

International Journal Research Publication Analysis

Page: 01-24

HYBRID DEEP LEARNING ARCHITECTURE FOR DEEPFAKE IDENTIFICATION AND ARTIFACT-LEVEL BENCHMARKING

***Harsh Koushal, Rimpal Kaur, Chhinder Kaur Dhaliwal**

Department of Computer Application, Chandigarh Business School of Administration, Landran, Mohali, Punjab, India.

Article Received: 07 November 2025

***Corresponding Author: Harsh Koushal**

Article Revised: 27 November 2025

Department of Computer Application, Chandigarh Business School of

Published on: 17 December 2025

Administration, Landran, Mohali, Punjab, India.

DOI: <https://doi-doi.org/101555/ijrpa.3821>

ABSTRACT

Because of the fast progress of GANs, there is now a large increase in hyper-realistic fake media which threatens security on the internet, truthful media reports and puts public trust at risk. It describes a new Hybrid Deep Learning Architecture meant to detect deepfakes and check their quality at the benchmark level. It makes use of convolutional neural networks (CNNs) for spatial detection and recurrent neural networks (RNNs), mainly long short-term memory (LSTM) units, to detect inconsistencies in time. Attention techniques are included to direct the network's focus on areas with artifacts which improves how precisely results can be detected. Architecture assessments are done by using established datasets like Face Forensics++, Celeb-DF and Deep Fake Detection. This model is precise in identifying synthetic media and groups the fake characteristics according to the kind of generation network used (for example, GANs). Many experiments indicate that the hybrid framework is not easily fooled by straightforward adversarial and compression distortions. It supports the growth of deepfake detection tools that are easy to understand and stay resilient which is necessary for them to be used.

KEYWORDS: Deepfake Detection, Hybrid Deep Learning, Artifact Classification, Convolutional Neural Networks (CNN), Recurrent Neural Networks. (RNN)

1. INTRODUCTION

In the past few years, deepfake technology which relies on generative adversarial networks (GANs), has greatly changed how digital content is made. While deepfakes have made new

methods possible in entertainment, schools and creative fields, they have also caused great fears due to misleading information, stealing identities, manipulating politics and forging digital material. Because deepfake algorithms are so accurate in producing human faces, changing voices and gestures, it gets harder and harder for both humans and computers to notice altered content.

As it gets easier to create deepfakes, the standard detection methods that use simple features or basic learning are not working well anymore. Usually, these methods cannot work for all types of deepfakes and can be tricked by compression, resizing and injecting noise after the deepfake is created. For this reason, building detectors that not only recognize deepfake videos but also sort out their hallmarks which can show how and where they were made, is necessary.

By using a Hybrid Deep Learning Architecture, this paper handles the challenge by bringing together the best parts of different deep learning methods for better results in identifying deepfakes and evaluating artifacts. The framework is organized to look at visuals and time frames, detect differences and categorize artifacts depending on what model they come from (for example, StyleGAN, Deep Fakes, Face Swap). Here, CNNs are used for processing the spatial details in videos, RNNs are included to detect unusual patterns over time and attention models are added to pay special attention to regions where forgeries often appear. Therefore, AI systems become easier to use and can resist both outside attacks and data changes made during post-processing.

1.1 The Rise of Deepfakes

Deepfakes are created by teaching models about how human faces look and how they move, commonly by using autoencoders or GAN-based methods. Once trained on a large amount of data, they can make visuals that barely differ from real-world media. StyleGAN, Deep Face Lab and Face Swap are three of the most popular and users who have little technical knowledge can also try them. Because deepfakes are easy to make and tools have become much faster, they are seen much more on social media and messaging services.

Even though there are funny or educational uses for deepfakes, in many cases, they are used to do harm. Some harmful applications spread fake news, interfere with political matters, publish sexual images without authorization and commit financial fraud. There is a major

need for dependable methods to check visual evidence and avoid manipulation because of the trust that images can create.

1.2 Challenges in Deepfake Detection

Finding out if a video is a deepfake can be very challenging.

- As the technology continues to improve, the images and videos generated by GANs look so real that it can be very hard to detect them with the human eye or with simple tools.
- Most detection models are designed using single types of forgeries and therefore find it hard to deal with unknown deepfakes formed with various approaches or conditions.
- Obscuring Features the features that make a deepfake different can be hidden and mistaken for non-deepfake content by adding compression, blurring or noise to the content.
- Many models now only give a yes or no answer as to whether a piece of content is authentic, without any explanation why, limiting what they can offer in investigation and reducing trust from those who use them.

1.3 Hybrid Deep Learning Approaches

It uses the positive aspects of different deep learning methods together. CNNs are effective in finding things like textures, edges and shapes in images which means they are suitable for finding facial flaws, mismatched blending or unusual lighting. Yet, CNNs are not able to understand time differences and cannot study changes that happen between video frames.

The limitation is overcome by using RNNs, especially LSTM networks which track the progression of facial movements and expressions and highlight small inconsistencies. Attention mechanisms help further by making sure that the model looks closely at parts of the image that are most likely to include errors, focusing more on facial landmarks.

Because the proposed model brings together CNNs, RNNs and attention layers, it can simultaneously detect local, global and temporal details which improves its accuracy and resistance to deepfakes.

1.4 Artifact-Level Benchmarking

In addition to simple classification, this work tries to identify and sort individual artifacts created by different deepfake software. Examples of artifacts are merging the edge graphics,

having colors that are not consistent, head movements that seem awkward, inconsistent light or videos that flicker.

Forensic investigators can discover which sort of artifact is present and rely on it to show the most likely tool or approach involved. Explaining Model Decisions: Using pictures or stats explains why the artifact is being detected, encouraging users' trust and making the model easier to understand.

The framework is developed by training and testing it with many notable datasets such as Face Forensics++, Celeb-DF and Deep Fake Detection which have varying amounts and types of deception in them.

2. LITERATURE REVIEW

Images and movies with fake facial expressions produced through digital modification techniques have recently drawn increasing public criticism [1]. Deepfake is a term for artificial intelligence-produced, realistic-sounding, but fake, visuals, audio, and videos [2]. Deepfake is now more realistic and simpler to create because of recent improvements in deepfake generation. Deepfake has posed serious threat to society, and our right to privacy, necessitating the development of deepfake detection techniques to counter these concerns [3], [4]. An individual known as Deepfakes [5] used publicly accessible artificial intelligence application to produce pornographic videos in December 2017 in which real faces were replaced with fake faces in photos and videos. Deepfakes is a user of the Reddit social media network [6]. The substitution of an individual's appearance, especially faces, using artificial intelligence algorithms is known as "Deepfaking". A particular type of synthetic media known as "deepfake" employs deep learning-based software to produce deceptive films, recordings, and/or photos. It entails swapping out one person's face in a photo or video with another person's likeness to produce a realistic imitation with the aim of deceiving viewers or altering content's genuine message [7].

The majority of deepfake detection techniques rely on features and machine learning techniques. Deepfake generation advances, a dearth of high-quality datasets, and a lack of benchmarks are some of the remaining difficulties in deepfake detection. Deepfake detection trends for the future may include robust, efficient, and systematic detection techniques as well as high-quality datasets [8]. GANs technology has made it possible to produce extremely lifelike face images that are visually challenging to differentiate real faces [9]. The generation

process and discriminator, which are the two parts of a Generative Adversarial Network, collaborate to produce untrue photos which might be challenging to differentiate from real photos. As the discriminator is trained to distinguish between fake photos and real photos, the generator produces the fake pictures [10].

The generator tries to create more convincing photos with the aim of tricking the discriminator throughout training process, whereas the discriminator gets better at spotting untrue images. GANs are utilized for creating images of individuals, animals, and objects, but they may also be used to create fraudulent images for malicious purposes [11]. What is worse, humans struggle to recognize these convincing deep fake images, audios, and films. Therefore, it is crucial, imperative, and necessary to differentiate true media from deepfakes. Therefore, it is essential to create a reliable model that can precisely differentiate between real and fake photos. Due to the recent spike in the risk of fraudulent operations, numerous methods to identify phony face photos have been developed to solve this issue [12]. These techniques can be roughly divided into two groups: one group relies on manually created characteristics and depends on the statistical properties of the photos. The other group makes use of deep learning methods that utilize cutting-edge neural networks to find patterns and characteristics in the photos [13].

This paper is organized in six main sections. An overview of the pertinent background information and associated studies Conclusions and key contributions to the field and the directions for future work are outlined the deployment of realistic Deepfake images could be dangerous for people's privacy, democratic processes, and the nation's security [14]. The creation of trustworthy tools for spotting hazardous Deepfake material is essential. Machine learning methods and feature-based ones make up the two primary types of Deepfakes detection techniques [6]. To distinguish between deepfakes, machine learning methods, particularly deep learning, are frequently used. Feature-based algorithms exploit specific properties found in Deepfake media to identify them. As there is a critical need to stop the spread of damaging media, this study concentrates on machine learning methods to identify deepfakes. Machine learning methods are divided into two primary categories: standard techniques and deep techniques [6].

Traditional machine learning techniques involve strategies to analyze data along with producing predictions or classes depending on statistical models and algorithms [12]. It is used in SVM and RF-based Deepfake detection techniques. Based on statistical models, these

methods seek to analyze the data and produce predictions or classes (groups). Traditional ML frequently necessitates hand-engineering features. However, due to their speed, ease of use, and robustness against noisy datasets, these techniques are still often used in numerous applications. Support Vector Machine (SVM) is a machine learning technique used for regression analysis and categorization. SVM can be used in Deepfake detection to discriminate between genuine and fake content. SVM may be trained using a dataset of actual and Deepfake photos and videos [7] for Deepfake identification, where it learns to differentiate between the two classes. Once taught, it can be used to determine the category of upcoming, undiscovered movies or photographs. To identify more than two classes of Deepfakes, several SVMs would need to be trained, which is one of the key drawbacks of this method. However, because SVM is a binary classifier which means it operates or differentiate between only two classes [15].

A machine learning approach called random forest (RF) can be used for classification, regression, and other applications. Random forest is used as a classifier in deep fake detection to differentiate between real and fraudulent content. Since it can handle an enormous number of characteristics and can determine which characteristic are considered more crucial for classification, random forest may serve as a beneficial method in deep fake detection. Furthermore, compared to other classifiers, it is less susceptible to overfitting, which makes it more resistant to noisy or defective data [16]. DeepFaceLab (2019) [17] is software application used to manipulate facial images. A Russian smartphone application named FaceApp, for instance, has the capability to generate deceptive photographs that appear older than the subjects actually are. A piece of software called Deepfakes can be used to swap out a human face with that of any other person or animal. With the aid of machine learning and human image synthesis, DeepFaceLab is a Windows program that lets users replace faces in videos [18].

The article looks into how unknown medical deepfakes might endanger patients and hospital resources. The researchers performed a case study to start developing methods for discovering such attacks. The test compared eight machine learning algorithms, three of which were Support Vector Machine, Random Forest and Decision Tree [19]. Deep learning techniques, as opposed to traditional machine learning models, can discover Deepfake properties and have grown to be a popular way for identifying Deepfakes. These techniques include GAN, CNN, and RNN as examples. Furthermore, compared to other techniques, deep

learning-based detection algorithms typically produce higher levels of accuracy [13]. Convolutional neural networks (CNNs), recurrent neural networks (RNNs), and long short-term memory (LSTM) networks are only a few of the deep learning methods that are presented in the article, cited in [7] for various applications.

By identifying genuine from false photos, these techniques can be utilized to identify Deepfakes. Below is an overview of how various techniques can be used to identify Deepfake content. A deep neural network model called the CNN comprises some hidden layers, an input layer, and output layer. The hidden layers take inputs from top layer and convolution the input values. The matrix multiplication or dot product is used in this convolution procedure. Then, further transformations like pooling layers are used together with a nonlinearity activation function like the Rectified Linear Unit (RELU). By computing the outputs using functions like maximum pooling or average pooling, pooling layers seek to reduce the complexity of the input data [20]. Multiple layers make up ANNs, involving one input layer, some hidden layers, and one output layer. Input data sets are utilized as inputs in Artificial Neural Networks, which the network endeavors to classify. Signal spread occurs via connections, known as edges, between the interconnected points or synthetic neurons in ANNs, which has an architecture like that of the human brain. After processing the signals, each neuron sends the signals received to the neurons connected to it. An edge and neuron-related weight is used to modify the intensity of the signal at a link [16].

Therefore, it is crucial to understand not only the deep learning methods stated before, but also the traditional neural network (NN) and how it relates to traditional machine learning. The traditional NN is a popular variety of neural network that is used in tasks involving supervised learning like classification and regression. Traditional neural network (NN) is made up of some hidden layers, one input layer, and one output layer. The hidden layers contain nodes which calculate weighted inputs and provide an output. Artificial Neural Networks (ANNs) are based on the core principle that the human brain functions in a similar manner. The Deep InceptionNet Learning Algorithm Introduced by [21], is used to detect deepfake images. The study achieves a noteworthy accuracy of 93% when compared to other convolutional networks, demonstrating the algorithm's effectiveness in differentiating between true and altered content. In [22], the author reviews the literature on several deep learning strategies for identifying created fake faces. The author highlights the importance of reliable detection methods given the quick advancement of AI-driven multi-media alteration.

In order to create a more precise and succinct deepfake detection system, methods including CNN, Xception Network, Recurrent Neural Networks (RNN), and Long Short Term Memory (LSTM) are investigated. The goal of the DeepFakeDG project by [23] was to create a web application that uses machine learning and deep learning techniques to identify falsified information. The study tackles the issues raised by deepfake algorithms by utilizing methods like face swapping and behavioral analysis, highlighting the possible uses of deepfake detection in legal and law enforcement settings. Examining Vision Transformers (ViTs) for multiclass deepfake picture detection is a unique approach to the rapidly changing field of facial modification technology, as suggested by [24].

The study is the first to take into account the StyleGAN2 and Stable Diffusion problems. ViTs outperform conventional CNN-based models in terms of detection accuracy, precision, and recall. The authors of [25] concentrate on the use of artificial intelligence (AI), machine learning, and neural networks in conjunction with deep learning approaches to classify actual and fake human faces. The study's impressive accuracy, attained by using deep learning algorithms like ResNet50, highlights the promise of these methods in differentiating between real and fake facial photos. All in all, the literature review shows that there are advances in deep fake detection and that they address the problems from the progress of multimedia modification technologies. [26] is the inventor of Residual Neural Network, also known as ResNet. Many computer vision tasks rely on it and it has achieved top results on lots of image recognition problems [27], [28]. ResNet (Residual Network) is based on the idea of residual connections which help train very deep neural networks more efficiently [29]. Several convolutional layers are usually followed by residual blocks in the typical ResNet architecture. A residual block includes several convolutional layers and it also allows the output of a block to skip certain layers [30]. The structure lets the network focus on small changes between the input and the result which makes learning more efficient [30]. ResNet has many layers such as convolutional layers and residual blocks [31]. The input is the starting point which comes from the initial input image or feature map. Convolution layers take the input and apply a set of filters to detect features in the input. Residual blocks have two or more convolutional layers linked by shortcut connections. The block takes in input, applies convolutional layers and then adds the output to the original input using the short cut. Using the bypass, the network focuses on figuring out what differs between the input and the aimed output. It makes it simpler to train networks that are many layers deep.

Channel-Wise Attention Mechanisms have become important in deep learning architectures, particularly CNNs, where identifying complex patterns matters a lot. While extracting features, these methods keep important features and eliminate noise and extra items in the data. Adding Channel-Wise Attention Mechanisms at the feature extraction stage of the ensured better results when used in combined with the popular CNN model RESNET50. First, these algorithms blur out important information so that the neural network pays special attention to what makes a real face different from a doctored one [32]. Because of these technologies, models can react to input by changing their feature representations which improves their ability to find subtle variations and becomes stronger against adversarial attacks. Remarkably, these improved results are reached with only a small increase in computation which means Channel-Wise Attention Mechanisms are suitable for practical use in real situations with little added work. Because of this, adding it into RESNET50 helps the model excel in jobs that use accurate feature extraction such as false face identification, among others [33].

3. RELATED WORK

The quick growth of synthetic media is leading to more studies that focus on finding, inspecting and analyzing them. This section reviews the main studies focused on traditional deepfake detection, deep learning, artifact-level analysis, and hybrid approaches.

3.1 Traditional Deepfake Detection Techniques

At the beginning, deepfake detection used simple features and unusual numbers in the data. Such techniques were developed to find head pose changes, changes in eye blinking patterns, where the eyes are looking or flaws near the boundaries because of poor blending. Thus, according to Li et al. (2018), understanding scarring eye movements that do not make sense can show if a photo or video is a deepfake. Likewise, Matern et al. (2019) noticed deepfakes by spotting that there is no specular reflection in eyes and other physical anomalies.

Even though they showed success in the lab, they were not able to help much with real-world or difficult forgeries. Also, since they needed set rules, their results could be improved by approaches based on new, more relevant techniques.

3.2 Deep Learning-Based Detection Methods

The introduction of deep learning into deepfake detection let models automatically learn from data. Detection of most image-based deepfakes depends on convolutional neural networks (CNNs). Rossler et al. (2019) explained and used Face Forensics++, an effective

measurement tool, to evaluate deepfake detection, revealing that CNNs such as Exception Net could perform well on minimized videos.

In their study, Chollet (2017) proposed Exception Net, a method that relies on depth wise separable convolutions to learn the small features in faces. Maysonet, ResNet-50 and Efficient Net have also found use, their performance varying according to what data is being studied.

Most CNN-based models work on still images, missing information from movement over time. As a result, such approaches miss out on spotting small or sudden changes in a video.

3.3 Temporal and Video-Based Detection

Some approaches have used 3D CNNs, recurrent neural networks (RNNs) and attention mechanisms that pay attention to time in their studies. Sabir and colleagues (2019) launched a method using LSTM networks that inputs CNN features for every frame and discovers time-dependent relationships between frames. Likewise, Guera and Delp (2018) built a pipeline with CNNs feeding into RNNs that finds abrupt changes between frames in motion.

Video-level detection was improved even more with the use of models such as Two-Stream Networks and 3D CNNs (e.g., C3D). Although these techniques are efficient on video data, they are frequently difficult to put into use on resource-limited or real-time systems, due to their high computational cost.

3.4 Artifact-Level Analysis and Explainability

Researchers have now focused on being able to explain what happened in detection and on finding the actual artifacts instead of just labeling them. In their study, Durall et al. (2020) introduced techniques to detect image fakes by looking at differences in the spectrum between genuine and fake pictures. Researchers Wang et al. (2020) introduced localization methods that use artifacts to identify areas where data is likely to have been changed.

A small number of techniques also divide deepfakes based on the technique used to produce them. Some researchers, like Yu et al. (2022), used special, fingerprint-like characteristics left by each GAN to classify the generated deepfakes. They assist forensic experts in telling what fake creation tools or methods are used.

Still, most artifact-level methods are built without being related to a complete detection framework.

3.5 Hybrid Deep Learning Architectures

Hybrid models aim to combine the strengths of spatial, temporal, and attention-based approaches into a unified framework. Nguyen et al. (2019) explored multi-task learning for deepfake detection and classification of manipulations. Zhou et al. (2021) proposed a two-stream network incorporating both RGB and frequency-domain features for more robust detection.

Our proposed hybrid framework builds upon this direction by integrating CNNs for spatial analysis, LSTMs for temporal reasoning, and attention mechanisms for dynamic focus on artifact-rich areas. In contrast to prior models, our framework explicitly includes artifact-level benchmarking as a central feature, making it useful not only for detection but also for forensic analysis and model traceability.

3.6 Summary of Gaps and Opportunities

Despite significant progress, several gaps remain in current literature. Many existing models focus exclusively on detection and lack artifact-level interpretability. Few architectures effectively combine spatial, temporal, and attention features in a modular, scalable way. Benchmarking across multiple datasets remains inconsistent, limiting generalization claims.

Our work aims to address these gaps by proposing a hybrid architecture that is both effective and explainable, capable of generalizing across diverse forgery methods and offering insights into the generative origin of artifacts.

4. PROPOSED METHODOLOGY

In this section, we present the architecture and methodology of the proposed Hybrid Deep Learning Framework for deepfake identification and artifact-level benchmarking. The architecture is designed to capture and analyze both spatial inconsistencies within individual frames and temporal inconsistencies across video sequences. It consists of three key components:

1. Spatial Feature Extractor (CNN Backbone)
2. Temporal Dependency Modeler (RNN / LSTM Unit)
3. Attention-Based Artifact Focus Module

The output of the network is twofold: (i) a binary classification (real or fake), and (ii) a multi-class artifact classification label, identifying the potential generative source or type of manipulation.

4.1 Overall Architecture

The high-level pipeline of the proposed framework is as follows:

1. Input video or image sequence is divided into frames.
2. Each frame is passed through a pre-trained CNN to extract spatial features.
3. Feature sequences from consecutive frames are fed into an LSTM network to capture temporal dynamics.
4. An attention mechanism identifies and enhances focus on regions with high artifact density.
5. Outputs from the LSTM and attention modules are concatenated and passed through classification heads for:
 - o Binary detection (Real/Fake)
 - o Artifact classification (e.g., Deep Fake, Face Swap, StyleGAN)

4.2 Spatial Feature Extractor (CNN Backbone)

For extracting spatial features from individual video frames, we utilize a CNN architecture, such as Efficient Net, or ResNet-50. These networks have proven effective at detecting manipulation artifacts such as

- Blending boundaries around the face
- Inconsistent lighting and shading
- Abnormal facial structure or skin textures

Let L_t be the input frame at time t . The CNN backbone maps this frame into a high-dimensional feature vector.

$$F_t = \text{CNN}(I_t)$$

These feature vectors are stored sequentially and fed to the temporal model.

4.3 Temporal Dependency Modeler (LSTM Layer)

While CNNs effectively extract spatial artifacts, they lack the ability to understand temporal inconsistencies. For this reason, we employ a Long Short-Term Memory (LSTM) network that processes the ordered feature vectors $\{F_1, F_2, \dots, F_T\}$ across the video timeline.

The LSTM learns to identify patterns that are unusual over time, such as:

- Flickering or jitter in facial expressions
- Unnatural motion transitions
- Inconsistent eye blinking or lip syncing

The LSTM outputs a temporal embedding H_{HH} , summarizing the learned dependencies across the video

$$H = \text{LSTM}(\{F_t\}_{t=1}^T)$$

4.4 Attention-Based Artifact Focus Module

Deepfake artifacts are often localized to specific facial regions (e.g., mouth, eyes, jawline). To emphasize these regions and suppress irrelevant background features, we apply a **spatial attention mechanism** over the CNN feature maps.

Let A_t represent the attention-weighted map at time t . The attention map is computed by

$$A_t = \text{SoftMax}(\text{Conv}(F_t))$$

The attention weights guide the model to emphasize salient regions likely to contain artifacts. These attention-weighted features are merged with the temporal embeddings from the LSTM to form a unified representation:

$$Z = \text{Concat}(H, A_t)$$

4.5 Dual Output Heads

To achieve both detection and artifact classification, we use two parallel fully connected output layers:

1. Binary Classification Head:

$$y^{\text{binary}} = \sigma(W_1 \cdot Z + b_1)$$

where $y^{\text{binary}} \in [0, 1]$ indicates the probability of being fake.

2. Artifact Classification Head:

$$y^{\text{artifact}} = \text{SoftMax}(W_2 \cdot Z + b_2)$$

where $y^{\text{artifact}} \in R^K$ and K is the number of artifact classes (e.g., Deep Fake, Face2Face, StyleGAN2, Neural Textures).

4.6 Loss Functions

To train the model, we use a multi-task loss that combines binary classification loss and multi-class artifact classification loss:

$$L_{\text{total}} = \lambda_1 \cdot L_{\text{binary}} + \lambda_2 \cdot L_{\text{artifact}}$$

Were

$L_{\text{binary}} = \text{Binary Cross-Entropy} (y^{\text{binary}}, y_{\text{binary}})$

$L_{\text{artifact}} = \text{Categorical Cross-Entropy}(y^{\text{artifact}}, y_{\text{artifact}})$

λ_1 and λ_2 are tunable weights for balancing the two tasks.

4.7 Training Protocol

- **Data Augmentation:** To improve robustness, we apply augmentations such as Gaussian blur, JPEG compression, flipping, and frame skipping.
- **Optimizer:** Adam optimizer with weight decay and learning rate scheduling.
- **Batching:** Sequences of 5–10 frames are used per sample.
- **Validation:** Early stopping and k-fold cross-validation are employed to prevent overfitting.

4.8 Interpretability and Visualization

For increased transparency and forensic utility, we employ Grad-CAM and attention heatmaps to visualize which regions contributed to the detection decision. This helps verify that the model is identifying manipulation-prone areas rather than being biased by irrelevant background.

4.9 Advantages of the Proposed Hybrid Approach

- **Spatial + Temporal Fusion:** Ensures that images have detailed features in every frame as well as true to time records.
- **Interpretability:** Classification of both attention and artifacts helps make findings understandable and trackable by authorities.
- **Robust Generalization:** Created to manage a wide range of transformation and finishing steps.
- **Multi-Task Output:** Enables both detection and detailed forensic insights.

5. DATASETS AND EXPERIMENTAL SETUP

It describes the datasets relied on for training and evaluation, together with the procedures used to compare the hybrid deep learning approach. Many benchmarks have been used to test our approach and guarantee accurate classification of all kinds of artifacts.

5.1 Datasets

We picked varied and extensively-used datasets that have many kinds of artificial alterations to succeed in high detection and artifact-level benchmarking. Videos have their own individual features like resolution, how they were altered and the degree of compression artifacts.

5.1.1 Face Forensics++

- **Description:** Face Forensics++ consists of a range of original videos and their false versions, building a big dataset for facial forgery detection.
 - Deepfakes
 - Face2Face
 - Face Swap
 - Neural Textures
- **Resolution:** The image is cropped to 256×256 resolution faces.
- **Compression Levels:** You can find the copy of this file in raw, low compression (C23) and high compression (C40) formats.
- **Usage:** Applied for the training of systems and for classifying artifacts thanks to its different types of forgeries.

5.1.2 DFDC (Deep Fake Detection Challenge Dataset)

- **Description:** FB released the DFDC along with their AI and it contains a library of around 100,000 videos that look very real and are affected by many post-processing and compression tricks.
- **Diversity:** Included are different people, lighting environments, ethnic groups and effects.
- **Usage:** Used for cross-dataset evaluation and to test the generalization capabilities of the model.

5.1.3 Celeb-DF v2

- **Description:** An improved version of Celeb-DF with high-quality deepfakes generated using refined encoder-decoder architectures.
- **Challenge:** Contains fewer visible artifacts, making detection more difficult.
- **Usage:** Used for fine-tuning and benchmarking under subtle forgery conditions.

5.1.4 GAN Generated Datasets (StyleGAN, ProGAN)

- **Description:** These datasets consist of AI-generated facial images created using GANs such as StyleGAN and ProGAN.

- **Usage:** Used primarily for artifact-level benchmarking. These samples allow the model to learn specific GAN-induced artifacts and differentiate them from real faces.

5.2 Data Preprocessing

- **Frame Extraction:** Video frames were extracted at 5 fps for temporal modeling efficiency.
- **Face Detection and Alignment:** MTCNN was used to detect and align faces before cropping to 224×224 pixels.
- **Normalization:** Pixel values normalized to $[0,1]$ or standardized using ImageNet statistics.
- **Augmentation:** Random flipping, blurring, compression, and color jittering applied to improve robustness.

5.3 Training and Validation Setup

- **Hardware Configuration:**
 - GPU: NVIDIA RTX 3090 (24GB)
 - Framework: PyTorch 2.0
 - Batch Size: 16 sequences
 - Learning Rate: $1e-4$ (with cosine annealing scheduler)
 - Epochs: 50–100 depending on convergence
- **Training Strategy:**
 - **Split:** 70% training, 15% validation, 15% testing
 - **Loss Balancing:** Weighted sum of binary and categorical losses
 - **Early Stopping:** Based on validation loss with a patience of 10 epochs
 - **Checkpoints:** Best models saved based on F1-score on validation set

5.4 Evaluation Metrics

To assess the performance of the model across both detection and artifact-level classification, we use the following metrics:

Binary Classification Metrics

- **Accuracy**
- **Precision, Recall, and F1-score**
- **AUC-ROC (Area Under ROC Curve)**

Artifact-Level Classification Metrics

- **Top-1 Accuracy**
- **Top-3 Accuracy**
- **Confusion Matrix**
- **Macro and Weighted F1-scores**

These metrics provide insight into both the general performance and the forensic capabilities of the model.

5.5 Cross-Dataset Evaluation

To verify generalization, we conducted **cross-dataset experiments**, training on one dataset (e.g., FaceForensics++) and testing on another (e.g., Celeb-DF or DFDC). This evaluation helps assess model robustness against dataset bias and overfitting.

5.6 Ablation Studies

To understand the contribution of each component, we performed ablation studies by removing one module at a time.

Table 1 Ablation Study Results Showing the Impact of Model Components on Binary and Artifact Classification Accuracy.

Configuration	Binary Accuracy	Artifact Accuracy
Full Model (CNN + LSTM + Attention)	92.8%	87.4%
Without LSTM (no temporal modeling)	88.3%	79.5%
Without Attention	89.1%	80.6%
Without Artifact Head	91.0%	—

These studies confirm that each module especially the attention and LSTM layers significantly enhances performance.

6. RESULTS AND DISCUSSION

In this section, we present the experimental results obtained using the proposed hybrid deep learning architecture across various datasets. The analysis covers performance in terms of both deepfake detection and artifact-level classification. Furthermore, we provide visual

insights and discuss the strengths and limitations of our approach in comparison to state-of-the-art methods.

6.1 Binary Deepfake Detection Performance

We evaluated the binary classification capability of our model (real vs. fake) across three benchmark datasets using standard metrics.

Table 2 Binary Detection Results.

Dataset	Accuracy	Precision	Recall	F1-Score	AUC-ROC
Face Forensics++	94.7%	95.1%	94.2%	94.6%	0.972
Celeb-DF v2	91.3%	92.0%	90.1%	91.0%	0.954
DFDC	88.9%	89.6%	88.0%	88.8%	0.938

The model performs robustly across datasets, especially in controlled settings like FaceForensics++. Performance slightly degrades in more challenging, real-world datasets like DFDC, but remains competitive.

6.2 Artifact-Level Classification Performance

The model's ability to identify the source or type of manipulation is crucial for forensic analysis. We trained the artifact classification head using four common manipulation categories: DeepFake, FaceSwap, Face2Face, and NeuralTextures.

Table 3 Artifact-Level Classification (FaceForensics++)

Class	Precision	Recall	F1-Score
DeepFake	87.9%	86.4%	87.1%
FaceSwap	85.6%	84.8%	85.2%
Face2Face	89.0%	88.5%	88.7%
NeuralTextures	86.5%	85.1%	85.8%

The artifact classification head effectively distinguishes between manipulation techniques, which enhances forensic traceability.

6.3 Comparison with Baseline Methods

We compared our method against several baseline models:

- **XceptionNet (binary only)**

- **MesoNet**
- **CNN+LSTM without attention**
- **Two-stream network (RGB + frequency)**

Table 4: Comparison on FaceForensics++ (C23)

Method	Binary Accuracy	Artifact Accuracy
XceptionNet	89.3%	—
MesoNet	84.2%	—
CNN + LSTM	90.8%	80.1%
Two-stream Network	91.5%	82.4%
Proposed Method	94.7%	86.8%

The proposed hybrid architecture outperforms other approaches across both tasks, indicating the effectiveness of combining spatial, temporal, and attention-based modules.

6.4 Attention Heatmaps and Artifact Visualization

To interpret model decisions, we used Grad-CAM to visualize feature importance and attention maps. The results show strong activation in regions where deepfake artifacts are commonly found—mouth edges, eye contours, and forehead alignment.

Example: In FaceSwap forgeries, attention peaks were concentrated on blending seams around the jaw and ears. For DeepFake manipulations, the model focused on inconsistent shading near the mouth and cheeks.

These visualizations confirm that the model is learning to detect manipulation-relevant cues rather than background bias.

6.5 Ablation Study Summary

As shown in Section 4.6, removing the LSTM or attention layers degraded performance significantly. This reaffirms the importance of modeling both spatial and temporal inconsistencies. The artifact head also enhances the model's multi-functional capability without compromising detection accuracy.

6.6 Discussion and Insights

Strengths

- **High Accuracy:** Combines CNN, LSTM, and attention mechanisms to achieve state-of-the-art performance.

- **Multi-Task Output:** Simultaneously delivers binary classification and artifact-level insights.

- **Interpretability:** Attention maps improve transparency, aiding forensic decision-making.

Limitations

- **Computation Overhead:** LSTM and attention modules increase model complexity.
- **Limited to Predefined Artifacts:** The artifact classifier is bounded by known manipulation categories.
- **Generalization to Newer Techniques:** Like all supervised methods, performance may degrade on unseen deepfake generation techniques.

6.7 SUMMARY

The proposed hybrid architecture achieves a strong balance between detection accuracy and forensic interpretability. It significantly outperforms baseline models on multiple datasets and demonstrates excellent capabilities in both spatial artifact localization and temporal inconsistency modeling.

7. CONCLUSION AND FUTURE WORK

The increasing sophistication of deepfake generation techniques poses a significant threat to the integrity of digital media, necessitating the development of intelligent and explainable detection systems. In this paper, we presented a **hybrid deep learning architecture** that integrates **CNN-based spatial analysis**, **LSTM-based temporal modeling**, and an **attention mechanism** to identify deepfake content and classify the type of artifact present.

Key Contributions

- **Hybrid Architecture:** Our approach combines the strengths of convolutional and recurrent models to exploit both intra-frame artifacts and inter-frame inconsistencies, offering a comprehensive forensic solution.
- **Dual-Head Output:** The model is designed not only for binary classification (real vs. fake) but also for detailed artifact-level classification, enabling improved interpretability and manipulation traceability.
- **Attention-Based Artifact Localization:** By incorporating spatial attention, our model can emphasize regions most likely to contain manipulation cues, providing valuable visual explanations for forensic experts.

- **Extensive Evaluation:** We validated the proposed framework on benchmark datasets such as FaceForensics++, Celeb-DF v2, and DFDC, achieving state-of-the-art performance in both detection and artifact classification tasks.

The results demonstrate the effectiveness of our architecture in real-world conditions, particularly when faced with compressed, low-resolution, or subtle manipulations. The model generalizes well across different manipulation methods and datasets and is robust to a wide range of post-processing variations.

7.1 FUTURE WORK

Despite promising results, several areas offer potential for further research and enhancement:

1. Adaptation to Emerging Deepfake Techniques:

With the rapid evolution of generative models (e.g., StyleGAN3, DALL·E-based video synthesis), future work will focus on developing continual learning strategies to adapt the model to novel manipulation types without retraining from scratch.

2. Lightweight and Real-Time Implementation:

The current architecture, while accurate, is computationally intensive. We aim to develop a lightweight variant using knowledge distillation or model pruning to enable real-time deployment on edge devices and mobile platforms.

3. Unsupervised and Few-Shot Learning:

Supervised training requires large labeled datasets, which may not always be available for new forgery types. Future research will explore self-supervised and few-shot learning techniques to reduce dependency on labeled data.

4. General-Purpose Forensic Toolkit:

We envision integrating the model into a broader forensic toolkit that includes source tracking, forgery localization, and tampering timeline estimation, turning the system into a comprehensive solution for digital media verification.

5. Bias Mitigation and Fairness:

Deepfake detectors can exhibit demographic bias (e.g., lower accuracy on minority groups). We plan to explore fairness-aware training objectives and more inclusive datasets to ensure unbiased performance.

6. Integration with Blockchain and Watermarking:

In the context of media authenticity, we propose integrating detection with proactive watermarking or blockchain-based content verification pipelines, thereby combining detection with prevention.

9. REFERENCES

1. N. A. S. Eldien, R. E. Ali, and F. A. Moussa, “Real and fake face detection: A comprehensive evaluation of machine learning and deep learning techniques for improved performance,” in IEEE MTT-S Int. Microw. Symp. Dig., Jul. 2023, pp. 315–320.
2. Y. Zhu, C. Zhang, J. Gao, X. Sun, Z. Rui, and X. Zhou, “High-compressed deepfake video detection with contrastive spatiotemporal distillation,” Neurocomputing, vol. 565, Jan. 2024, Art. no. 126872.
3. A. Gandhi and S. Jain, “Adversarial perturbations fool deepfake detectors,” in Proc. Int. Joint Conf. Neural Netw. (IJCNN), Jul. 2020, pp. 1–8.
4. M. M. El-Gayar, M. Abouhawwash, S. S. Askar, and S. Sweidan, “A novel approach for detecting deep fake videos using graph neural network,” J. Big Data, vol. 11, no. 1, p. 22, Feb. 2024.
5. O. B. Newton and M. Stanfill, “My NSFW video has partial occlusion: Deepfakes and the technological production of non-consensual pornography,” Porn Stud., vol. 7, no. 4, pp. 398–414, Oct. 2020.
6. W.-D. Zhou, L. Dong, K. Zhang, Q. Wang, L. Shao, Q. Yang, Y.-M. Liu, L.-J. Fang, X.-H. Shi, C. Zhang, R.-H. Zhang, H.-Y. Li, H.-T. Wu, and W.-B. Wei, “Deep learning for automatic detection of recurrent retinal detachment after surgery using ultra-widefield fundus images: A single-center study,” Adv. Intell. Syst., vol. 4, no. 9, Sep. 2022, Art. no. 2200067.
7. A. M. Almars, “Deepfakes detection techniques using deep learning: A survey,” J. Comput. Commun., vol. 9, no. 5, pp. 20–35, 2021.
8. X. Chang, J. Wu, T. Yang, and G. Feng, “DeepFake face image detection based on improved VGG convolutional neural network,” in Proc. 39th Chin. Control Conf. (CCC), Jul. 2020, pp. 7252–7256.
9. Y. Fu, T. Sun, X. Jiang, K. Xu, and P. He, “Robust GAN-face detection based on dual-channel CNN network,” in Proc. 12th Int. Congr. Image Signal Process., Biomed. Eng. Informat. (CISP-BMEI), Oct. 2019, pp. 1–5.

10. N.-T. Do, I.-S. Na, and S.-H. Kim, “Forensics face detection from GANs using convolutional neural network,” in Proc. ISITC, 2018, pp. 376–379.
11. F. F. Kharbat, T. Elamsy, A. Mahmoud, and R. Abdullah, “Image feature detectors for deepfake video detection,” in Proc. IEEE/ACS 16th Int. Conf. Comput. Syst. Appl. (AICCSA), Nov. 2019, pp. 1–4.
12. J. Parmar, S. Chouhan, V. Raychoudhury, and S. Rathore, “Open-world machine learning: Applications, challenges, and opportunities,” ACM Comput. Surv., vol. 55, no. 10, pp. 1–37, Oct. 2023.
13. B. Bayar and M. C. Stamm, “A deep learning approach to universal image manipulation detection using a new convolutional layer,” in Proc. 4th ACM Workshop Inf. Hiding Multimedia Secur., Jun. 2016, pp. 5–10.
14. B. Chesney and D. Citron, “Deep fakes: A looming challenge for privacy, democracy, and national security,” Calif. L. Rev., vol. 107, p. 1753, Jan. 2019.
15. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 770–778.
16. O. A. Montesinos López, A. Montesinos López, and J. Crossa, “Fundamentals of artificial neural networks and deep learning,” in Multivariate Statistical Machine Learning Methods for Genomic Prediction. Cham, Switzerland: Springer, 2022, pp. 379–425.
17. X. Wu, D. Hong, J. Chanussot, Y. Xu, R. Tao, and Y. Wang, “Fourier- based rotation-invariant feature boosting: An efficient framework for geospatial object detection,” IEEE Geosci. Remote Sens. Lett., vol. 17, no. 2, pp. 302–306, Feb. 2020.
18. C. Clarke, J. Xu, Y. Zhu, K. Dharamshi, H. McGill, S. Black, and C. Lutteroth, “FakeForward: Using deepfake technology for feedforward learning,” in Proc. CHI Conf. Hum. Factors Comput. Syst., Apr. 2023, pp. 1–17.
19. S. Solaiyappan and Y. Wen, “Machine learning based medical image deepfake detection: A comparative study,” Mach. Learn. Appl., vol. 8, Jun. 2022, Art. no. 100298.
20. S. Tufail, H. Riggs, M. Tariq, and A. I. Sarwat, “Advancements and challenges in machine learning: A comprehensive review of models, libraries, applications, and algorithms,” Electronics, vol. 12, no. 8, p. 1789, Apr. 2023.
21. P. Theerthagiri and G. B. Nagaladinne, “Deepfake face detection using deep InceptionNet learning algorithm,” in Proc. IEEE Int. Students’ Conf. Electr., Electron. Comput. Sci. (SCEECS), Feb. 2023, pp. 1–6.

22. R. Chauhan, “Deep learning-based methods for detecting generated fake faces,” Authorea Preprints, 2023.
23. D. AbdElminaam, N. Sherif, Z. Ayman, M. Mohamed, and M. Hazem, “DeepFakeDG: A deep learning approach for deep fake detection and generation,” *J. Comput. Commun.*, vol. 2, no. 2, pp. 31–37, Jul. 2023.
24. M. A. Arshed, S. Mumtaz, M. Ibrahim, C. Dewi, M. Tanveer, and S. Ahmed, “Multiclass AI-generated deepfake face detection using patch- wise deep learning model,” *Computers*, vol. 13, no. 1, p. 31, Jan. 2024.
25. F. M. Salman and S. S. Abu-Naser, “Classification of real and fake human faces using deep learning,” *Tech. Rep.*, 2022.
26. J. C. Neves, R. Tolosana, R. Vera-Rodriguez, V. Lopes, H. Proença, and J. Fierrez, “GANprintR: Improved fakes and evaluation of the state of the art in face manipulation detection,” 2019, arXiv:1911.05351.
27. Z. Zhang, Z. Lei, M. Omura, H. Hasegawa, and S. Gao, “Dense- dritic learning- incorporated vision transformer for image recognition,” *IEEE/CAA J. Autom. Sinica*, vol. 11, no. 2, pp. 539–541, Feb. 2024.
28. H. M. T. Khushi, T. Masood, A. Jaffar, S. Akram, and S. M. Bhatti, “Performance analysis of state-of-the-art CNN architectures for brain tumour detection,” *Int. J. Imag. Syst. Technol.*, vol. 34, no. 1, Jan. 2024, Art. no. e22949.
29. E. Hassan, M. S. Hossain, A. Saber, S. Elmougy, A. Ghoneim, and G. Muhammad, “A quantum convolutional network and ResNet (50)- based classification architecture for the MNIST medical dataset,” *Biomed. Signal Process. Control*, vol. 87, Jan. 2024, Art. no. 105560.
30. H. Wang and L. Ma, “Image generation and recognition technology based on attention residual GAN,” *IEEE Access*, vol. 11, pp. 61855–61865, 2023.
31. S. Duan, W. Pan, Y. Leng, and X. Zhang, “Two ResNet mini architectures for aircraft wake vortex identification,” *IEEE Access*, vol. 11, pp. 20515–20523, 2023.
32. C. Chen and B. Li, “An interpretable channelwise attention mechanism based on asymmetric and skewed Gaussian distribution,” *Pattern Recog- nit.*, vol. 139, Jul. 2023, Art. no. 109467.
33. H. Koushal, R. Kaur, and C. K. Dhaliwal, “Machine Learning for Mental Health : Assessing Teen Depression and Anxiety Risk Factors,” *Cureus J. Comput. Sci.*, 2025.