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ABSTRACT

This paper presents the development of a kinematic identification framework for the
directional motion of a fixed-wing aircraft based on the ARMAX (Auto-Regressive Moving
Average with eXogenous inputs) model. The proposed approach aims to accurately identify
the dynamic relationship between control inputs and the aircraft’s directional motion
variables by utilizing measured flight data. First, the kinematic equations governing the
directional motion of the fixed-wing aircraft are established. Subsequently, an ARMAX
model structure is constructed to represent the system dynamics, in which appropriate model
orders are selected to balance accuracy and computational efficiency. The model parameters
are identified using input—output data obtained from simulation or experimental flight tests.
The effectiveness of the proposed identification framework is evaluated through numerical
simulations, where the identified model demonstrates good agreement with the reference data
in both transient and steady-state responses. The results confirm that the ARMAX-based
kinematic identification framework is capable of capturing the essential characteristics of the
aircraft’s directional motion and can serve as a reliable basis for further control system design

and performance analysis.

INTRODUCTION

Parameter lIdentification of the Mathematical Model of a Controlled Plant Based on
Transient Response

Basis for Developing the Identification Algorithm

Let ( h(t) ) denote the transient function of the plant, that is, the response of the plant when it
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is excited by a unit step signal ( 1(t) ) at the input.
1(6) = {: 1whent>0

1
=0whent <0 @
On the other hand, modeling a plant essentially involves describing the mapping between the
input signal u(t) and the output signal y(t): TM: u(t) — v(t). For a linear system, this

mapping can be described by an integral:
d
y(t) = th(t —Du(r)dr )

That is, through h(t) , the output y(t) can always be determined from the input signal u(t).
Therefore, the transient function h(t) provides a complete description of the plant and can
thus be regarded as a nonparametric model of the plant. Similarly, if g(t) denotes the
weighting function, that is, the response of the plant when it is excited by an impulse input

& (t) at the input:

Then the mapping TM: u(t) — y(t), which describes the input—output relationship, can be

expressed as:
y(0) = u(®h(0) + = [ g(t - Du(r)dr 3

In other words, similar to h(t), through g(t) the output y(t) can always be obtained from the input
u(t); therefore, g(t) can also be considered a nonparametric model of the plant.

Thus, identifying a nonparametric model is equivalent to identifying either the transient
function h(t) or the weighting function g(t). Accordingly, when h(t) is determined by exciting
the plant with a unit step signal 1(t), the approach is referred to as an active identification
method. In contrast, when the nonparametric model is identified by determining g(t) or its
Fourier transform G(jw) through spectral analysis of the input and output signals, the approach
is referred to as a passive identification method.

Determination of the parameters of a first-order inertial model from the transient
response

Model:

R(s) K C(s)
T+ 1 >

Y
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Transfer function of a first-order inertial element is showed that:

G =777

To identify a first-order inertial element, it is necessary to determine the parameters K and T.
In order to determine these two parameters, the transient characteristics of the first-order

inertial element are utilized.

The transient response of a first-order inertial element is expressed as follows:

C(s) =R(s).G(s) =

s.(T. + 1)
—t
c(t) =K(1—er) (4)
c(t) A
(1+é&)X
K-~ [ """""""""""""""""""""""""
(1-&)K ;
0.63K R (i3 :
E t
0 : =
T qu

Figure 1. Transient response of a first-order inertial element.

- K is determined as follows

K = lime(t) = limG (<) ®
- Determination of ( T ): From the expression of the transient time:

ta=T. znf ®)
+ &= 0.02 according to the criterion 2%;

+ ¢ =0.05 according to the criterion 5%;

+ T is the time instant at which the transient response reaches 63% of the steady-state value
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Determination of the parameters of a damped second-order oscillatory model from the
transient response

Consider a linear plant to be identified; when it is actively excited at the input by a unit step
signal u(t) = 1(t) , the experimentally obtained transient response h(t) at the output has a form

similar to that shown in figure 2.

4 }i(l]

hmax{---pg--5--

k=hx -

T fﬁ }}

Figure 2. Transient response of a second-order oscillatory plant
Consider the plant described by the model:

kq
s2+2gDs+g=

Wi(s) = (0<D<1) ()

From this model, it is directly obtained that:
h, = limh(t) = limW(s) =k (8)
ft—co 5—c0
Therefore, the remaining task is only to determine D and Q.

Let §; and §, denote the two poles of model (7); we have:

$1.2 =—Dq +jgy1—D?

Hence h(t) =k [1 — sm(qv 1—-D?*t+ arccasD)]
g —Dq
Vé% k2 Sm(qv 1-— th)
dh(t)

By solving the equation = = 0 to determine the extrema (including at t = 0), the

following is obtained:

T,=—=—,i=0,1,.. (9)

gvi-D%'

thus

hmax=h(T\)=k [l — Sm(ﬂaﬁos D) exp (v%)] =k [1 + exp (%)] (10)

V1-D2
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By subtracting (10) from (8), the overshoot is obtained:

—maD
Ah=hmax—h_ =kexp (uﬁ) (11)
If equation (11) is divided by equation (8) term by term, the following is obtained:
Ak —mD 1
[Fl e (F) =0 -— a2
1+ —Tan
',.l In2 T

And equation (12) is precisely the formula that allows the parameter D to be determined from

the experimental curve h(t). the remaining parameter q is then determined from D with the

assistance of T3 according to (9) as follows:

T

T, V1-DZ

le 'H_«\:}q:

gvi-D7 (13)

The three expressions (8), (12), and (13) provide the basis for determining the parameters Kk,
D, and q of model (7) from the experimental curve h(t). If for some reason, the transient
function h(t) is not available and only the response y(t) is obtained when the plant is excited
by u(t) = uo(t) , then, since the plant is linear, the above expressions undergo a slight

modification and become:

Yoo = limy(t) = kuo 1)
1
D= — (15)
|1+In2 an
\ &k
q= T, V1-DZ (16)

DIRECTIONAL MOTION MODEL OF A FIXED-WING AIRCRAFT
Mathematical model of aircraft motion

When an aircraft is in motion, various forces act on the aircraft, as illustrated in figure 3

Figure 3. Forces acting on the aircraft during motion
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By applying the law of momentum and the law of angular momentum and projecting them
onto the body-fixed coordinate system, six Euler equations of rigid-body motion are obtained,
which describe the relationships between the kinematic variables and the forces and moments
acting on the rigid body.
The three force equations governing the translational motion of the center of mass are:
m("’“} + MUI'IVZ - szv] = ZFX
m(Wv + mz“‘.rx’ - mxmfz] = EF'L? 17)
ml:[-"l‘; + mev _ va‘}) = EFZ
The three moment equations representing the rotational motion about the center of mass are:
_-‘rx{‘jx + Uz __-‘r;_u)wymz = ZMX
;‘Ivmv + U_x' _jz]mxmz = ZMU (18)

Izmz + (_[_1_: _jx)wxmy = ZMZ
Where:

-W,, Wv W - The components of the cruising velocity vector in the body-fixed coordinate system;
- Wy, Wy, (- The components of the angular velocity vector in the body-fixed coordinate system;

- M - The mass of aircraft;
- LELXEL XE and M, ¥ M, ¥ M- The summation of force components and
moments acting on the aircraft in the body-fixed coordinate system;

- [ fv J=- The aircraft moments of inertia about the corresponding axes of the body-fixed

coordinate system.

By analyzing the system of equations (17) and (18), it is possible to:

Determine the relationships between the forces acting on the aircraft, the flight trajectory, and
the motion parameters (such as velocity and the aircraft’s angular position in space);

Identify the characteristics of aircraft stability and controllability under different flight
regimes.

The system of equations (17) and (18) can be decomposed into longitudinal motion and
lateral motion. This decomposition is based on the assumption that the aircraft has a
symmetric structure, such that variations in longitudinal motion parameters have only a minor

influence on lateral motion parameters, and vice versa.
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Longitudinal motion consists of the translational motion of the aircraft along the axes Ox:
and Oy, together with the rotational motion about the Oz: axis. In other words, longitudinal
motion describes the maneuvering of the aircraft within the vertical plane aligned with the
aircraft’s longitudinal axis, characterized by the position coordinate x, altitude H, angle of

attack a, pitch angle 6, and flight path angle vy.

Accordingly, the equations governing longitudinal motion are given by:
m(m‘; + MUM‘; - szv] = Z Fxl
mW, + w, W, —w,W,) = % F:pl (19)
zmv + Uv _jx)mxmy = E le

Lateral motion refers to the motion of the aircraft along the Oz: axis and its rotation about the
Ox: and Oy axes. In other words, lateral motion describes the maneuvering of the aircraft in
the horizontal plane, characterized by the lateral displacement Z, bank angle y, heading angle
v, side slip angle B, and turn (trajectory) angle Or.

Accordingly, the corresponding equations are given by:
m(W, + mxl'ﬂ: - va{rj =2 F,
_u‘rxﬂjx + Uz __-‘Iy)mymz = Z M_x' (20)
j‘umv + Ux _jz]mxmz = Z Mv

After decomposing the aircraft motion into longitudinal and lateral motions to facilitate the
analysis of stability and control characteristics, the equations of motion are linearized.

Linear mathematical model of the aircraft yaw dynamics

To develop the mathematical model of the yaw channel, it is assumed that the longitudinal
and lateral motions of the aircraft are decoupled. Under this assumption, the equations
governing the lateral-directional motion are derived.

It is assumed that the aircraft is in steady, wings-level flight, with no sideslip and no external
disturbances: AW = 0; AH = AY = 0; AP = 0;y, = 5, = 0; 4X = 0.
By linearizing the moment equations, the following linear system of equations governing the

lateral-directional motion is obtained:
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(6, +aly +alp = al?p,

y+apiy +a, p+ah, f=ay (—6,)
Y+apiy+aP+ah, B=ayi (=5,
Y =6+ — B,

System (21) represents the complete general linearized equations of the aircraft lateral-directional

(21)

motion.

From system (21), with ¥ = 0, the independent equation of motion in the yaw direction is obtained

as follows:
_B]_" + EEB == D
My my my H
Y =6+
The transfer function from the control input to the yaw angle of the aircraft is obtained as
follows:
W (s) = W) _ gyt © 1 K (Tops+1)wh 1 o
v o —SH{S] - ‘-lf .S B Sz+2EﬁmﬁS+mE-s
v Te, O E, g, IS the time constant associated with the turn angle.

Based on the transfer function, the block diagram is derived as follows:

H 2
. Klj; (Tops + Dwg 1 W
- —

s? +2¢gwps + w§ ‘s

-84, W The rudder deflection angle and the aircraft yaw angle.

Statement of the ARMA model identification problem
Parameter identification of the ARMA (Auto-Regressive Moving Average) model is a
parameter estimation approach for discrete-time systems.

Consider the following discrete-time model:

F{Z J‘IIJ

) _ 1+b z Y +4bppz
U(z)

G(z) = (24)

1+a,z Y+ +ay z 0
Based on the observation and measurement of input and output signals, the model parameters
are estimated so as to minimize the discrepancy between the model and the actual system.

Different formulations of the modeling error lead to different identification methods. These
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methods are generally classified into two main categories: active identification and passive
identification.

In particular, when n,=0, model (24) reduces to:
K

G(2) = (25)

1+a,z"t+.+apygz~ M0

This model is referred to as the Auto-Regressive (AR) model
When na=0, model (24) reduces to:
G(z) =K1+ bz t+...+byz7 ") (26)
This model is referred to as the Moving Average (MA) model
By combining the AR and MA models, the Auto-Regressive Moving Average (ARMA)
model is obtained.

ARMAX model
The general equation of the ARMAX model is given by:
B(q) C(q)
ky=—u(k)+—e(k 27
y(k) =2 Bull) + 5 2 e() @)
e(k)
80
Alg)
u(k) B(g) y(k,0)
A(q) ~

Figure 2. Block diagram of the ARMAX identification model.

D(q) = F(q) = A(q)
= A(q)y(k) = B(q)u(k) + C(q)e(k) -
Where:
AlQ)=1+a,g7  + - +a,,qg ™
B(q) = byq™™ + byg7™ 1 + ...+ b, g k0L
C(qQ) =1+c,qt+...4cpq™™ 29

The ARMAX model predictor can be expressed in the form of a pseudo-linear regression:

M
y(k,0) = 9" (k,6)8 (30)
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0 =[ay...a, by...bpcy...Coe]” (31)
@k, 0)=[-v(k—1)..—y(k —na)u(k — nk) ...

u(k —nk —nb+ 1)e(k—1,0)...e(k —nc,6)]7 (32)

£(k,0) =y(k) —y(k,0) (33)

ARMAX model: sys = armax(data, [na nb nc nk])

Where na, nb, nc, nk denotes the model order, q—1lis the time-delay operator, and the

ARMAX model parameters ax, bk, and ck are defined as given in the corresponding equations.
C()=1+c,qg +...+c,.q "

In contrast to the ARX model, the ARMAX model incorporates the parameter C(q)

MATERIAL AND METHODS
DEVELOPMENT OF A KINEMATIC IDENTIFIER FOR THE YAW MOTION OF A
FIXED-WING AIRCRAFT USING THE ARMAX MODEL

Identification Data Acquisition
Assume that the yaw motion model of the aircraft is available, but its internal parameters are
unknown. This model is represented as a single block in Simulink. The block has one input

and one output, as illustrated below:

Figure 2.2. Reference model of the yaw motion channel of a fixed-wing aircraft

To acquire identification data, a unit-step input signal 1(t) is applied to the model, and the
corresponding output response is recorded. Two To Workspace blocks, named ‘Input’ and
‘Output’, are used to export the input and output data to the MATLAB workspace.
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| | | | | | | | |
0 100 200 300 400 500 600 700 800 900 1000

Figure 2.3. Transient response of the model

Model identification

The identification methods and algorithms have been presented above; however, the system
cannot be identified directly using the ARMAX model. Instead, a combined identification
procedure involving the Auto-Regressive with eXogenous input (ARX) model and the Moving
Average (MA) model is employed. This is because the ARMAX model includes the parameter
C(q), which is not present in the ARX model.

A
Assume that C(gq) = 1 is given; the predicted output v (k, &) is computed using equation (7)
with the available input—output data and the identified A(g) and B(q) polynomials. Subsequently,
£(k, 8) is calculated according to equation (33). At this stage, a complete data set is obtained for

applying the ARMAX identification algorithm.

Identification program: nhandangARMAX.m
n= length (Input);

U= Input (1: n,1);

Y= Output (1: n,1);

t=tout (1: n,1);

T=0.01,;

Phi =[-Y U]

theta=inv(phi*phi’) * phi*Y;
y_est=phi'*theta;
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errorl=Y-y_est;

phil =[-Y U errorl]’;
thetal=inv(phil*phil’) *phil*Y;
y_estl=phil*thetal;

error2=Y-y_estl;

plot (t, Y,'b', t, y_estl,'r--','LineWidth',2.0);
legend('Thucnghiem','Nhandang’);

title ('Ket qua nhan dang’);

The identification results are as follows:

Ket qua nhan dang
T

14 T

Thucnghiem
= = Nhandang

| | |
0
0 100 200 300 400 500 600 700 800 900 1000

Figure 2.4. Identification results using the ARMAX model.

DISCUSSION AND CONCLUSION
The identified ARMAX model accurately reproduces the transient characteristics of the

22

system, yielding an extremely small mean square error error2 = 3767e7°“ and an

identification fit of approximately 100%.
Furthermore, the parameters of the ARMAX model are successfully estimated.
8 = [—1.00005.0680e114.1402¢%]

Correspondingly:  A(z) =1 —0000z71
B(z) = 5.0680e 11z
C(z) =1+4.1402e3z71
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