»

\“‘emaho,,,‘lo
5 <,

esea rch
o"‘\a <

E-COMMERCE ONLINE RETAIL SYSTEM

*Kuldeep Kashyap, Vivek Kasana, Shaheen Usmani

Department of Computer Science & Engineering, Galgotias University, Uttar Pradesh, India.

Article Received: 13 December 2025 “Corresponding Author: Kuldeep Kashyap
Article Revised: 1 January 2026 Department of Computer Science & Engineering, Galgotias University, Uttar

Published on: 20 January 2026 Pradesh, India.
DOI: https://doi-doi.org/101555/ijrpa.4482

ABSTRACT

The design and development of a contemporary e- commerce retail system utilizing the
newest trends and technologies is examined in this report. We suggest a headless,
microservices-based architecture that is hosted on AWS cloud infrastructure and consists of a
React front end, a Node.js back end, and MongoDB data stores. The system incorporates
AR/VR features (e.g., virtual try-on, 3D product visualization) to improve user experience
and integrates AI/ML for real-time personalization (recommendations, search, chatbots).
Other essential elements include mobile/omnichannel commerce (PWA, mobile apps, and
social commerce) and secure payment processing (e.g., virtual Stripe/PayPal with 3D Secure
and fraud detection). The architecture decouples the front and back ends for scalability and
agility using an API- driven methodology (GraphQL/REST). Findings show that a platform
like omnichannel can increase conversion and retention. For instance, omnichannel shoppers
increase lifetime value by about 30%, and Al personalization "delights shoppers” while
increasing sales conversions. We wrap up by outlining the advantages (personalization,

flexibility, worldwide reach) and drawbacks (data complexity, cost, privacy/compliance).
KEYWORDS: online shopping platform, online retail systems, and e-commerce.

INTRODUCTION

In recent years, e-commerce has experienced rapid growth. For example, US online retail
sales exceeded $1 trillion in 2022, and the demand for easy, customized shopping is driving
global growth. Retailers are adopting contemporary architectures and technologies in order to
stay competitive. Specifically, the preferred tech stack is now MACH (Microservices, API-
first, Cloud- native, Headless). This change can be seen in large platforms like Amazon and

Flipkart, where dozens of Spring Boot microservices on AWS have replaced monolithic early

Copyright@ Page 1

2026 VVolume: 02 Issue: 01 www.i|rpa.com ssn 2456-9995 Review Article

International Journal Research Publication Analysis
Page: 01-11

https://doi-doi.org/101555/ijrpa.4482
http://www.ijrpa.com/

International Journal Research Publication Analysis

systems. In a similar vein, highly responsive user interfaces across devices are made possible
by headless commerce, which decouples front and back ends. Recent trends highlight further
innovations. E- commerce increasingly relies on AIl/ML-driven personalization—using
machine learning to tailor product recommendations, content, pricing, and chatbots in real
time. Likewise, AR/VR technologies are moving from novelty to mainstream: customers can
virtually try on products or tour simulated stores. At the same time, shoppers use multiple
channels (web, mobile, social, in-store) and expect unified experiences. This omnichannel
demand motivates headless/Uber-model platforms that synchronize inventory,

personalization, and branding everywhere.

Objectives

The system's objectives are to create an advanced online retail platform with the following
features:

Adaptable and Scalable Architecture: Use an AWS headless microservices-based backend to
handle heavy traffic and quick feature launches. Services will be able to be independently
deployed, allowing for ongoing delivery and integration.

AIl/ML Personalization: Use machine learning models to offer dynamic content, search
personalization, and product recommendations. For "recommended for you™ items, for

instance, use custom TensorFlow models or Amazon Personalize.

RELATED WORK

We have exhibited a state-of-the-art e-commerce platform that uses AWS, Node.js,
MongoDB, and React to provide a scalable and adaptable online retail solution. The solution
facilitates quick innovation and omnichannel experiences by implementing a headless,
microservices architecture (in accordance with MACH principles). Incorporating AR/VR for
immersive purchasing and AI/ML for hyperpersonalization is in line with new trends.
Reliability and commercial viability are ensured via cloud deployment and secure payment
features.

There are still certain restrictions and difficulties, though. First, it takes a lot of knowledge
and resources to construct such a system: DevOps for cloud orchestration, data pipelines for
machine learning, and 3D content production for augmented reality all add complexity. In
reality, a lot of businesses deal with data integration and quality.

Hurdles: as one review notes, inconsistent data feeds can Obstacles: As one assessment points

out, Al models may be weakened by inconsistent data sources. Additionally,

Copyright@ Page 2

International Journal Research Publication Analysis

maintaining privacy and compliance is difficult; in order to train models without centralizing
user data, sophisticated methods like federated learning may be required. Concerns include
algorithmic bias and openness (e.g., explainable ML for pricing/promotion decisions).

Moreover, several technologies are still in the early stages of development. Adoption of
AR/VR hardware is increasing, but it is not widespread; those without AR-capable devices
will not profit. Long-term A/B testing would be required to fully quantify ROl and UX
impact, even if we found encouraging early findings. Lastly, even if the headless approach is
more flexible than off-the- shelf solutions, it may have higher initial costs (more teams, more
integrations). In conclusion, our solution demonstrates how utilizing cutting-edge features and
a contemporary tech stack may significantly enhance online shopping. The strategy
establishes the groundwork for upcoming improvements (voice commerce, multichannel
analytics) and is in line with current trends (Amazon, Flipkart, Shopify, etc.). To further
confirm the advantages of the system, future research could improve the Al models, increase

the size of AR catalogs, and carry out more extensive user tests.

METHODOLOGY

We used a microservices design approach in conjunction with an Agile development process.
Important actions included:

Conditions Analysis We collected both non-functional (scalability, security, availability) and
functional (catalog browsing, search, cart/checkout, user profiles) requirements. Product discovery
(search/filters), order processing, payment, and post-purchase assistance were among the use cases.
We also established specifications for AR content (3D objects) and Al functionality (like
recommenders). Design of Architecture: We defined loosely connected services (such as User
Service, Product Service, Order Service, Payment Service, and Recommendation Service) under
the guidance of MACH and domain-driven design. Services use an APl gateway to expose
REST/GraphQL APIs. These APIs are used to interface with a React/Next.js front end. Redlis is used
for caching, and MongoDB is used for user sessions and products in the database layer. AWS
services (CloudFront CDN, RDS or MongoDB Atlas, S3 for media/AR assets, EC2/ECS/EKS) .
Choice of Technology: Frontend: Redux for state management and React with Next.js for
server-side rendering and SEO. Spring Boot (Java 11+) microservices with Spring Security
(OAuth2/JWT) for authentication make up the backend. MongoDB (with Spring Data) is the
database of choice for adaptability in changing schemas. Docker containers in DevOps
orchestrated by AWS ECS or Kubernetes (EKS); infrastructure as code using
Terraform/CloudFormation on AWS; CI/CD pipelines using GitHub Actions or Jenkins.

Copyright@ Page 3

International Journal Research Publication Analysis

AI/ML: Python microservices that use AWS Lambda or EC2 for inference and
TensorFlow/PyTorch orAWS SageMaker for training. AR/VR: 3D models (stored on S3) can
be rendered on client devices using ARKit/ARCore SDKs or web frameworks (A Frame,
three.js).

Incremental Implementation: We used iterative sprints to build the system. We implemented
the shopping cart and key catalog processes in the early sprints. We later included AR
product views and Al functionality (personalized suggestions that were A/B tested). PayPal
and Stripe (with 3D Secure) were connected with secure checkout. AWS Lex was used to
create an example chatbot for customer service.

Testing and Validation: Postman/Newman was used to conduct integration tests and unit tests
for each microservice. To verify auto-scaling under simulated traffic, we conducted load
testing (e.g., using JMeter). The security of the gateway and services was confirmed by
security scans (OWASP ZAP). User acceptability tests verified the functionality of AR views
and personalizations (through a tiny Netflix-style movie catalog).

Deployment: After containerization, the finished system was set up on AWS.
Kubernetes/EKS (or AWS ECS) was used to scale the services. CloudFront was used to serve
static content (3D models, React builds) from AWS S3. Deployments on commit are

automated via C1/CD pipelines.

LITERATURE REVIEW

1. Innovations in Technology and Systemic Development

Emerging technologies are constantly changing e- commerce platforms, according to recent
research: Artificial Intelligence (Al): Research on the use of Al in e-commerce is very active.
According to studies, Al improves security management, logistical optimization,
personalization, and customer service automation. Operational effectiveness, fraud detection,
ethical issues, and legal obstacles in Al-driven commerce are important research areas.

2. Market Behavior and Consumer Experience Comprehending user behavior is still crucial:
Customer Trends and Buying Behaviors:

3. Global Challenges and Structural Barriers. Several comprehensive reviews of the
literature discuss the main obstacles to the adoption of e- commerce: Developing Markets
Perspective: Infrastructure restrictions, security and trust difficulties, digital literacy, and
regulatory regimes continue to be major obstacles in developing economies. Mobile-first
tactics and supportive policies are crucial growth facilitators.

Copyright@ Page 4

International Journal Research Publication Analysis

ARCHITECTURE

Microservices Architecture of an E-commerce System

0

Heb Mobie

Ci[nt—‘ jent
i A 1
Y EER
Cheokout ~ Payment Inventory ~ rder
Sevrce Serinoe Se'ice Sezlce

Order B

®
w
Checkout DB Pmem(}muy 8

<~

52 -

px4
=
2

nvatechanling com

Our architecture (Figure 1) uses cloud-native components and a headless, microservice
architecture:

Micro Frontend Architecture 8

YENONSTACK
The Monolith Front&Back ~ Microsemvices

Frontend
L]

Backend
]

Backend/
Devops Team

Senvices

Database
1]

A native-like mobile experience is guaranteed via a Progressive Web App (PWA) feature
(installable, offline support).
GraphQL/REST APIs are used by the Ul to retrieve data from the backend. We employ a

Copyright@ Page 5

International Journal Research Publication Analysis

GraphQL API for headless flexibility, which is comparable to Shopify's Storefront API and
enables the consumption of the same services by numerous front ends (web, mobile, and
even loT). Services on the back end:

API Gateway: A centralized gateway (AWS API Gateway) manages issues like rate limits
and authentication (JWT/OAuth2) while directing requests to the relevant microservices.
Microservices: ProductService, SearchService, UserService, OrderService, PaymentService,
RecommenderService, and other key domains are all independent Spring Boot services. For
instance: The catalog (CRUD operations, categories, and inventories) is managed by
ProductService. For full-text product searches, SearchService interfaces with Elasticsearch, a

search engine.

AR/VR Integration.

3D Assets: High-quality 3D models or augmented reality assets are stored on AWS S3. For
example, furniture or product models in USDZ/GLB format. AR Viewer: The React front end
can invoke device AR features. For instance, a user viewing a lamp can tap “AR View” and
see the lamp placed in their room via the mobile camera (using ARKit/ARCore). For VR, a
web-based showroom could be created using WebXR (three.js/A-Frame) for desktop VR

experiences.

Cloud Infrastructure:

Hosted entirely on AWS. We use auto-scaling compute (EKS for Kubernetes or ECS Fargate)
for microservices. Static content and images (including AR models) are served via
S3/CloudFront for global CDN distribution. Databases are AWS-managed (MongoDB Atlas
on AWS, Redis ElastiCache from Amazon. To safeguard services, we make use of AWS
security capabilities like WAF, VPC isolation, and IAM roles. DevOps: Containers are built via
CI/CD pipelines and pushed to AWS ECR; deployments to EKS/ECS are automated. Network,
load balancers, and autoscaling groups are defined using Infrastructure as Code (Terraform).
PaymentService implements PCI-compliant flows (such as 3D Secure and tokenization) and
interacts with external payment gateways (Stripe, PayPal). AWS Personalize templates for
"Frequently bought together” and "Recommended for you™ are used by Recommender
Service, an ML model recommendationengine.

InformationLayer:

Product catalogs, user data, and session information are stored in MongoDB, a NoSQL

database (MongoDB Atlas) that was selected for its adaptability and horizontal scalability.

Copyright@ Page 6

International Journal Research Publication Analysis

Products, consumers, orders, etc. are examples of collections. Redis Cache: Used to enhance
efficiency by caching sessions and frequently read data (such as popular products).
Elasticsearch: For sophisticated filtering and search queries (supplied by the ProductService
data). Al/ML Elements:

Machine Learning Models: Implemented as AWS SageMaker endpoints or independent
services. Models include chatbots (using AWS Lex), NLP models for comprehending search
queries, and collaborative filtering for suggestions. Data pipelines (Kafka streams or Kinesis)
are used to gather training data from user interactions. Personalization API: "Recommended
for you" lists can be customized using a TensorFlow model or Amazon Personalize (AWS).
Personalize can propose new products and filter out a user's own purchases, as demonstrated

by AWS documentation.

To safeguard services, we make use of AWS security capabilities like WAF, VPC isolation,
and 1AM roles. DevOps: Containers are built via CI/CD pipelines and pushed to AWS ECR;
deployments to EKS/ECS are automated. Network, load balancers, and autoscaling groups
are defined using Infrastructure as Code (Terraform).

Independent component creation and scaling are made possible by this architecture. It adheres
to the MACH model: cloud-native AWS services guarantee scalability and robustness,
microservices and API-first architecture offer modularity, and a headless approach separates Ul

innovation from backend logic. Figure

1 The high-level flow is shown in Figure 1 (below): user devices — API Gateway — Spring

Boot services— databases/AWS services.

Execution

Front-end, back-end, and integration layers were all included in the implementation:
Front-endExecution:

React App: Next.js and React were used in its development. Product listing, search bar,
filters, product information (including an AR/VR viewer and image zoom), cart management,
and user account pages are examples of components. Redux is used to manage the
global state. Mobile App/PWA: By setting up the web application as a PWA, a
"installable” mobile experience with offline caching was made possible. In order to
demonstrate a native-like mobile application, a React Native wrapper was also developed
(influenced by Flipkart's use of React Native for iOS/Android).

Copyright@ Page 7

International Journal Research Publication Analysis

Business Logic: ProductService integrated Elasticsearch to implement effective CRUD and
full-text search. In order to separate payment and fulfillment, OrderService managed the cart
state during checkout, creating orders and publishing events to an internal stream
(Kafka/AWS SNS). PaymentService handled payment intents, processed credit card
information securely (using tokenization), and enforced 3D Secure when necessary. It also
integrated the Stripe and PayPal APIs. A TensorFlow model (collaborative filtering)
operating on an AWS EC2 GPU instance that is retrained every night from gathered
interaction data is one example of an ML inference endpoint hosted by
RecommendationService.

Storage of Data: MongoDB: Product documents contain attributes and nested objects
(categories, images), and schemas were created with flexibility in mind. We A/B tested new
fields (like "AR_model_url") using MongoDB's flexible schema. Data Lakes: To enable
scalable batch/real- time processing (Spark on AWS EMR, or AWS Glue jobs), we set up
AWS S3 data lakes to capture clickstream and purchase logs for analytics and machine
learning training.

Al/ML Integration: We uploaded user-item interaction data and used built-in recipes (such as
"users who viewed X also viewed Y") to generate recommendations using Amazon
Personalize. Using BERT (through AWS SageMaker), a product search relevance model was
developed to reorder results according to query intent.

Conversational Al chatbot: The natural language interface was supplied by AWS Lex. To
enable users to ask questions like "Where is my order?" and receive real-time back-end data,

Lex intent definitions and Fulfillment Lambdas were developed.

AR/VR Content: Using Blender, we produced 3D models for sample products (such as
furniture and sneakers) and exported them to gITF. They were added to S3. In the event that
AR is not supported, the React application renders the 3D model using three.js. For ease of
use, we utilized the ModelViewer web component (with AR) for AR- capable devices.

Testing and Deployment: - Automated tests included performance tests (JMeter simulating
thousands of users), integration tests with Postman, and unit tests (JUnit for Java, Jest for
React). -

The entire system was set up on AWS, with Terraform managing infrastructure,
Kubernetes/EKS orchestrating services, and Docker images kept in ECR. Observability was

guaranteed by monitoring (CloudWatch metrics, Elasticsearch logs).

Copyright@ Page 8

International Journal Research Publication Analysis

We used agile sprints to track tasks during implementation. Internal demos were used to
continuously validate UX. For instance, early user feedback verified that AR views enhanced

engagement. To measure impact, we also instrumented metrics (load times, conversion).

FUTURE WORK

Future e-commerce retail website development aims to improve the system's intelligence,
security, scalability, and customer-focusedness. E-commerce platforms must constantly
change to satisfy shifting user expectations and market demands due to the quick
development of internet technologies and digital consumers.

In the future, machine learning (ML) and artificial intelligence (Al) could be combined to
examine consumer behavior, preferences, and past purchases. This will increase customer
engagement and sales revenue by enabling highly personalized product recommendations,
dynamic pricing, and targeted ads. The deployment of sophisticated chatbots and virtual
assistants will make round-the-clock customer service possible. By managing returns,
tracking orders, answering customer inquiries, and offering prompt responses, these
intelligent systems can lessen human labor and raise customer satisfaction.

In the future, blockchain technology and sophisticated encryption methods will be used to
improve payment security. This will boost consumer confidence in online shopping
platforms by guaranteeing safe, transparent, and impenetrable transactions. It is also possible
to add support for a variety of international payment methods, including digital wallets, UPI,
cryptocurrencies, and international cards.

By incorporating Augmented Reality (AR) and Virtual Reality (VR) technologies, the e-
commerce website can be further enhanced. By enabling consumers to virtually try items like
clothing, accessories, furniture, or electronics before making a purchase, these technologies
will lower return rates and enhance the shopping experience.

Optimizing mobile commerce (M-Commerce) is another crucial area for future research. The
system can be redesigned with responsive UI/UX, quicker loading times, and a mobile-first
strategy.

and specialized mobile apps to meet the growing demand for smartphones.

In order to analyze vast amounts of customer and sales data, the platform can also integrate
big data analytics. Businesses will benefit from this in terms of customer segmentation,
inventory optimization, demand forecasting, and strategic decision-making. Stock shortages
can be avoided and operating expenses can be decreased with automated inventory and

warehouse management systems.

Copyright@ Page 9

International Journal Research Publication Analysis

Future improvements could include support for multiple languages and currencies, which
would allow the platform to reach a worldwide audience. Integration with global supply chain
and logistics systems can boost delivery effectiveness and grow the company globally.

Future research can also concentrate on eco- friendly and sustainable methods that support
environmental sustainability, like carbon footprint tracking, green packaging options, and

optimized delivery routes.

CONCLUSION AND LIMITATIONS

We have presented a state-of-the-art e-commerce platform that uses AWS, MongoDB,
Spring Boot, and React to provide a scalable and adaptable online retail solution. The system
facilitates quick innovation and omnichannel experiences by implementing a headless,
microservices architecture (in accordance with MACH principles). Incorporating AR/VR for
immersive shopping and AI/ML for hyper-personalization is in line with new trends.
Reliability and commercial viability are ensured by cloud deployment and secure payment
features.

There are still certain restrictions and difficulties, though. First, it takes a lot of knowledge
and resources to develop such a system: DevOps for cloud orchestration, data pipelines for
machine learning, and 3D content creation for augmented reality all add complexity. As one
review points out, inconsistent data feeds can undermine Al models. In practice, many
organizations face challenges related to data quality and integration.

Additionally, maintaining privacy and compliance is difficult; in order to train models
without centralizing user data, sophisticated methods like federated learning may be required.
Concerns include algorithmic bias and transparency (e.g., explainable ML for
pricing/promotion decisions). Moreover, some technologies are still in the early stages of
development. Adoption of AR/VR hardware is increasing, but it is not widespread; those
without AR-capable devices will not profit. Long-term A/B testing would be required to fully
quantify ROI and UX impact, even though we saw encouraging early results. Lastly, even
though the headless approach is more flexible than off-the- shelf platforms, it may have
higher initial costs (many teams, more integrations).

In conclusion, our system demonstrates how utilizing cutting-edge features and a
contemporary tech stack can significantly enhance online retail. The strategy lays the
groundwork for upcoming improvements (voice commerce, multichannel analytics) and is in
line with current trends (Amazon, Flipkart, Shopify, etc.). To further confirm the advantages

of the system, future research could improve the Al models, increase the size of AR catalogs,

Copyright@ Page 10

International Journal Research Publication Analysis

and carry out more extensive userstudies.

REFERENCES

1.

10.

11.

12.

13.

14.

Mohr, J., and Sobral, D. (2021). E-commerce systems' modern architecture. Web
Engineering Journal, 12(4), 203-214.

Tan, J., and Krishnan, P. (2022). Prisma database modeling and ORM mapping. 112-125
in IEEE Transactions on Software Engineering, 48(3).

D. Kross (2023). Tailwind CSS and Next.js for Full Stack Development. Packt
Publishing.

M. Gupta (2020). Creating Scalable and Maintainable Web Applications with React
Modular Design. Springer.

Sharma (2021). A case study of an online grocery store using React. Galgotias University,
B.Tech thesis.

Prisma Documentation (2025). ORM Prisma. taken from https://www.prisma.io/docs
Vercel Documentation (2025). Nextjs application deployment. taken from
https://vercel.com/docs

Redux Toolkit Documentation (2025). Redux Toolkit: Official Manual. taken from
https://redux- toolkit.js.org/

CSS documentation for Tailwind. (2025). Utility-First CSS Framework. taken from
https://tailwindcss.com/docs

Global Development Group for PostgreSQL (2025). Documentation for PostgreSQL 14.
taken from https://www.postgresgl.org/docs/14/

R. Johnson (2020). New developments in web framework architectures. Software
Technology International Journal, 15(2), 45-59.

M. Faria (2021). Cloud-Native E-Commerce: Scalable Design Patterns. 88-102 in the
International Conference on Web Technologies (ICWT) Proceedings.

S. Hussain (2022). Ul/UX optimization for shopping systems with high conversion rates.
29(1), 1-25, ACM Transactions on Computer- Human Interaction.

W3C, the World Wide Web Consortium (2023). Web Security Guidelines: Secure Web
Application Development Best Practices. W3C Technical Report.

T. Nayak (2020). Neural network application in e-commerce recommendation systems.
Uttar Pradesh Technical M.Tech Thesis.

Copyright@ Page 11

http://www.prisma.io/docs
http://www.postgresql.org/docs/14/

