and altering DOM nodes.
e Explain the difference between a “NodeList” and an “array of nodes”.

e Explain what “bubbling” is and how it works.

Document Object Model
The DOM (or Document Object Model) is a tree-like representation of the contents of a

webpage - a tree of “nodes” with different relationships depending on how they*“re arranged

Copyright@ Page 1

International Journal Research Publication Analysis

Page: 01-11

https://doi-doi.org/101555/ijrpa.4845
https://www.theodinproject.com/lessons/foundations-dom-manipulation-and-events#introduction
https://www.theodinproject.com/lessons/foundations-dom-manipulation-and-events#lesson-overview
https://www.theodinproject.com/lessons/foundations-dom-manipulation-and-events#document-object-model
http://www.ijrpa.com/

International Journal Research Publication Analysis

in the HTML document. There are many types of nodes, most of which are not commonly
used. In this lesson we will be focusing on “element” nodes which are primarily used for

manipulating the DOM.

<div id="container">

<div class="display"></div>

<div class="controls"></div>

</div>

In the above example, the <div class="display"></div> is a ‘“child” of <div
id="container"></div> and a “sibling” to <div class="controls"></div>. Think of it like a
family tree. <div id="container"></div> is

a parent, with its children on the next

level, each on their own “branch”.

Targeting nodes with selectors When working with the DOM, you use “selectors” to
target the nodes you want to work with. You can use a combination of CSS-style selectors
and relationship properties to target the nodes you want. Let™s start with CSS-style
selectors. In the above example,you could use the following selectors to referto
<div class="display"></div>:

o div.display

o .display

e #container > .display

o div#container > div.display

You can also use relational selectors (i.e., firstElementChild or lastElementChild, etc.)
with special properties owned by the nodes.

/I selects the #container div (don't worry about the syntax, we'll get there)

const container = document.querySelector("#container");

/I selects the first child of #container => .display const display = container.firstElementChild,;
console.log(display); Il <div
class="display"></div>

/ selects the .controls div

const controls

document.querySelector(".contr

Copyright@ Page 2

https://www.theodinproject.com/lessons/foundations-dom-manipulation-and-events#targeting-nodes-with-selectors

International Journal Research Publication Analysis

ols");

/1 selects the prior sibling => .display
const display = controls.previousElementSibling; console.log(display); // <div

class="display"></div>

So you“re identifying a certain node based

on its relationships to the nodes around it.

DOM methods

When your HTML code is parsed by a web browser, it is converted to the DOM, as was
mentioned above. One of theprimary differences is that these nodes are JavaScript
objects that have many properties and methods attached to them. These properties and
methods are the primary tools we are going to use to manipulate our webpage with

JavaScript.

Query selectors
o element.querySelector(selector) - returns a reference to the first match of selector.
o element.querySelectorAll(selectors) - returns a “NodeList” containing references to all of

the matches of the selectors.

Performance consideration

There are several other, more specific queries, that offer potential (marginal) performance
benefits, but we won*t be going over them now.

It"s important to remember that when using querySelectorAll, the return value is not an
array. It looks like an array, and it somewhat acts like an array, but it“s really a “NodeList”.
The big distinction is that several array methods are missing from NodeL.ists. One solution, if
problems arise, is to convert the NodeL.ist into an array. You can do this with Array.from() or

the spread operator.

Element creation

o document.createElement(tagName, [options]) - creates a new element of tag type
tagName. [options] in this case means you can add some optional parameters to the
function. Don*t worry about these at this point.

const div = document.createElement(*'div");

Copyright@ Page 3

https://www.theodinproject.com/lessons/foundations-dom-manipulation-and-events#dom-methods
https://www.theodinproject.com/lessons/foundations-dom-manipulation-and-events#query-selectors
https://www.theodinproject.com/lessons/foundations-dom-manipulation-and-events#performance-consideration
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_operator
https://www.theodinproject.com/lessons/foundations-dom-manipulation-and-events#element-creation

International Journal Research Publication Analysis

This function does NOT put your new element into the DOM - it creates it in memory. This is
so that you can manipulate the element (by adding styles, classes, ids, text, etc.) before
placing it on the page. You can place the element into the DOM with one of the
following methods.

Append elements

o parentNode.appendChild(childNode) -appends childNode as the last child of
parentNode.

o parentNode.insertBefore(newNode, referenceNode) -inserts newNode into parentNode
before re ferenceNode.
Remove elements

o parentNode.removeChild(child) - removes child from parentNode on the DOM and

returns a reference to child. Altering elements

When you have a reference to an element, you can use that reference to alter the element™s
own properties. This allows you to do many useful alterations, like adding, removing, or

altering attributes, changing classes, adding inline style information, and more.

/I creates a new div referenced in the variable ‘'div' const div =
document.createElement("div"); Adding inline style
/l adds the indicated style rule to the element in the div variable

div.style.color = "blue™;

// adds several style rules

div.style.cssText = "color: blue; background: white;";

/I adds several style rules
div.setAttribute("style"”, "color: blue; background: white;");
When accessing a kebab-cased CSS property like background-color with JS, you will need to
either use camelCase with dot notation or bracket notation. When using bracket notation, you
can use either camelCase or kebab-case, but the property name must be a string.
/ dot notation with kebab case: doesn't work as it attempts to subtract color

from div.style.background

Il equivalent to: div.style.background - color div.style.background-color;

Copyright@ Page 4

https://www.theodinproject.com/lessons/foundations-dom-manipulation-and-events#append-elements
https://www.theodinproject.com/lessons/foundations-dom-manipulation-and-events#remove-elements
https://www.theodinproject.com/lessons/foundations-dom-manipulation-and-events#altering-elements
https://www.theodinproject.com/lessons/foundations-dom-manipulation-and-events#adding-inline-style

International Journal Research Publication Analysis

/[l dot notation with camelCase: works, accesses the div's background-color style
div.style.backgroundColor;

/I bracket notation with kebab-case: also works div.style["background-color"];

/I bracket notation with camelCase: also works div.style["'backgroundColor"];

Editing attributes

/'if id exists, update it to 'theDiv', else create an id with value "theDiv"

div.setAttribute(*'id", "theDiv");

/I returns value of specified attribute, in this case "theDiv"

div.getAttribute(*'id");

I/l removes specified attribute div.removeAttribute("id");

See MDN*s section on HTML Attributes for more information on available attributes.
Working with classes

[l adds class "new" to your new div div.classList.add("new");

I/l removes "new" class from div div.classList.remove(*"new");

/[if div doesn't have class "active" then add it, or if it does, then remove it
div.classList.toggle("active™);

It is often standard (and cleaner) to toggle a CSS style rather than adding and removing inline
CSsS.

Adding text content

/I creates a text node containing "Hello World!" and inserts it in div
div.textContent = "Hello World!";

Adding HTML content

// renders the HTML inside div

div.innerHTML = "Hello World!";

Security risks of innerHTML

Copyright@ Page 5

https://www.theodinproject.com/lessons/foundations-dom-manipulation-and-events#editing-attributes
https://developer.mozilla.org/en-US/docs/Web/HTML/Attributes
https://developer.mozilla.org/en-US/docs/Web/HTML/Attributes
https://www.theodinproject.com/lessons/foundations-dom-manipulation-and-events#working-with-classes
https://www.theodinproject.com/lessons/foundations-dom-manipulation-and-events#adding-text-content
https://www.theodinproject.com/lessons/foundations-dom-manipulation-and-events#adding-html-content
https://www.theodinproject.com/lessons/foundations-dom-manipulation-and-events#security-risks-of-innerhtml

International Journal Research Publication Analysis

Using textContent is preferred over innerHTML for adding text, as innerHTML should be
used sparingly to avoid potential security risks. To understand the dangers of using

innerHTML, watch this video about preventing the most common cross-site scripting attack.

Let"s take a minute to review what we*ve covered and give you a chance to practice this stuff
before moving on. Check out this example of creating and appending a DOM element to a

webpage.

<I-- your HTML file: -->

<body>

<h1>THE TITLE OF YOUR WEBPAGE</h1>
<div id="container"></div>

</body>

I/ your JavaScript file

constcontainer= document.querySelector(*#container");

const content = document.createElement("div"); content.classList.add("content");
content.textContent = "This is the glorious text- content!™;
container.appendChild(content);
In the JavaScript file, first we get a reference to the container div that already exists in our
HTML. Then we create a new div and store it in the variable content. We add a class and
some text to the content div and finally append that div to container. After the JavaScript
code is run, our DOM tree will look like this:
<!-- The DOM -->
<body>
<h1>THE TITLE OF YOUR WEBPAGE</h1>
<div id="container">
<div class="content">This is the glorious text- content!</div>
</div>
</body>
Keep in mind that the JavaScript does not alter your HTML, but the DOM -

Copyright@ Page 6

https://youtube.com/watch?v=ns1LX6mEvyM
https://youtube.com/watch?v=ns1LX6mEvyM
https://youtube.com/watch?v=ns1LX6mEvyM

International Journal Research Publication Analysis

your HTML file will look the same, but the JavaScript changes what the browser renders.

Timing of JavaScript

Your JavaScript, for the most part, is run whenever the JS file is run or when the script tag is
encountered in the HTML. If you are including your JavaScript at the top of your file, many
of these DOM manipulation methods will not work because the JS code is being run before
the nodes are created in the DOM. The simplest way to fix this is to include your JavaScript
at the bottom of your HTML file so that it gets run after the DOM nodes are parsed and
created.

Alternatively, you can link the JavaScript file in the <head> of your HTML document.
Use the <script>tag with the src attribute containing the path to the JS file, and include
the defer keyword to load the file after the HTML is parsed, as such:

<head>

<script src="js-file.js" defer></script>

</head>

Find out more about the defer attribute for script tags.

Exercise
Copy the example above into files on your own computer. To make it work, you“ll need to
supply the rest of the HTML skeleton and either link your JavaScript file or put the

JavaScript into a script tag on the page. Make sure everything is working before moving on!

Add the following elements to the container using ONLY JavaScript and the DOM methods

shown above:

1. a<p>with red text that says “Hey I“m red!”

2. an<h3> with blue text that says “I"m a
blue h3!”

3. a <div> with a black border and pink background color with the following elements
inside of it:

e another <h1> that says “I*'m in a div”

e a<p>thatsays “ME TOO!”

e Hint for this one: after creating the <div> with createElement, append the
<h1> and <p> to it before adding it to the container.

Copyright@ Page 7

https://www.theodinproject.com/lessons/foundations-dom-manipulation-and-events#timing-of-javascript
https://javascript.info/script-async-defer#defer
https://javascript.info/script-async-defer#defer
https://www.theodinproject.com/lessons/foundations-dom-manipulation-and-events#exercise

International Journal Research Publication Analysis

Events

Now that we have a handle on manipulating the DOM with JavaScript, the next step is
learning how to make that happen dynamically or on demand! Events are how you make that
magic happen on your pages. Events are actions that occur on your webpage, such as mouse-
clicks or key-presses. Using JavaScript, we can make our webpage listen to and react to these

events.

There are three primary ways to go about this:

e You can specify function attributes directly on your HTML elements.

e You can set properties in the form of on<eventType>, such as onclick or
onmousedown, on the DOM nodes in your JavaScript.

e You can attach event listeners to the DOM nodes in your JavaScript.

Event listeners are definitely the preferred method, but you will regularly see the others in

use, so we're going to cover all three.

We*re going to create three buttons that all alert “Hello World” when clicked. Try them
all out using your own HTML file or

using something like CodePen. Method 1

<button onclick="alert('HelloWorld")">Click Me</button>

This solution is less than ideal because we*re cluttering our HTML with JavaScript. Also, we
can only set one “onclick” property per DOM element, so we"re unable to run multiple

separate functions in response to a click event using this method.

Method 2

<!I-- the HTML file -->

<button id="btn">Click Me</button>

/I the JavaScript file

const btn = document.querySelector("#btn"); btn.onclick = () => alert("Hello World");
Reviewing arrow function syntax

If you need to review the arrow syntax ()

=> check thisarticle about arrow functions.

This is a little better. We*ve moved the JS out of the HTML and into a JS file, but we still

have the problem that a DOM element can only have one “onclick” property.

Copyright@ Page 8

https://www.theodinproject.com/lessons/foundations-dom-manipulation-and-events#events
https://codepen.io/
https://www.theodinproject.com/lessons/foundations-dom-manipulation-and-events#method-1
https://www.theodinproject.com/lessons/foundations-dom-manipulation-and-events#method-2
https://www.theodinproject.com/lessons/foundations-dom-manipulation-and-events#reviewing-arrow-function-syntax
http://javascript.info/arrow-functions-basics
http://javascript.info/arrow-functions-basics

International Journal Research Publication Analysis

Method 3

<l--the HTML file -->

<button id="btn">Click Me Too</button>

/I the JavaScript file

const btn = document.querySelector("#btn"); btn.addEventListener("click”, () => {
alert("Hello World");

b

Now, we maintain separation of concerns, and we also allow multiple event listeners if the
need arises. Method 3 is much more flexible and powerful, though it is a bit more complex to

set up.

Note that all three of these methods can be used with named functions like so:
<!I--the HTML file -->
<l--METHOD 1 -->
<button onclick="alertFunction()">CLICK ME BABY </button>
// the JavaScript file
/[METHOD 1
function alertFunction() { alert("YAY! YOU DID IT!");
}
<!I--the HTML file -->
<lI--METHODS 2 & 3 -->
<button id="btn">CLICK ME BABY </button>
/I the JavaScript file
/ METHODS 2 & 3
function alertFunction() { alert("YAY! YOU DID IT!);
the event itself. Within that object you have access to many useful properties and methods
(functions that live inside an object) such as which mouse button or key was pressed, or
information about the event™s target - the DOM node that was clicked. There™s nothing
magical about e as a name or where it comes from. JavaScript knows the parameter is an
event because an event listener callback takes an Event object by definition. When the
callback is run, the event handler passes in its own reference to the event. You can read

more about the event objects on MDN*s introduction to events.

Copyright@ Page 9

https://www.theodinproject.com/lessons/foundations-dom-manipulation-and-events#method-3
https://developer.mozilla.org/en-US/docs/Learn_web_development/Core/Scripting/Events#event_objects

International Journal Research Publication Analysis

¥

const btn = document.querySelector("#btn");

/[METHOD 2

btn.onclick = alertFunction;

/ METHOD 3

btn.addEventListener("click™, alertFunction); Using named functions can clean up your code
considerably, and is a really good idea if the function is something that you are going to
want to do in multiple places.

With all three methods, we can access more information about the event by passing a
parameter to the function that we are calling. Try this out on your own machine:

btn.addEventListener("click", function (e) { console.log(e);

b;

Understanding callbacks

When we pass in alertFunction or function (e)

{...} as an argument to addEventListener, we call this a callback. A callback is simply a
function that is passed into another function as an argument.

The e parameter in that callback function contains an object that references Try
this:

btn.addEventListener("click™, function (e) { console.log(e.target);

b

and now this:

btn.addEventListener(“click", function (e) { e.target.style.background = "blue";

b

Pretty cool, eh?

Attaching listeners to groups of nodes
This might seem like a lot of code if you‘re attaching lots of similar event listeners to many
elements. There are a few ways to go about doing that more efficiently. We learned above

that we can get a NodeList of all of the items matchinga specific selector with

Copyright@ Page 10

https://www.theodinproject.com/lessons/foundations-dom-manipulation-and-events#understanding-callbacks
https://www.theodinproject.com/lessons/foundations-dom-manipulation-and-events#attaching-listeners-to-groups-of-nodes

International Journal Research Publication Analysis

querySelectorAll('selector’). In order to add a listener to each of them, we need to iterate
through the whole list, like so:

<div id="container">

<button id="one">Click Me</button>

<button id="two">Click Me</button>

<button id="three">Click Me</button>

</div>

I/ buttons is a node list. It looks and acts much like an array.

constbuttons= document.querySelectorAll("button™);

/I we use the .forEach method to iterate through each button

buttons.forEach((button) => {

/I and for each one we add a ‘click’ listener button.addEventListener(“click”, () => {
alert(button.id);

b;

b;

This is just the tip of the iceberg when it comes to DOM manipulation and event handling,
but it"s enough to get you started with some exercises. In our examples so far, we have been

using the ,,click™ event exclusively, but there are many more available to you.

References

1. Flanagan, D. (2020). JavaScript: The Definitive Guide. O*Reilly Media.

2. Crockford, D. (2008). JavaScript: The Good Parts. O*Reilly Media.

3. Mozilla Developer Network (MDN). “DOM Manipulation.” Available at:
https://developer.mozilla.org/

4. Mozilla Developer Network (MDN). “Event Handling in JavaScript.” Available at:
https://developer.mozilla.org/

5. W3Schools. “JavaScript HTML DOM.” Available at: https://www.w3schools.com/js/js_h
tmldom.asp

6. Duckett, J. (2014). JavaScript and jQuery: Interactive Front-End Web Development.
Wiley.

Copyright@ Page 11

http://www.w3schools.com/js/js_h

