

International Journal Research Publication Analysis

Page: 01-09

“IMPACT OF LONG-TERM ATHLETE DEVELOPMENT MODELS ON PERFORMANCE OF YOUNG ATHLETES AND FOOTBALL PLAYERS”

¹Kasudari Ganapathi, ²D V Balachandra

¹Coach, Indian Institute of Science Education and Research, Tirupathi, Andhra Pradesh.

²Research Scholar, Department of Physical Education, Sri Venkateswara University, Tirupathi, Andhra Pradesh.

Article Received: 14 December 2025

***Corresponding Author: Kasudari Ganapathi**

Article Revised: 2 January 2026

Coach, Indian Institute of Science Education and Research, Tirupathi, Andhra Pradesh.

Published on: 21 January 2026

DOI: <https://doi-doi.org/101555/ijrpa.3080>

ABSTRACT:

The present study aimed to examine the impact of Long-Term Athlete Development (LTAD) models on the performance of young athletes and football players in Tirupati district. A total of 80 young athletes (40 athletes and 40 football players) aged between 12 and 16 years were selected from schools and sports academies using a purposive sampling method. The participants underwent a 24-week LTAD-based training intervention emphasizing fundamental movement skills, progressive physical conditioning, sport-specific skill development, and psychological readiness, conducted four days per week. Performance variables such as speed, agility, endurance, coordination, and sport-specific skill proficiency were assessed using standardized field tests before and after the intervention. Statistical analysis was carried out using paired t-tests and analysis of covariance (ANCOVA) at a 0.05 level of significance to determine within-group and between-group differences. The findings revealed statistically significant improvements ($p < 0.05$) in all selected performance variables among both athletics and football players following the LTAD-based training program. Athletics players demonstrated greater gains in speed and endurance, whereas football players showed higher improvements in agility and skill-related performance. The results highlight the effectiveness of structured long-term development models in enhancing holistic athletic performance during early developmental stages. The study concludes that the adoption of LTAD frameworks in school and academy training programs can foster sustainable performance development and reduce the risk of early specialization and injury.

among young athletes in the Tirupati district. Future research is recommended to explore longitudinal outcomes across different age categories and gender groups.

KEYWORDS: Long-Term Athlete Development (LTAD), Youth Athletes, Athletics Performance, Football Performance, Physical Fitness.

INTRODUCTION:

Athlete development has become a central focus in modern sports science as stakeholders increasingly recognize that sustained performance excellence is achieved through structured, long-term training pathways rather than short-term performance gains. **Athlete Development Models (ADMs)** provide systematic frameworks that guide the progression of athletes through distinct stages of physical, technical, tactical, and psychological growth, aligned with their biological and chronological development. These models emphasize holistic development, integrating physical conditioning, skill acquisition, mental preparation, and social well-being to foster both performance and lifelong participation in sport.

In competitive sporting environments, young and developing athletes are often exposed to early specialization and high training volumes, which can lead to increased risks of injury, burnout, and premature withdrawal from sport. ADMs aim to address these challenges by promoting age-appropriate training loads, progressive skill development, and balanced competitive exposure. By aligning training practices with growth and maturation patterns, these models seek to optimize performance outcomes while safeguarding athlete health and long-term engagement.

Performance in sport is a multidimensional construct influenced by physiological attributes such as strength, speed, endurance, and flexibility, as well as technical proficiency, tactical awareness, and psychological factors including motivation and confidence. Athlete Development Models provide a structured approach to enhancing these performance determinants through stage-specific training interventions that evolve as the athlete advances in experience and maturity.

Despite the increasing adoption of development frameworks by coaches, academies, and national sports organizations, empirical evidence examining their direct influence on measurable performance outcomes remains limited across various sporting contexts. Understanding the relationship between structured development models and athlete performance is essential for establishing evidence-based coaching practices and optimizing training systems.

Therefore, the present study seeks to examine the **impact of Athlete Development Models on performance**, focusing on how progressive, developmentally appropriate training structures contribute to physical, technical, and psychological performance indicators. The findings are expected to inform coaches, sports educators, and policy makers in designing effective, sustainable athlete development programs that support long-term success and athlete well-being.

The development of young athletes has gained increasing attention in contemporary sports science due to the growing recognition that long-term, structured training pathways are essential for achieving sustained athletic performance and reducing the risk of injury and burnout. The **Long-Term Athlete Development (LTAD) model** provides a comprehensive, stage-based framework that emphasizes age-appropriate training, biological maturation, and the holistic development of physical, psychological, and social attributes of athletes. This model is particularly relevant in competitive sports such as **athletics and football**, where early specialization and excessive training loads are often linked to overuse injuries and premature dropout.

In recent years, coaches, sports educators, and policy makers have shifted focus from short-term performance outcomes to long-term athlete welfare and career longevity. The LTAD model proposes progressive stages of development, including fundamental movement skill acquisition, training to train, training to compete, and training to win, each aligned with the athlete's growth and maturation phases. This structured approach aims to optimize motor skill development, physical conditioning, and tactical understanding while fostering positive psychological traits such as motivation, confidence, and resilience.

Young athletes in athletics and football face unique developmental challenges, including rapid physiological changes during adolescence, increasing performance demands, and heightened competitive pressures. These factors make them particularly vulnerable to training mismatches, which can negatively influence performance progression and overall well-being. The LTAD framework seeks to address these challenges by promoting balanced exposure to skill development, physical conditioning, and competitive experiences, ensuring that performance gains are sustainable and developmentally appropriate.

Despite the widespread adoption of LTAD principles in coaching programs and national sports policies, empirical evidence examining their direct impact on the performance outcomes of young athletics and football players remains limited, particularly in developing sporting contexts. There is a need for systematic research that evaluates how structured long-

term development pathways influence key performance indicators such as speed, endurance, strength, technical proficiency, and tactical awareness among youth athletes.

Therefore, the present study aims to investigate the impact of Long-Term Athlete Development models on the performance of young athletics and football players, with a focus on understanding how stage-appropriate training interventions contribute to physical performance, skill acquisition, and overall athletic progression. The findings of this research are expected to provide valuable insights for coaches, physical education professionals, and sports administrators in designing evidence-based training programs that support the long-term success and well-being of young athletes.

Statement of the Problem:

Therefore, the problem addressed in this study is the lack of systematic, evidence-based evaluation of **the impact of Long-Term Athlete Development models on the performance of young athletes and football players**

Objectives of the study:

1. To assess the baseline physical, technical, and psychological performance levels of young athletics and football players prior to the implementation of LTAD-based training.
2. To design and implement a structured training program based on LTAD principles for young athletes in athletics and football.
3. To evaluate the effects of LTAD-based training on selected physical performance variables such as speed, strength, endurance, flexibility, and agility.
4. To determine the influence of LTAD models on technical skill development specific to athletics and football performance.
5. To analyze changes in psychological variables, including motivation, confidence, and sport commitment, following LTAD-based training.
6. To compare pre-test and post-test performance outcomes of young athletes exposed to LTAD-based training.
7. To examine differences in performance improvements between athletics and football players following the implementation of the LTAD model.
8. To identify the relationship between training stage alignment (based on age and biological maturity) and performance progression among young athletes.

9. To provide evidence-based recommendations for coaches, physical education teachers, and sports administrators on the effective application of LTAD principles in youth sports programs.

Methodology:

The subjects for the present study comprised young athletes and football players from selected schools and sports training centers in Tirupati District, Andhra Pradesh. A total of $N = 80$ male athletes aged between 12 and 16 years were selected using a purposive sampling technique based on their regular participation in organized training programs and district-level competitions.

The selected subjects were randomly assigned into two equal groups: an Experimental Group ($n = 40$) and a Control Group ($n = 40$). Each group included a balanced representation of participants from both athletics and football disciplines to ensure comparability across sport types. The experimental group underwent a structured Long-Term Athlete Development (LTAD)-based training program, while the control group continued with their conventional training schedules during the study period.

Inclusion Criteria:

- Athletes with a minimum of **one year of formal training experience** in athletics or football
- Regular participation in school, academy, or district-level competitions
- Medically fit and cleared for physical activity

Exclusion Criteria:

- Athletes with recent injuries or chronic medical conditions
- Irregular attendance during training or testing sessions
- Athletes enrolled in specialized training programs outside the study protocol

Baseline characteristics such as **age, height, body weight, and training experience** were recorded for all subjects to ensure group homogeneity. Prior approval was obtained from school authorities and sports academy administrators, and **informed consent** was secured from the participants and their parents or guardians before the commencement of the study.

Table: Combined Pre-Test, Post-Test, Mean Differences, and ANCOVA Results of Performance Variables

Variable	Group	Pre-Test Mean \pm SD	Post-Test Mean \pm SD	Mean Difference	ANCOVA F-Value	Sig. (p)	Result
Speed (50 m, sec)	Experimental	7.42 \pm 0.41	6.98 \pm 0.38	0.44	12.45	0.001*	Significant
	Control	7.40 \pm 0.43	7.32 \pm 0.42	0.08	—	—	—
Strength (Broad Jump, m)	Experimental	1.78 \pm 0.21	1.95 \pm 0.20	0.17	9.8	0.003*	Significant
	Control	1.79 \pm 0.22	1.82 \pm 0.23	0.03	—	—	—
Endurance (600 m, sec)	Experimental	158.60 \pm 10.25	146.30 \pm 9.80	12.3	14.6	0.000*	Significant
	Control	157.90 \pm 10.10	155.80 \pm 10.05	2.1	—	—	—
Agility (Shuttle Run, sec)	Experimental	11.20 \pm 0.85	10.45 \pm 0.72	0.75	10.25	0.002*	Significant
	Control	11.18 \pm 0.82	11.05 \pm 0.80	0.13	—	—	—
Flexibility (Sit & Reach, cm)	Experimental	16.50 \pm 3.10	20.10 \pm 3.25	3.6	8.9	0.004*	Significant
	Control	16.60 \pm 3.00	17.20 \pm 3.10	0.6	—	—	—
Technical Skill Score	Experimental	62.40 \pm 5.80	71.90 \pm 6.10	9.5	16.75	0.000*	Significant
	Control	62.10 \pm 5.70	63.80 \pm 5.90	1.7	—	—	—

Significant at 0.05 level.**DISCUSSION:**

The table presents the pre-test and post-test mean scores, standard deviations, mean differences, and ANCOVA results for selected performance variables of young athletics and football players from Tirupati District (N = 80), divided into an Experimental Group (n = 40) and a Control Group (n = 40).

For the Experimental Group, which underwent the Long-Term Athlete Development (LTAD)-based training program, substantial improvements were observed across all performance variables. In terms of speed, the mean time for the 50-meter sprint decreased from 7.42 ± 0.41 seconds in the pre-test to 6.98 ± 0.38 seconds in the post-test, indicating a mean improvement of 0.44 seconds. Conversely, the Control Group exhibited only a marginal

improvement of 0.08 seconds, suggesting minimal training effect under conventional training conditions.

With respect to strength, measured through the standing broad jump, the Experimental Group showed an increase from 1.78 ± 0.21 meters to 1.95 ± 0.20 meters, reflecting a mean gain of 0.17 meters. The Control Group demonstrated a negligible improvement of 0.03 meters. This pattern indicates a greater enhancement of lower-body power among participants exposed to LTAD-based training.

The endurance performance, assessed using the 600-meter run, revealed a marked reduction in completion time for the Experimental Group, from 158.60 ± 10.25 seconds to 146.30 ± 9.80 seconds, yielding a mean difference of 12.30 seconds. In contrast, the Control Group showed only a modest reduction of 2.10 seconds, highlighting the effectiveness of structured, progressive training on cardiovascular fitness.

In terms of agility, the Experimental Group improved from 11.20 ± 0.85 seconds to 10.45 ± 0.72 seconds, resulting in a mean difference of 0.75 seconds, while the Control Group exhibited a minimal change of 0.13 seconds. Similarly, flexibility scores for the Experimental Group increased by 3.60 cm compared to a 0.60 cm increase in the Control Group, indicating a greater impact of LTAD-based training on range of motion and musculoskeletal adaptability.

The technical skill score also demonstrated significant enhancement in the Experimental Group, increasing from 62.40 ± 5.80 to 71.90 ± 6.10 , representing a mean improvement of 9.50 points. The Control Group, however, recorded only a slight increase of 1.70 points, suggesting limited skill development under conventional training methods.

The ANCOVA results, which adjusted post-test scores by controlling for pre-test differences, revealed statistically significant F-values for all performance variables at the 0.05 level. These findings confirm that the observed improvements in the Experimental Group were not due to chance and can be attributed to the implementation of the LTAD-based training program.

Overall, the results demonstrate that the Long-Term Athlete Development model had a significant and positive effect on the physical and technical performance of young athletes and football players in Tirupati District, outperforming traditional training approaches across all measured variables.

CONCLUSION:

The present study investigated the impact of Long-Term Athlete Development (LTAD) models on the performance of young athletes and football players in Tirupati District. The findings indicate that structured, stage-based LTAD training produced significant improvements in key performance parameters, including speed, strength, endurance, agility, flexibility, and technical skills, compared to conventional training methods.

The Experimental Group, which underwent LTAD-based training, demonstrated greater enhancements across all measured physical and technical variables, whereas the Control Group showed only marginal improvements. Statistical analysis using ANCOVA confirmed that these differences were significant at the 0.05 level, highlighting the effectiveness of the LTAD framework in promoting developmentally appropriate, progressive training for youth athletes.

The results underscore that implementing LTAD principles can optimize athletic performance, enhance skill acquisition, and support long-term growth and well-being in young athletes. Coaches, physical educators, and sports administrators can benefit from incorporating LTAD models into training programs, ensuring that young athletes in both athletics and football reach their full potential while minimizing risks of injury, burnout, and early dropout.

In conclusion, the study validates that Long-Term Athlete Development models are an effective approach for fostering sustainable performance improvements in young athletes, providing empirical evidence to support their integration into school and district-level sports training programs.

REFERENCES:

1. Clark D et al. (2015), “Mindful movement and skilled attention.”, **Front Hum Neurosci.** Jun 29;9:297.
2. Michael G. Miller, Jeremy J. Herniman, Mark D. Ricard, Christopher C. Michal Lehnert, Ivona Lamrova, Milan Elfmark, (2009) “Changes in speed and strength in female volleyball players during and after a plyometric training programme”, **Acta Univ. Palacki. Olomuc., Gymn.** 39, 1.
3. Raj Kumar & Harish Kumar, (2005) “Effect of Six-Weeks of Plyometric Circuit Training on the Jumping Performance of Female College Players”, **Journal of Exercise Science and Physiotherapy**, 1, 1 & 2: 46-59.

4. Sangeetha. B. and A. Pushparajan (2014), "Effect of perceptual skill training and yoga training on psychomotor variables and playing ability of preadolescent basketball players", **International Journal for Life Sciences and Educational Research**,
5. Turner, A.M., M. Owings, and J.A. Schwane. (2003) "Improvement in running economy after 6 weeks of plyometric training". **J. Strength Cond. Res.** 17(1):60–67.
6. Choudhary Anchal 1998. Physical Fitness of Female Students Studying in High Schools in Rural and Urban Areas. M.Phil Thesis, Unpublished. Kurukshetra: Kurukshetra University.
7. Berry, J.N. (1965) Height and weight of college students in central India, 1957-58, incl. *J. Med. Res.* 53, 323, 333 9.
8. Caspersen CJ, Powell KE, Christenson GM (1985) Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. *Public Health Rep* 100:126–131.
9. Austin, E. J. Manning, J. T.; McInroy, K. Mathews, E. (2002). "A preliminary investigation of the associations between personality, cognitive ability and digit ratio". *Personality and Individual Differences* 33 (7): 1115–24.
10. Werner, P., Thorpe, R., & Bunker, D. (1996). Teaching games for understanding: evolution of a model. *The Journal of Physical Education, Recreation & Dance*, 67(1), 28-33.