

International Journal Research Publication Analysis

Page: 1-14

ENHANCING PROJECT DELIVERY THROUGH ADVANCED SCHEDULING TECHNIQUES IN CONSTRUCTION PROJECTS - A STUDY IN PUNE.

Asha Oak ¹, Md.Kaif Salim Naikwadi ^{2*}

¹Professor, Department of Project and Construction Management, MIT College of Management & Computer Applications, MIT Art, Design and Technology University, Pune, Maharashtra, India.

²Post Graduate Student, Department of Project and Construction Management, MIT College of Management & Computer Applications, MIT Art, Design and Technology University, Pune, Maharashtra, India.

Article Received: 17 October 2025

***Corresponding Author: Md.Kaif Salim Naikwadi**

Article Revised: 06 November 2025

Post Graduate Student, Department of Project and Construction

Published on: 26 November 2025

Management, MIT College of Management & Computer Applications, MIT Art, Design and Technology University, Pune, Maharashtra, India.

DOI: <https://doi-doi.org/101555/ijrpa.7447>

ABSTRACT

In today's construction landscape, effective scheduling has become the cornerstone of project success and timely delivery. When scheduling practices fall short, projects inevitably face delays, cost overruns, and conflicts that strain relationships among stakeholders. This study explores how advanced scheduling techniques can transform project delivery and elevate overall construction performance.

We examined several scheduling methodologies—including the Critical Path Method (CPM), Program Evaluation and Review Technique (PERT), Last Planner System (LPS), and Building Information Modeling (BIM) integrated 4D scheduling—using data from a commercial building project in Mumbai. By comparing traditional scheduling methods with advanced techniques, we discovered that modern approaches significantly improved project delivery time, reduced delays, and enhanced coordination among project teams.

This paper addresses the persistent challenges in conventional scheduling: poor planning, lack of real-time updates, inadequate resource allocation, and limited stakeholder communication. We demonstrate how modern scheduling tools, collaborative planning

systems, and digital technologies are reshaping project delivery by improving predictability, reducing variability, and enhancing overall project control.

KEYWORDS: Construction Scheduling, Project Delivery, Critical Path Method, Last Planner System, 4D BIM Scheduling, Project Management, Schedule Control.

1. INTRODUCTION

In the construction industry, project success hinges on how well we plan and manage schedules throughout execution. Scheduling isn't just a checklist—it's the foundation that coordinates multiple activities, allocates resources, sets milestones, and ultimately ensures projects finish on time. When scheduling fails, the ripple effects touch every aspect of a project: timelines slip, budgets balloon, and stakeholder satisfaction plummets.

But here's the reality: construction scheduling goes far beyond drawing up a timeline. It demands a comprehensive understanding of project scope, how activities depend on one another, what resources are available, and the constraints inherent to each construction site. Too often, delays stem from inadequate schedule planning, unrealistic time estimates, poor coordination among different trades, and a failure to update schedules based on what's actually happening on the ground. Even seemingly minor scheduling errors can snowball into major delays that impact the entire project's critical path.

In today's fiercely competitive construction market, delivering projects on time isn't just important—it's essential for maintaining your reputation and profitability. Set your schedule too optimistically, and you're looking at delays and disappointed clients. Too conservative, and your resources sit idle while costs climb unnecessarily.

This study examines how advanced scheduling techniques can enhance project delivery, drawing from a real commercial construction project in Mumbai. We analyze how modern scheduling methods stack up against traditional approaches and explain how these techniques improve timeline predictability, resource utilization, and stakeholder coordination.

2. Literature Review

Numerous researchers have investigated how scheduling techniques influence construction project delivery. Here's what the research tells us about this critical topic.

Bhatla and Leite (2012) demonstrated in their research "Integration framework of BIM with the Last Planner System" that combining Building Information Modeling with lean construction planning substantially improves workflow reliability and reduces schedule variability [1]. They showed that when you pair 4D scheduling with collaborative planning, you create more stable workflows and significantly better communication among project teams.

Sridhar and Patil (2020) found in their study "Analysis of quantity estimation errors in residential projects" that poor planning and inaccurate scheduling during initial project stages lead to significant delays and cost overruns [2]. Their research emphasized that implementing proper schedule review and monitoring systems can prevent many execution problems and substantially improve project performance.

Viles, Rudeli, and Santilli (2019) identified in "Causes and effects of delays in construction projects" that three primary culprits drive construction delays: execution problems, administrative issues, and inadequate scheduling [3]. They highlighted how proper schedule management practices help reduce conflicts and rebuild confidence in project deliveries.

Remon and Ahmed (2020) clearly demonstrated in their "Empirical analysis of management function failures in construction project delay" that construction planning, schedule controlling, schedule directing, and project coordination significantly reduce the likelihood of delays [4]. Their research emphasized that effective scheduling management substantially lowers the probability of project failure.

Koskela and Howell (2002) challenged conventional wisdom in "The underlying theory of project management is obsolete," proposing that traditional scheduling methods based on CPM and PERT fail to adequately account for uncertainties and workflow variability [5]. They advocated for lean construction principles and collaborative planning approaches like the Last Planner System to improve schedule reliability and project outcomes.

Sacks, Koskela, Dave, and Owen (2010) demonstrated in "Interaction of lean and building information modeling in construction" that combining BIM with lean scheduling techniques creates powerful synergies that enhance visualization, coordination, and schedule performance [6]. Their research showed that integrating 4D scheduling with collaborative planning frameworks improves project delivery predictability.

The literature reveals a consistent message: scheduling accuracy and methodology directly affect project delivery success. Traditional scheduling methods struggle to handle uncertainties and dynamic site conditions. The path forward requires adopting advanced scheduling techniques—including collaborative planning, lean construction methods, and digital tools—to meaningfully improve construction project delivery.

3. Study Area

We selected a commercial building project in Mumbai, Maharashtra, as our research focus. This project involved comprehensive structural and finishing works for a multi-story office complex featuring basement parking, typical office floors, and common amenities.

The project scope encompassed foundation work, structural RCC framework, masonry, internal and external finishes, MEP (Mechanical, Electrical, and Plumbing) installations, and site development. With a total built-up area of approximately 250,000 square feet and a contract duration of 24 months, this project represented the kind of complex, large-scale construction that demands sophisticated scheduling.

Initially, the project team used traditional scheduling methods—a basic Gantt chart and milestone tracking. However, within the first six months, significant problems emerged. Poor coordination among multiple contractors, unclear activity dependencies, and lack of real-time schedule monitoring created cascading delays. By the six-month mark, the project had fallen approximately three months behind schedule.

Faced with these challenges, the project management team made a decisive shift toward advanced scheduling techniques. They implemented several key changes:

Critical Path Method (CPM) with detailed activity breakdown. The team broke down all major activities into detailed tasks with clearly defined dependencies. By identifying the critical path and prioritizing resources for critical activities, they aimed to prevent further delays.

Last Planner System (LPS) for weekly work planning. Collaborative planning sessions brought together all subcontractors and trade partners. Weekly work plans used commitment-based planning, where only activities with all constraints removed made it into the weekly schedule. This approach dramatically improved workflow reliability.

4D BIM scheduling integration. The team linked the BIM model with the project schedule to create 4D visualizations. This helped identify spatial conflicts, coordinate trade sequences,

and communicate the construction sequence visually to all stakeholders. The 4D model enabled better coordination between architectural, structural, and MEP systems.

Real-time schedule monitoring. Digital project management software tracked daily progress, updated schedule status in real-time, and generated reports showing variance between planned and actual progress. This enabled proactive decision-making and timely corrective actions.

The project team included the main contractor, 12 major subcontractors (handling structural, MEP, finishing, and facade work), the project management consultant, and the client's representatives. Weekly coordination meetings reviewed schedule performance and resolved constraints.

Our study focuses on comparing project performance before and after implementing these advanced scheduling techniques. We analyzed key metrics including schedule variance, delay reduction, activity completion rates, and stakeholder coordination effectiveness.

This project exemplifies typical large-scale commercial construction, where proper scheduling and coordination are essential for managing complexity and achieving successful delivery.

4. Methodology

The primary objective of this study was to analyze how implementing advanced scheduling techniques impacts project delivery performance. We wanted to understand how different scheduling methodologies affect project timelines, coordination, and overall success.

Data Collection

We collected project schedules, progress reports, meeting minutes, and coordination records for both phases: the initial phase using traditional scheduling methods and the improved phase using advanced techniques. Daily progress logs, subcontractor reports, and site inspection records helped us verify actual performance data.

Selection of Key Scheduling Techniques

We selected four major scheduling methodologies for implementation and analysis:

1. Critical Path Method (CPM) with resource optimization
2. Last Planner System (LPS) for collaborative planning
3. 4D BIM scheduling for visual coordination

4. Real-time digital schedule monitoring

Performance Metrics

To measure the effectiveness of advanced scheduling techniques, we defined these key metrics:

- Schedule variance (planned versus actual completion dates)
- Percentage of activities completed on time
- Number of schedule conflicts identified and resolved
- Stakeholder coordination meeting effectiveness
- Resource utilization efficiency
- Overall project delay reduction

Comparative Analysis

We compared project performance data across two distinct periods:

Period 1 (Months 1-6): Traditional Scheduling Approach

During this phase, the team used a traditional Gantt chart, held monthly progress meetings, had limited coordination between trades, and relied on reactive problem-solving.

Period 2 (Months 7-24): Advanced Scheduling Techniques

This phase featured CPM with critical path focus, weekly LPS planning sessions, 4D BIM coordination, and proactive constraint management.

Results

The data revealed dramatic differences in performance:

Table 1: Schedule performance comparison between traditional and advanced scheduling techniques.

Metric	Period 1	Period 2
Planned completion	25%	75%
Actual completion	16%	78%
Schedule variance	-9%	+3%

The dramatic improvement in schedule variance—from -9% to +3%—demonstrates the tangible effectiveness of advanced scheduling techniques.

Implementation Analysis

We conducted detailed analysis to understand how each scheduling technique contributed to improved performance:

CPM Implementation. Identifying the critical path helped focus resources on time-sensitive activities. We optimized non-critical activities for resource availability without impacting overall project duration.

LPS Implementation. Weekly collaborative planning sessions improved commitment reliability from 65% to 92%. By removing constraints before scheduling activities, we reduced workflow interruptions and rework.

4D BIM Integration. Visual scheduling helped identify 127 potential conflicts before execution, preventing significant delays. Trade coordination improved substantially as everyone gained clearer understanding of visual sequences.

Real-time Monitoring. Digital dashboards enabled daily progress tracking. Schedule deviations were identified within 24 hours instead of monthly reviews, enabling much faster corrective actions.

Stakeholder Feedback

We conducted interviews with project managers, subcontractors, and site engineers to gather qualitative insights on scheduling improvements. Feedback consistently highlighted better clarity of work sequences, improved coordination, reduced waiting time, and enhanced communication.

This methodology clearly demonstrates how systematic implementation of advanced scheduling techniques can transform project delivery performance through improved planning, coordination, and control.

5. The Fundamental Role of Scheduling in Construction

Scheduling stands as one of the most fundamental aspects of construction project management. It serves as the roadmap that guides all project activities from mobilization to completion. Effective scheduling provides clarity on what needs to be done, when it should be done, and who bears responsibility for execution.

Without proper scheduling, construction projects devolve into chaos—uncoordinated activities, resource conflicts, and unclear priorities create an environment where delays become inevitable. Good scheduling enables project managers to sequence activities

logically, allocate resources efficiently, and identify potential bottlenecks before they become critical problems.

Scheduling matters to every stakeholder. Owners gain visibility into project progress and expected completion dates. Contractors can plan resource deployment and manage cash flow. Subcontractors understand work sequences and coordination requirements. Suppliers know when materials need to arrive.

Advanced scheduling techniques go well beyond basic timeline creation. They incorporate critical path analysis to identify activities that directly impact project duration, probabilistic analysis to account for uncertainties, collaborative planning to improve commitment reliability, and visual tools to enhance communication and coordination.

In competitive construction markets, scheduling capability often separates successful contractors from struggling ones. Projects delivered on time build client trust, generate positive references, and improve profitability. Projects plagued by chronic delays damage reputations, create financial losses, and spawn disputes.

Moreover, scheduling forms the foundation for project control. Regular comparison between planned and actual progress enables early detection of problems, facilitates proactive decision-making, and supports effective risk management. In essence, scheduling acts as the central nervous system of construction project management, coordinating all activities toward successful project delivery.

6. Why Advanced Scheduling Techniques Are Essential

Traditional scheduling methods, while widely used, show significant limitations in today's complex construction environment. Basic Gantt charts and milestone tracking simply can't handle projects with hundreds of interdependent activities, multiple contractors, and dynamic site conditions. We need advanced scheduling techniques that can manage complexity, uncertainty, and coordination challenges.

The construction industry faces mounting project complexity with integrated building systems, compressed timelines, and intricate stakeholder coordination requirements. Advanced scheduling techniques address these challenges through several key capabilities:

Better handling of uncertainties. Traditional methods assume fixed durations for every activity. Advanced techniques like PERT incorporate probabilistic analysis to account for

optimistic, most likely, and pessimistic scenarios, providing more realistic project duration estimates.

Critical path identification. CPM identifies which activities directly impact project completion time. This enables focused resource allocation and priority management on the activities that matter most for schedule performance.

Improved coordination. Collaborative planning approaches like the Last Planner System involve all stakeholders in schedule development. This commitment-based planning significantly improves workflow reliability and reduces delays caused by coordination failures.

Visual communication. 4D BIM scheduling creates visual representations of construction sequences that help all stakeholders understand the plan, identify conflicts early, and coordinate work effectively across trades.

Real-time monitoring. Digital scheduling tools enable daily progress tracking and variance analysis. Problems surface immediately rather than weeks later, allowing much faster corrective actions.

Resource optimization. Advanced scheduling techniques consider resource constraints, enabling better resource leveling and utilization. This prevents resource conflicts and ensures efficient deployment of labor, equipment, and materials.

The need for advanced scheduling becomes particularly critical in several scenarios:

- Large, complex projects with numerous interdependencies
- Fast-track projects with compressed timelines
- Projects with multiple prime contractors requiring tight coordination
- Projects in congested urban areas with logistical constraints
- Projects using prefabrication requiring precise sequencing

Think of it this way: traditional scheduling methods are like basic navigation tools, while advanced scheduling techniques resemble GPS systems with real-time traffic updates. Both can help you reach your destination, but advanced methods provide better guidance, faster problem detection, and more reliable arrival times.

7. Practical Recommendations

Based on our findings and practical project experience, we offer these recommendations to help construction organizations improve project delivery through better scheduling practices:

1. Adopt Critical Path Method for All Major Projects

Implement detailed CPM scheduling that identifies critical activities. Focus management attention and resources on critical path activities to prevent schedule delays. Use float analysis to optimize non-critical activities for resource efficiency.

2. Implement Collaborative Planning Approaches

Introduce the Last Planner System or similar collaborative planning frameworks. Conduct weekly work planning sessions with all trade partners. Use commitment-based planning where activities are scheduled only when all constraints have been removed.

3. Integrate BIM with Scheduling

Develop 4D BIM models that link your 3D model with the project schedule. Use 4D visualization to identify spatial conflicts, coordinate trade sequences, and communicate construction plans effectively to all stakeholders.

4. Use Digital Scheduling Tools

Implement modern project management software with real-time tracking capabilities. Use cloud-based platforms that enable all stakeholders to access current schedule information and update progress daily.

5. Establish Regular Schedule Review Mechanisms

Conduct weekly schedule review meetings with your project team. Analyze schedule variance, identify causes of delays, and implement corrective actions promptly. Update schedules based on actual progress and changed conditions.

6. Develop Realistic Activity Durations

Base activity durations on historical data, actual productivity rates, and resource availability. Avoid overly optimistic estimates that set unrealistic expectations. Include buffer time for uncertainties in complex or first-time activities.

7. Focus on Constraint Management

Identify and remove constraints before scheduling activities. Track prerequisites including design approvals, material procurement, equipment availability, and permit approvals. Schedule activities only when all prerequisites are confirmed.

8. Improve Cross-Functional Coordination

Establish clear communication protocols among all contractors and trades. Use visual scheduling tools to help non-technical stakeholders understand sequences. Conduct coordination meetings before starting new work phases.

9. Invest in Team Training

Provide training to project managers, planners, and site engineers on advanced scheduling techniques. Build organizational capability in CPM, PERT, LPS, and BIM-integrated scheduling.

10. Monitor Leading Indicators

Track schedule performance indicators including percentage of activities completed on time, commitment reliability, constraint removal rate, and schedule variance trends. Use these metrics for continuous improvement.

By systematically implementing these recommendations, construction organizations can significantly enhance their project delivery capability through improved scheduling practices.

8. DISCUSSION OF RESULTS

After comparing project performance before and after implementing advanced scheduling techniques, we observed significant improvements across multiple dimensions of project delivery.

The most striking finding was the dramatic improvement in schedule performance. During the initial six months using traditional scheduling methods, the project fell behind schedule by 9%, completing only 16% of work against a planned 25%. After implementing advanced scheduling techniques, the project not only recovered the lost time but achieved a positive variance of 3%, completing 78% against a planned 75% by month 24.

Critical Path Method implementation revealed that structural work, facade installation, and MEP rough-in were on the critical path. By focusing resources and management attention on these activities, we reduced delays on critical activities by 65%. We scheduled non-critical activities based on resource availability without impacting overall project duration.

Last Planner System implementation produced remarkable results in workflow reliability. The percentage of planned activities completed as scheduled (the PPC metric) improved from 65% with traditional planning to 92% with collaborative planning. This improvement resulted from the constraint removal process, where activities were scheduled only when all prerequisites were confirmed.

4D BIM scheduling integration identified 127 potential spatial and sequencing conflicts before execution. Had these conflicts gone undetected, they would have caused significant

delays and costly rework. Visual coordination using 4D models improved trade contractor understanding of work sequences by approximately 85%, as measured through feedback surveys.

Real-time digital scheduling tools reduced the schedule update cycle from monthly to daily. This enabled us to identify problems within 24 hours instead of 30 days, providing a crucial 30-day advantage for implementing corrective actions. The early warning system prevented minor delays from cascading into critical path impacts.

Stakeholder coordination effectiveness improved significantly. While coordination meetings increased from monthly to weekly, meeting duration decreased from 3 hours to 90 minutes due to better preparation and visual tools. Issues resolved per meeting increased by 120%.

The study also revealed challenges in implementing advanced scheduling techniques. We encountered initial resistance from subcontractors to weekly planning sessions, a learning curve for 4D BIM tools, and the additional effort required for daily progress updates. However, these challenges diminished after 2-3 months as teams experienced the tangible benefits.

The financial impact proved substantial. Despite the 3-month delay in the initial phase, the project recovered to complete on the original planned date, avoiding liquidated damages and maintaining client satisfaction. The investment in advanced scheduling tools and training paid for itself through improved productivity and delay prevention.

These results demonstrate that advanced scheduling techniques deliver practical, measurable benefits in real construction projects—they're not merely theoretical improvements.

9. CONCLUSION

This study clearly demonstrates that advanced scheduling techniques play a transformative role in enhancing construction project delivery. Our research showed that transitioning from traditional scheduling methods to advanced techniques—including CPM, Last Planner System, 4D BIM scheduling, and real-time monitoring—significantly improves schedule performance, coordination effectiveness, and overall project success.

The project we analyzed recovered from a 9% schedule delay to achieve positive performance through systematic implementation of advanced scheduling practices. This

transformation came through critical path focus, collaborative planning, visual coordination, and proactive monitoring.

Our key findings indicate that traditional scheduling methods simply cannot handle the complexity and uncertainty inherent in modern construction projects. Advanced techniques provide better tools for managing interdependencies, allocating resources, coordinating multiple stakeholders, and responding to dynamic conditions.

The study identified that successful implementation requires more than just tools—it demands cultural change toward collaborative planning, commitment-based scheduling, and continuous monitoring. Organizations must invest in technology, training, and process improvements to realize the full benefits.

Construction organizations seeking to improve project delivery performance should adopt advanced scheduling techniques as a strategic priority. The benefits extend well beyond schedule improvement to encompass better resource utilization, enhanced stakeholder coordination, reduced conflicts, and improved profitability.

Future research should explore integrating artificial intelligence and machine learning with scheduling systems for predictive analytics, automated schedule optimization, and intelligent risk assessment. As construction projects grow increasingly complex, advanced scheduling techniques will transition from optional enhancements to essential requirements for project success.

10. REFERENCES

1. Bhatla, A., & Leite, F. (2012). Integration framework of BIM with the Last Planner System. *Proceedings of the 20th Annual Conference of the International Group for Lean Construction*, San Diego, CA.
2. Sridhar, K., & Patil, A. (2020). Analysis of quantity estimation errors in residential projects. *International Journal of Civil and Structural Engineering Research*, 7(3), 112-118.
3. Viles, E., Rudeli, A., & Santilli, A. (2019). Causes and effects of delays in construction projects: A comparative study. *Mathematical Problems in Engineering*, Article ID 1595628. <https://doi.org/10.1155/2019/1595628>

4. Remon, M. A., & Ahmed, M. H. (2020). Empirical analysis of management function failures in construction project delay. *Buildings*, 10(4), 73. <https://doi.org/10.3390/buildings10040073>
5. Koskela, L., & Howell, G. (2002). The underlying theory of project management is obsolete. *Proceedings of the PMI Research Conference*, pp. 293-302.
6. Sacks, R., Koskela, L., Dave, B., & Owen, R. (2010). Interaction of lean and building information modeling in construction. *Journal of Construction Engineering and Management*, 136(9), 968-980. [https://doi.org/10.1061/\(ASCE\)CO.1943-7862.0000203](https://doi.org/10.1061/(ASCE)CO.1943-7862.0000203)
7. Ballard, G., & Howell, G. (2003). An update on Last Planner. *Proceedings of the 11th Annual Conference of the International Group for Lean Construction*, Blacksburg, VA.
8. Kim, Y., & Ballard, G. (2010). Management thinking in the earned value method system and the Last Planner System. *Journal of Management in Engineering*, 26(4), 223-228.
9. Eastman, C., Teicholz, P., Sacks, R., & Liston, K. (2011). *BIM Handbook: A Guide to Building Information Modeling for Owners, Managers, Designers, Engineers and Contractors* (2nd ed.). John Wiley & Sons.
10. Kelley, J. E., & Walker, M. R. (1959). Critical-path planning and scheduling. *Proceedings of the Eastern Joint Computer Conference*, pp. 160-173.