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ABSTRACT 

This paper presents the development of a kinematic identification framework for the 

directional motion of a fixed-wing aircraft based on the ARMAX (Auto-Regressive Moving 

Average with eXogenous inputs) model. The proposed approach aims to accurately identify 

the dynamic relationship between control inputs and the aircraft’s directional motion 

variables by utilizing measured flight data. First, the kinematic equations governing the 

directional motion of the fixed-wing aircraft are established. Subsequently, an ARMAX 

model structure is constructed to represent the system dynamics, in which appropriate model 

orders are selected to balance accuracy and computational efficiency. The model parameters 

are identified using input–output data obtained from simulation or experimental flight tests. 

The effectiveness of the proposed identification framework is evaluated through numerical 

simulations, where the identified model demonstrates good agreement with the reference data 

in both transient and steady-state responses. The results confirm that the ARMAX-based 

kinematic identification framework is capable of capturing the essential characteristics of the 

aircraft’s directional motion and can serve as a reliable basis for further control system design 

and performance analysis. 

 

INTRODUCTION 

Parameter Identification of the Mathematical Model of a Controlled Plant Based on 

Transient Response 

Basis for Developing the Identification Algorithm 

Let ( h(t) ) denote the transient function of the plant, that is, the response of the plant when it 

 

International Journal Research Publication Analysis 

2026 Volume: 02 Issue: 01 www.ijrpa.com ISSN 2456-9995 Review Article 

Page: 01-13 
 
 

 

 

https://doi-doi.org/101555/ijrpa.6368
http://www.ijrpa.com/


2 

International Journal Research Publication Analysis                                              

Copyright@                                                                                                                 Page 2 

is excited by a unit step signal ( 1(t) ) at the input. 

                                          (1) 

On the other hand, modeling a plant essentially involves describing the mapping between the 

input signal u(t) and the output signal y(t): TM: . For a linear system, this 

mapping can be described by an integral: 

                                       (2) 

That is, through  h(t) , the output  y(t)  can always be determined from the input signal u(t). 

Therefore, the transient function  h(t) provides a complete description of the plant and can 

thus be regarded as a nonparametric model of the plant. Similarly, if  g(t)  denotes the 

weighting function, that is, the response of the plant when it is excited by an impulse input 

 at the input: 

 

Then the mapping TM: , which describes the input–output relationship, can be 

expressed as: 

                            (3) 

In other words, similar to h(t), through g(t) the output  y(t) can always be obtained from the input 

u(t); therefore, g(t) can also be considered a nonparametric model of the plant. 

 

Thus, identifying a nonparametric model is equivalent to identifying either the transient 

function h(t) or the weighting function g(t). Accordingly, when h(t) is determined by exciting 

the plant with a unit step signal 1(t), the approach is referred to as an active identification 

method. In contrast, when the nonparametric model is identified by determining g(t) or its 

Fourier transform G(jw)  through spectral analysis of the input and output signals, the approach 

is referred to as a passive identification method. 

Determination of the parameters of a first-order inertial model from the transient 

response 

Model: 
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Transfer function of a first-order inertial element is showed that: 

 

To identify a first-order inertial element, it is necessary to determine the parameters K and T. 

In order to determine these two parameters, the transient characteristics of the first-order 

inertial element are utilized. 

 

The transient response of a first-order inertial element is expressed as follows: 

 

                                                   (4) 

 

 

Figure 1. Transient response of a first-order inertial element. 

 

- K  is determined as follows 

                                           (5) 

- Determination of ( T ): From the expression of the transient time: 

                                     (6) 

+ ε = 0.02 according to the criterion 2%; 

+ ε = 0.05 according to the criterion 5%; 

+ T  is the time instant at which the transient response reaches 63% of the steady-state value 
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Determination of the parameters of a damped second-order oscillatory model from the 

transient response 

Consider a linear plant to be identified; when it is actively excited at the input by a unit step 

signal u(t) = 1(t) , the experimentally obtained transient response h(t) at the output has a form 

similar to that shown in figure 2. 

 

 

 Figure 2. Transient response of a second-order oscillatory plant 

Consider the plant described by the model: 

                     (7) 

From this model, it is directly obtained that: 

                                           (8) 

Therefore, the remaining task is only to determine D and q. 

Let  and  denote the two poles of model (7); we have: 

 

Hence  

Và  

By solving the equation  to determine the extrema (including at  t = 0), the 

following is obtained:             

                                                                     (9) 

thus 

      (10) 
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By subtracting (10) from (8), the overshoot is obtained: 

                                     (11) 

If equation (11) is divided by equation (8) term by term, the following is obtained: 

                                    (12) 

And equation (12) is precisely the formula that allows the parameter D to be determined from 

the experimental curve h(t). the remaining parameter q is then determined from D with the 

assistance of   according to (9) as follows: 

                                                                  (13) 

 

The three expressions (8), (12), and (13) provide the basis for determining the parameters k, 

D, and q of model (7) from the experimental curve h(t). If for some reason, the transient 

function h(t) is not available and only the response y(t) is obtained when the plant is excited 

by u(t) = u0(t) , then, since the plant is linear, the above expressions undergo a slight 

modification and become: 

                                (14) 

                                            (15) 

                                                  (16) 

 

DIRECTIONAL MOTION MODEL OF A FIXED-WING AIRCRAFT 

Mathematical model of aircraft motion 

When an aircraft is in motion, various forces act on the aircraft, as illustrated in figure 3 

 

Figure 3. Forces acting on the aircraft during motion 
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By applying the law of momentum and the law of angular momentum and projecting them 

onto the body-fixed coordinate system, six Euler equations of rigid-body motion are obtained, 

which describe the relationships between the kinematic variables and the forces and moments 

acting on the rigid body. 

The three force equations governing the translational motion of the center of mass are: 

 

  (17) 

 

 The three moment equations representing the rotational motion about the center of mass are: 

 

            (18) 

 

Where:  

- - The components of the cruising velocity vector in the body-fixed coordinate system; 

- - The components of the angular velocity vector in the body-fixed coordinate system;  

-  - The mass of aircraft; 

- - The summation of force components and 

moments acting on the aircraft in the body-fixed coordinate system; 

- - The aircraft moments of inertia about the corresponding axes of the body-fixed 

coordinate system. 

By analyzing the system of equations (17) and (18), it is possible to: 

Determine the relationships between the forces acting on the aircraft, the flight trajectory, and 

the motion parameters (such as velocity and the aircraft’s angular position in space); 

Identify the characteristics of aircraft stability and controllability under different flight 

regimes. 

The system of equations (17) and (18) can be decomposed into longitudinal motion and 

lateral motion. This decomposition is based on the assumption that the aircraft has a 

symmetric structure, such that variations in longitudinal motion parameters have only a minor 

influence on lateral motion parameters, and vice versa. 
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Longitudinal motion consists of the translational motion of the aircraft along the axes Ox₁ 

and Oy₁, together with the rotational motion about the Oz₁ axis. In other words, longitudinal 

motion describes the maneuvering of the aircraft within the vertical plane aligned with the 

aircraft’s longitudinal axis, characterized by the position coordinate x, altitude H, angle of 

attack α, pitch angle θ, and flight path angle γ. 

 

Accordingly, the equations governing longitudinal motion are given by: 

                                    (19) 

 

Lateral motion refers to the motion of the aircraft along the Oz₁ axis and its rotation about the 

Ox₁ and Oy₁ axes. In other words, lateral motion describes the maneuvering of the aircraft in 

the horizontal plane, characterized by the lateral displacement Z, bank angle γ, heading angle 

ψ, side slip angle β, and turn (trajectory) angle θ. 

Accordingly, the corresponding equations are given by:             

                           (20) 

 

After decomposing the aircraft motion into longitudinal and lateral motions to facilitate the 

analysis of stability and control characteristics, the equations of motion are linearized. 

Linear mathematical model of the aircraft yaw dynamics 

To develop the mathematical model of the yaw channel, it is assumed that the longitudinal 

and lateral motions of the aircraft are decoupled. Under this assumption, the equations 

governing the lateral–directional motion are derived. 

It is assumed that the aircraft is in steady, wings-level flight, with no sideslip and no external 

disturbances:  

By linearizing the moment equations, the following linear system of equations governing the 

lateral–directional motion is obtained: 
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                         (21) 

System (21) represents the complete general linearized equations of the aircraft lateral–directional 

motion. 

From system (21), with , the independent equation of motion in the yaw direction is obtained 

as follows: 

                                 (22) 

The transfer function from the control input to the yaw angle of the aircraft is obtained as 

follows: 

             (23) 

  ; ;  is the time constant associated with the turn angle. 

 

Based on the transfer function, the block diagram is derived as follows: 

 

, : The rudder deflection angle and the aircraft yaw angle. 

Statement of the ARMA model identification problem 

Parameter identification of the ARMA (Auto-Regressive Moving Average) model is a 

parameter estimation approach for discrete-time systems. 

Consider the following discrete-time model: 

                             (24) 

Based on the observation and measurement of input and output signals, the model parameters 

are estimated so as to minimize the discrepancy between the model and the actual system. 

Different formulations of the modeling error lead to different identification methods. These 
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methods are generally classified into two main categories: active identification and passive 

identification. 

In particular, when nb=0, model (24) reduces to: 

                                                  (25) 

This model is referred to as the Auto-Regressive (AR) model 

When na=0, model (24) reduces to: 

                                 (26) 

This model is referred to as the Moving Average (MA) model 

By combining the AR and MA models, the Auto-Regressive Moving Average (ARMA) 

model is obtained. 

ARMAX model 

The general equation of the ARMAX model is given by: 

                                                         (27) 

 

 

Figure 2. Block diagram of the ARMAX identification model. 

 

 

                   (28) 

Where: 

 

 

                  (29) 

 

The ARMAX model predictor can be expressed in the form of a pseudo-linear regression: 

                                            (30) 
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                                                                     (31)

  

               (32) 

                                                                             (33) 

ARMAX model: sys = armax(data, [na nb nc nk]) 

Where na, nb, nc, nk denotes the model order, q−1is the time-delay operator, and the 

ARMAX model parameters ak, bk, and ck are defined as given in the corresponding equations. 

   

In contrast to the ARX model, the ARMAX model incorporates the parameter C(q) 

 

MATERIAL AND METHODS 

DEVELOPMENT OF A KINEMATIC IDENTIFIER FOR THE YAW MOTION OF A 

FIXED-WING AIRCRAFT USING THE ARMAX MODEL 

 

Identification Data Acquisition 

Assume that the yaw motion model of the aircraft is available, but its internal parameters are 

unknown. This model is represented as a single block in Simulink. The block has one input 

and one output, as illustrated below: 

 

Figure 2.2. Reference model of the yaw motion channel of a fixed-wing aircraft 

 

To acquire identification data, a unit-step input signal 1(t) is applied to the model, and the 

corresponding output response is recorded. Two To Workspace blocks, named ‘Input’ and 

‘Output’, are used to export the input and output data to the MATLAB workspace. 
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Figure 2.3. Transient response of the model 

 

Model identification 

The identification methods and algorithms have been presented above; however, the system 

cannot be identified directly using the ARMAX model. Instead, a combined identification 

procedure involving the Auto-Regressive with eXogenous input (ARX) model and the Moving 

Average (MA) model is employed. This is because the ARMAX model includes the parameter 

C(q), which is not present in the ARX model. 

 

Assume that  is given; the predicted output  is computed using equation (7) 

with the available input–output data and the identified A(q) and B(q) polynomials. Subsequently, 

 is calculated according to equation (33). At this stage, a complete data set is obtained for 

applying the ARMAX identification algorithm. 

 

Identification program: nhandangARMAX.m 

n= length (Input); 

U= Input (1: n,1); 

Y= Output (1: n,1); 

t= tout (1: n,1); 

T=0.01; 

Phi = [-Y U]'; 

theta=inv(phi*phi') * phi*Y; 

y_est=phi'*theta; 
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error1=Y-y_est; 

phi1 = [-Y U error1]'; 

theta1=inv(phi1*phi1') *phi1*Y; 

y_est1=phi1'*theta1; 

error2=Y-y_est1; 

plot (t, Y,'b', t, y_est1,'r--','LineWidth',2.0); 

legend('Thucnghiem','Nhandang'); 

title ('Ket qua nhan dang'); 

 

The identification results are as follows: 

 

Figure 2.4. Identification results using the ARMAX model. 

 

DISCUSSION AND CONCLUSION 

The identified ARMAX model accurately reproduces the transient characteristics of the 

system, yielding an extremely small mean square error  and an 

identification fit of approximately 100%. 

Furthermore, the parameters of the ARMAX model are successfully estimated. 

 

Correspondingly:  
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