esearch
«“'b\‘l <

2026 Volume: 02 Issue: 01 WWW.I|rpa.com issn24s6-9995 Review Article

%@é ¢ International Journal Research Publication Analysis

A ——
IJRPA

xernatiop, /
A\ JO(’

Page: 01-34

Al BASED JOB RECOMMENDATION APP

*Hemachandran S. B.

Bachelor of Technology in Artificial Intellegence and Machine learning Sri Shakthi Institute of
Engineering and Technology, Anna University: Chennai 600025.

Article Received: 05 December 2025 *Corresponding Author: Hemachandran S. B.
Avrticle Revised: 25 December 2025 Bachelor of Technology in Artificial Intellegence and Machine Learning Sri Shakthi
Published on: 13 January 2026 Institute of Engineering and Technology Anna University: Chennai 600025.

DOI: https://doi-doi.org/101555/ijrpa.4295

ABSTRACT

The Al-Driven Career Intelligence and Job Recommendation Platform is a mobile-first,
cloud-enabled system that transforms how job seekers discover opportunities and close skill
gaps through personalized, Al-powered guidance. Traditional job search tools surface generic
listings and provide limited insight into how a candidate’s background aligns with role
requirements. This platform addresses those limitations by combining sophisticated Al
search, natural language understanding, and resume analysis to deliver contextualized job
matches and actionable career advice. Job opportunities are discovered and indexed using an
Al search layer that normalizes and enriches listings with semantic metadata—skills,
experience levels, salary bands, and role specializations—enabling accurate matching against
user profiles. Users create rich profiles and upload resumes (PDF/DOCX); an LLM-driven
resume analyzer extracts skills, projects, education, and experience, storing structured
representations for fast comparison. Bookmarked jobs act as a curated portfolio: the system
performs a multi-job skill-gap analysis to compute match scores, prioritize missing
competencies, and generate targeted learning recommendations with estimated effort,
resources, and project ideas. Architecturally, the platform follows modular service principles:
a Node.js/Express backend exposes RESTful APIs for profile management, job indexing,
bookmarking, and Al analysis; Supabase/Postgres provides persistent storage (including
JSONB fields for flexible resume analysis), while the React Native frontend (Expo) delivers a
responsive, offline-friendly UX using AsyncStorage and intelligent caching. Security and
reliability are enforced via authenticated endpoints, input validation, rate limiting for Al calls,
and resilient error handling. By integrating Al-driven discovery with personalized, resume-

aware guidance, the platform moves beyond passive job listings to a proactive career

Copyright@ Page 1

https://doi-doi.org/101555/ijrpa.4295
http://www.ijrpa.com/

International Journal Research Publication Analysis

development tool—helping candidates discover relevant roles, understand precise gaps, and
follow prioritized learning paths that improve employability and accelerate career

progression.

CHAPTER 1 INTRODUCTION

In contemporary job markets, job discovery and career development remain fragmented
across multiple platforms that surface generic listings with limited personalization. Job
seekers often face difficulty finding roles that align with their precise skills, experience, and
career goals, while employers struggle to connect with suitably qualified candidates. This
conventional approach produces inefficiencies, missed opportunities, and an unclear path for
upskilling—creating demand for an intelligent system that unifies role discovery with
personalized career guidance.

The Al-Based Job Recommendation Platform addresses these gaps by providing a unified,
mobile-first solution that couples contextual job discovery with resume-aware, Al-powered
career recommendations. Rather than relying on simple keyword matching, the system uses
an Al search layer to normalize and enrich job listings with semantic metadata (skills,
experience bands, specialties, salary ranges) and a resume analysis pipeline to extract
structured candidate profiles from uploaded PDFs/DOCX. Bookmarked jobs serve as a
curated set for multi-role comparison: the platform computes match scores, identifies missing
competencies, and generates prioritized, actionable learning recommendations—complete
with estimated effort, curated resources, and practical project ideas.

Architecturally, the platform adopts a modular, service-oriented design to ensure scalability
and maintainability. A Node.js/Express backend exposes RESTful APIs for user/profile
management, job indexing, bookmarking, and Al analysis, while Supabase (Postgres)
provides persistent storage with JSONB fields for Al-derived resume data. The React Native
frontend (Expo) delivers an offline-friendly, responsive experience using AsyncStorage and
intelligent caching. Al capabilities are provided via an LLM-based service (Gemini), used
for resume parsing, skill extraction, and skill-gap analysis. Security, reliability, and
performance are enforced through authenticated endpoints, input validation, rate limiting for
Al calls, database indexing, and multi-level caching strategies.

By integrating Al-driven discovery with resume-aware guidance and persistent bookmarking,
the platform transforms the job search from passive browsing into proactive career planning.
It empowers users to discover relevant roles, understand precise gaps, and follow prioritized

learning paths that increase employability—bridging the gap between current capabilities and

Copyright@ Page 2

International Journal Research Publication Analysis

target positions through data-driven, personalized recommendations.

CHAPTER 2 LITERATURE REVIEW

The literature on intelligent job recommendation and career-assistance platforms highlights
persistent shortcomings of conventional job search systems—keyword-based matching,
fragmented candidate signals (resume text, skills lists, application history), and limited
guidance on how candidates can bridge gaps. Early recommender systems applied
collaborative filtering and simple content-based matching; more recent work emphasizes
hybrid approaches that combine semantic content models with behavioral signals to improve
relevance and personalization.

Semantic search and embedding-based retrieval have become central to modern job
discovery. Studies show that dense vector embeddings (sentence/document encoders) and
nearest-neighbor search outperform lexical matching for role-to-profile similarity by
capturing synonyms, paraphrases, and implicit skill mentions. Research also demonstrates
value in enriching job and candidate representations with extracted structured attributes
(skills, seniority, technologies) before matching—an approach reflected in this project’s
resume parsing and job enrichment pipeline

Large language models (LLMs) and specialized NLP pipelines are increasingly used for
resume parsing, skill extraction, and generation of actionable guidance. Empirical work finds
LLMs effective at extracting entities and generating human-readable recommendations, but
warns about hallucinations and inconsistent formats; robust prompt design, JSON-constrained
outputs, and validation layers mitigate these risks. This project follows those best practices by
using templated prompts and JSON parsing in the Al controller and exposing Al endpoints
consumed by the frontend

Skill-gap analysis research often couples per-job parsing (requirements extraction) with
candidate profile embeddings to compute match scores and prioritize missing competencies.
Evaluation studies report that multi-job aggregation (analyzing bookmarked sets) yields more
actionable learning priorities than single-role comparisons because frequency and cross-role
importance surface naturally. The project implements multi-job comparison and prioritized
recommendations in the bookmarks Al workflow

System design literature stresses modular, service-oriented architectures for Al-driven
platforms. Separating concerns—indexing/search, profile management, Al analysis, and Ul—
enables independent scaling, reproducible pipelines, and safer experimentation. Techniques

such as JSONB storage for flexible Al outputs, background jobs for long-running Al tasks,

Copyright@ Page 3

International Journal Research Publication Analysis

rate limiting for model calls, and multi-level caching (frontend AsyncStorage + backend
cache) are recommended; these patterns appear in the project architecture (profile storage and
Al endpoints in the backend, frontend caching in AsyncStorage).

Privacy, fairness, and robustness are recurring themes. Studies document risks from biased
training data and recommend transparency (explainable recommendations), user control
(resume edits, opt-outs), and secure handling of sensitive PIl (encrypted transport, least
privilege keys). The project’s design accounts for these concerns via authenticated endpoints,
file-type/size checks on resume uploads, and controlled Al prompts—areas to monitor and
harden further during deployment

For Al guidance, human expert validation is advised to calibrate model suggestions and
ensure recommended learning resources are realistic and high quality. Incorporating these
evaluation loops will strengthen the platform’s reliability and user trust.

In summary, the convergent findings across the literature support the platform’s hybrid
approach: semantic Al search and embeddings for discovery, structured resume parsing and
JSON-safe Al outputs for analysis, multi-job aggregation for prioritized learning
recommendations, and modular engineering patterns for scalability and safety. Continued
attention to evaluation, bias mitigation, and secure handling of resume data will be critical for

real-world impact.

CHAPTER 3

SYSTEM ANALYSIS

3.1. EXSISTING SYSTEM:

The existing job recommendation and career-assistance landscape is fragmented and largely
dominated by disparate portals and minimalistic matching engines that rely on keyword or
rule-based filters. Candidate signals—resumes, skill lists, application history, and
bookmarks—are often stored and processed in isolated silos or as unstructured files,
preventing robust, profile-aware matching and cross-role analysis. Resume handling is
typically superficial: files are saved as blobs or URLs without structured parsing, so
comparisons between a candidate’s qualifications and job requirements remain shallow and
error-prone. Recommendation logic is mostly lexical (keyword matching) or simple
heuristics, resulting in low relevance, duplicate listings, and poor prioritization of skills for
upskilling.

User experience suffers from inconsistent state persistence, limited offline support, and brittle

Copyright@ Page 4

International Journal Research Publication Analysis

navigation flows that cause data reloads or empty listings when users navigate between
screens. Bookmarking and saved-job workflows are ad-hoc, lacking reliable deduplication,
centralized analytics, or multi-job comparison features that could produce actionable learning
plans. System-level shortcomings include limited observability, minimal Al governance, and
no standardized schema for enriched job or resume metadata (e.g., normalized skill
taxonomies, JSONB resume analysis). Security and operational controls are often basic or
missing—file uploads, Al calls, and sensitive profile data are not consistently validated,
rate-limited, or audited—reducing reliability and trust.

Consequently, the current systems do not support persistent, resume-aware recommendations,
prioritized skill-gap analysis, nor seamless, Al-driven career guidance; they are inadequate
for delivering personalized, actionable pathways that help users close gaps and improve

employability.

Proposed System:

The proposed system is an Al-driven, cloud-native career intelligence platform that unifies
job discovery, resume analysis, and personalized upskilling guidance under a single
interoperable framework. Built on a modular microservices architecture (Node.js/Express
backend, Gemini LLM service for Al analysis, Supabase/Postgres for persistent storage with
JSONB for flexible Al outputs), the system performs semantic job indexing via an Al search
layer, structured resume parsing, and bookmark-driven multi-job skill-gap analysis.
Advanced NLP and embedding techniques normalize job and profile metadata (skills,
seniority, location, salary bands) to enable precise matching and prioritized
recommendations. The mobile frontend (React Native/Expo) offers responsive,
offline-friendly UX with AsyncStorage caching and focus-aware refresh; role-aware
dashboards present bookmarked jobs, match scores, and Al-generated learning plans.
Operational concerns—authenticated endpoints, file validation for resume uploads, rate
limiting for Al calls, structured JSON outputs to avoid hallucinations, and database
indexing—ensure security, reliability, and scalability. By combining Al search,
resume-aware analysis, and actionable learning recommendations, the system converts
passive job listings into a proactive career development tool that improves relevance, reduces

friction, and accelerates employability.

Copyright@ Page 5

International Journal Research Publication Analysis

System Requirements:

« Functional Requirements:

e User management

o Signup/sign in via Supabase Auth (email/password, third-party optional).

o Profile CRUD: name, location, experience, skills, preferences.

e Resume management

o Upload resume (PDF/DOCX), validate type/size, store secure URL in profiles.

o Parse resume text and store structured analysis (skills, experience, education)
in profiles.resume_text and profiles.resume_analysis (JSONB).

e Job ingestion & indexing (Al search)

o Index job listings via Al search/enrichment layer (extract skills, seniority, location, salary
band, description embeddings).

o Provide endpoints to search/filter jobs by keywords, skills, location, specialization, salary.

o Bookmarks

o Bookmark/unbookmark job (persist to bookmarks table with UNIQUE(user _id, job_id)).

o Get bookmarks, get bookmark count, check bookmark status.

e Job details & persistence

o Ensure job details load by job db-id (UUID) and persist state on navigation.

o When bookmarking or opening a job not yet stored, store job in DB first and return DB
UUID.

e Al skill-gap analysis

o Multi-job analysis comparing profiles.resume_analysis vs bookmarked jobs; return per-job
match %, missing skills, prioritized recommendations.

o Use Gemini API key from .env for LLM calls.

e Ul features

o Dashboard (suggested/recent jobs), job-search, job-details, bookmarks (third tab), profile
with resume upload and Al results.

o Bookmark icon toggle persists and highlights across pages.

o See All/View All shows full set (no arbitrary slice).

o Search bar queries DB (not just cached data).

o Pull-to-refresh, offline cache via AsyncStorage, focus-aware reload using useFocusEffect.

o Administrative / maintenance

Copyright@ Page 6

International Journal Research Publication Analysis

o Migration scripts for DB columns and bookmarks table.

o Logging endpoints and health check.

e Non-Functional Requirements:

e Security & privacy

o Authenticate all protected endpoints via Supabase JWT.

o Enforce file validation and size limit (e.g., <IOMB).

o Store GEMINI_API_KEY in backend .env (do not expose to frontend).

o Use HTTPS/TLS in production; use row-level security for Supabase where needed.
o Performance & scalability

o APl latency targets: <300ms for simple queries; Al tasks async with progress (10-30s).
o Support concurrent users (scale Node services horizontally; DB connection pooling).
o Caching: backend cache TTL and frontend AsyncStorage for instant loads.

o Reliability & availability

o Graceful degradation: show cached data if Al or search is unavailable.

o Retry/backoff for external Al calls; circuit breaker for excessive failures.

e Maintainability & observability

o Modular services: separate Al controller/service, jobs controller, bookmarks controller.
o Structured logs, request tracing, error reporting (Sentry or similar).

o Usability & accessibility

o Responsive React Native Ul; clear states for loading/error/empty.

o Accessible labels for buttons/icons; readable fonts and color contrast.

o Dataquality

o Deduplicate skills (case-insensitive) on frontend and backend.

o Validate job and resume data before storage; normalize skill taxonomy where possible.
e Costs

o Optimize Al calls (batching, caching) to limit Gemini usage and costs.

o Feasibility Analysis:

o Technical Feasibility:

Proven stack (Node.js, Express, Supabase/Postgres, React Native, Gemini LLM). Resume
parsing and skill extraction achievable via LLM + regex, with prompt tuning to reduce errors.
Multi-job analysis feasible using aggregated requirements and embedding similarity.

Copyright@ Page 7

International Journal Research Publication Analysis

o Operational Feasibility:

Requires APl key and quota management, plus background processing for long Al tasks.
Supabase simplifies database and authentication management.

o Economic Feasibility:

Moderate development and hosting cost; Al usage costs can be optimized through caching,
batching, and rule-based fallbacks.

o Legal & Privacy Feasibility:

Resume storage must follow privacy laws; user consent, data deletion, and export options are

mandatory.

e Problems in the Existing System:

o Low Relevance Search: Keyword-based matching ignores context, synonyms, and semantic
similarity.

o Unstructured Resume Data: Resumes stored as raw files or URLs without parsing hinder
accurate job matching.

o Poor State Management: Navigation causes data loss; listings vanish due to inconsistent
caching.

o Duplicate Data Issues: Duplicate skills, jobs, and bookmarks appear across Ul and database.
o Weak Al Reliability: No centralized Al service, rate limiting, or proper error handling for
model failures.

o Stale Backend Cache: Cached data not refreshed dynamically, requiring manual reloads.

o No Actionable Insights: Missing skill-gap and learning path recommendations based on

resumes.

3.2. PROPOSED METHOD:

The proposed system is an Al-first, Career Intelligence Platform that unifies job discovery,
resume-aware matching, and personalized upskilling guidance in a single interoperable
framework. It relies on a modular microservices architecture (Node.js / Express for APIs, a
dedicated Gemini LLM service for semantic enrichment and analysis, and Supabase/Postgres
for persistent storage with JSONB fields for flexible Al outputs). Job opportunities are indexed
by an Al search layer that generates embeddings and semantic metadata (skills, seniority, salary
band, role specializations), enabling accurate, context-aware matching against structured user
profiles derived from parsed resumes (PDF/DOCX). Bookmarked jobs constitute the user’s
curated set for multi-role skill-gap analysis: the system computes per-job match scores,

Copyright@ Page 8

International Journal Research Publication Analysis

aggregates missing competencies, and generates prioritized, actionable learning
recommendations (learning time, curated resources, project ideas).

The mobile frontend (React Native / Expo) provides an offline-friendly UX (AsyncStorage
caching, focus-aware reload) with intuitive screens for Dashboard, Job Search, Bookmarks (Al
recommendations), and Profile (resume upload & analysis). Security and governance include
Supabase Auth (JWT), file validation and size limits for resume uploads, rate-limiting for Al
endpoints, and structured JSON outputs to reduce LLM hallucinations. Operational features—
background tasks for long-running Al jobs, multi-level caching, database indexing, and clear
observability/logging—ensure performance and reliability. This architecture converts passive
job listings into a proactive career development tool that helps users find relevant roles,
understand skill deficits, and follow prioritized learning paths to improve employability.

Features of the proposed system

e Al Search & Semantic Indexing: LLM-driven embedding and metadata extraction for
role normalization and precise matching.

e Resume Parsing & Structured Storage: PDF/DOCX parsing — resume text +
resume_analysis (JSONB) stored in profiles.

« Bookmark-driven Skill-gap Analysis: Multi-job aggregation producing match %, missing
skills, prioritized learning plans.

o Persistent, Responsive Ul: AsyncStorage caching, useFocusEffect reloads, instant
navigation and offline access.

e Secure Resume Upload: File-type/size validation, authenticated endpoints, sensitive data
controls.

e Scalable Microservices: Clear separation of indexing, Al, job, and profile services for
independent scaling and maintenance.

e Reliability & Cost Controls: Background processing for Al, caching and batching to
reduce LLM usage and latency.

e Observability & Governance: Structured logging, rate-limiting, input validation, and
JSON-schema validation for Al outputs.

o Extensible APIs: REST endpoints for jobs, bookmarks, profiles, and Al analysis (ready for
integration or future GraphQL support).

Copyright@ Page 9

International Journal Research Publication Analysis

3.3. ADVANTAGES OVER THE EXISTING SYSTEM

Unified Candidate and Job Representation

Unlike fragmented job portals, the proposed platform consolidates user profiles, resumes,
bookmarks, and job metadata into a single standardized representation, enabling consistent,

accurate comparisons and eliminating siloed data workflows.

Al-Driven Resume Parsing and Enrichment
Automated resume analysis extracts structured skills, projects, and experience from uploaded
documents and normalizes job requirements, replacing manual parsing and superficial keyword

matching used in legacy systems.

Contextual, Multi-Job Skill-Gap Analysis
The system performs aggregated comparisons across a user’s bookmarked roles to compute
match scores, surface recurring missing competencies, and produce prioritized learning plans—

moving beyond single-role heuristics to actionable career guidance.

Personalized, Semantic Matching
Semantic matching (embeddings and contextual understanding) yields more relevant job
recommendations than lexical filters, capturing synonyms, implied skills, and seniority nuances

that keyword systems miss.

Automated, Actionable Recommendations
Instead of passive lists, the platform generates prioritized learning recommendations with
estimated effort, curated resources, and project ideas—helping users close gaps and track

progress toward roles.

Improved Data Quality and Deduplication
Centralized validation and deduplication (skills, bookmarks, job entries) prevent inflated counts

and inconsistent records, ensuring analytics and counts reflect true user intent.

Scalable, Cost-Conscious Al Usage
Al operations are batched, cached, and performed asynchronously where needed to balance
responsiveness and cost, avoiding per-request overhead that makes LLM-driven features

impractical in naive implementations.

Copyright@ Page 10

International Journal Research Publication Analysis

Extensibility and Maintainability

A modular design separates indexing, profile management, bookmarking, and Al analysis so
features can evolve independently, enabling incremental improvements without disrupting user
workflows. In short, the proposed solution replaces ad-hoc, keyword-centric job discovery with a
unified, resume-aware, Al-driven career guidance platform that delivers higher relevance, clearer

actionability, and a more reliable user experience.

CHAPTER 4 SYSTEM SPECIFICATION

This chapter outlines the technical and functional specifications of the Al-Based Job
Recommendation Platform. It details the architectural design, core modules, system
requirements, and technologies used to implement resume-aware matching, bookmark-driven

skill-gap analysis, and Al search.

User Authentication & Access Control

e Roles: End User (job seeker), Admin, Support/Moderator, Al Worker

e Authentication: Supabase Auth (JWT) for user sign-in / sign-up; token validation for
API access

e Session & Secrets: Secure session handling, short-lived tokens, Gemini API key and
service keys stored in backend and not exposed to client

e Privacy controls: User controls for resume upload/delete and consent for Al analysis

Data Ingestion & Processing Pipeline

e Job discovery: Al search/enrichment layer accepts job feeds or API input, generates
semantic metadata and embeddings (no direct scraping asserted)

« Job storage zones:

o Raw/ Ingested: raw job payloads (audit trail)

o Enriched: normalized job metadata (skills, seniority, location, salary-band, embeddings)
o Indexed: search/embedding index for fast retrieval

e Message broker & background tasks:

o Redis + BullMQ (or RabbitMQ) for background jobs (resume parsing, async Al analysis,
indexing)

o Background workers perform long-running LLM calls and DB writes

e Caching:

o Backend cache (Redis) for frequent queries and Al results (TTL configurable)

Copyright@ Page 11

International Journal Research Publication Analysis

o Frontend cache (AsyncStorage) for instant UX and offline resilience

Al / ML Module

e LLM service:

o Uses Gemini (APl key) for resume parsing, skill extraction, and skill-gap
recommendation

o Prompt templates, JSON-constrained outputs, and schema validation to reduce
hallucinations

o Embeddings & semantic search:

o Generate embeddings for jobs and profile summaries; use vector index (e.g., Redis
Vector, Milvus, or Pinecone) for similarity search

o Skill-gap algorithms:

o Compare resume_extracted_skills vs job_required_skills

o Compute per-job match percentage, aggregate missing skills, rank by frequency/priority
o Generate actionable recommendations (learning time, resources, projects)

o Safety & governance:

o Output validation with JSON Schema

o Rate limiting, retry/backoff for external LLM calls

o Optional human-in-loop validation for recommendations

Core Modules & Endpoints

e Profiles

o CRUD profile, skills deduplication, resume upload endpoint

o Columns: resume_url, resume_text (text), resume_analysis (JSONB)
e Jobs

o Store jobs with normalized metadata and embeddings

e Observability & Admin

o Health check, metrics, admin analytics endpoints

Metadata & Storage Management

e Primary DB: PostgreSQL (Supabase) with JSONB fields for flexible Al outputs

e Search & vector store: Redis Vector / Milvus / Pinecone for embeddings

o File storage: secure object store (Supabase storage or S3/MinlO) for resumes and logos

e Indexes: user_id, job_id, created_at, and relevant GIN indexes on JSONB fields for fast

Copyright@ Page 12

International Journal Research Publication Analysis

queries
e Backups & migration: migration scripts for schema changes (resume columns,

bookmarks table), regular DB backups

Visualization & Client Access

o Frontend (mobile): React Native (Expo) for iOS/Android apps

o Screens: Dashboard, Job Search, Job Details, Bookmarks (Al recommendations), Profile
(resume upload)

o UX: pull-to-refresh, focus-aware reloads (useFocusEffect), offline cache
(AsyncStorage)

e APl access:

o RESTful endpoints for all core functions

o Optional future GraphQL layer for aggregated queries and client efficiency

Security & Governance

e Transport: HTTPS/TLS for all endpoints

e Secrets: Gemini api key and service role keys kept server-side only

o File validation: accept only PDF/DOCX, enforce size limit (e.g., 10MB)

o Data protection: access controls for resume text, user-initiated delete/export options
e Audit & logging: audit trails for uploads, Al analysis requests, bookmark actions

« Rate limiting & quotas: per-user and per-endpoint throttling for Al calls

o Compliance: configurable data retention and deletion policies to support regulatory needs

Maintainability & Scalability

e Architecture:

o Modular microservices (indexing/search service, profile service, Al worker service, jobs
service)

o Containerized with Docker; deployable to Kubernetes for horizontal scaling

o CI/CD: GitHub Actions for build/test

e Observability: Prometheus metrics, Grafana dashboards, centralized logs (ELK/Sentry),
distributed tracing (Jaeger)

e Testing: unit, integration, and e2e tests; mock Al responses for ClI stability

Copyright@ Page 13

International Journal Research Publication Analysis

System Requirements

Server Configuration (example baseline)

e« CPU: 4 vCPUs (min), 8+ vCPUs recommended for production Al workers
e RAM: 8 GB (min), 16-32 GB recommended for workers and search nodes
o Disk: 200 GB SSD (min) + object storage for resumes/media

e Network: 1 Gbps for backend services

Client Configuration

Device: Modern smartphone (i0S/Android) or tablet
OS: i0S 13+ / Android 9+

« Network: Recommended stable internet for Al features; offline features available for

cached data

Software Requirements

e Backend: Node.js (14+), Express.js, BullMQ (Redis), Supabase/Postgres

e Al: Gemini API (LLM), vector store (Redis Vector / Milvus / Pinecone)

o Frontend: React Native (Expo), AsyncStorage, react-navigation

o DevOps: Docker, Kubernetes (optional), GitHub Actions, Helm

e Monitoring: Prometheus, Grafana, Jaeger, Sentry

o Databases & Storage: PostgreSQL (Supabase), Redis, Object store (S3/MinlO or

Supabase storage)

Performance & Reliability Targets

e API latency: <300ms for simple queries; Al analysis handled asynchronously (expected
10-30s)

e Cache TTLs: configurable (default 30 minutes) for Al responses and popular searches

o Failure modes: degrade gracefully to cached results if Al service unavailable

This system specification provides the foundation to build a secure, scalable, and
maintainable Al-driven career intelligence platform that unifies job discovery, resume
analysis, and actionable upskilling guidance while ensuring data quality, privacy, and

operational resilience.

CHAPTER 5 PROJECT DESCRIPTION
An Al-driven mobile career intelligence platform that combines resume-aware matching,

semantic job search, and bookmark-driven skill-gap analysis to help users discover relevant

Copyright@ Page 14

International Journal Research Publication Analysis

roles and close competency gaps. Users upload resumes (PDF/DOCX) which are parsed and
stored as structured profiles; job listings are enriched with semantic metadata and
embeddings. Bookmarked jobs are analyzed against the user’s resume by an LLM (Gemini)
to compute match scores, surface missing skills, and generate prioritized learning

recommendations with resources and project ideas.

Key capabilities:

e Resume upload and Al parsing — structured resume_analysis (JSONB)

e Semantic job indexing and personalized job feeds

« Bookmark persistence with deduplication and count metrics

e Multi-job skill-gap analysis producing prioritized recommendations

e Secure, scalable backend (Node.js + Supabase/Postgres), React Native frontend with
offline caching, and LLM integration (Gemini) for Al tasks

The platform converts passive job discovery into actionable career planning by delivering

personalized insights that guide learning and improve employability.

Objectives:

« To enable secure and structured resume management — allowing users to upload
resumes (PDF/DOCX), parse content, and store normalized resume analyses with extracted
skills, education, and experience.

» To develop an Al-driven skill extraction and job indexing system — leveraging
Gemini LLM for semantic parsing, metadata generation, and embedding-based job search.

« To implement intelligent job recommendation and skill-gap analysis — comparing
user resumes against bookmarked jobs to compute match percentages, identify missing skills,
and suggest personalized learning paths.

« To ensure seamless and responsive mobile experience — delivering an optimized
React Native interface with offline caching, instant bookmark toggles, and persistent user
state.

« To maintain high data quality and system security — through skill deduplication,

strict input validation, Supabase JWT authentication, and secure key management.

+ To optimize performance, scalability, and cost-efficiency — using caching,
asynchronous Al processing, and batch request handling to reduce latency and API expenses.

« To enable observability, maintainability, and continuous improvement — with

Copyright@ Page 15

International Journal Research Publication Analysis

structured logging, performance metrics, automated migrations, and CI/CD readiness for

ongoing evaluation and iteration.

System Overview:

The system is an Al-first, mobile-centric Career Intelligence Platform that integrates resume
parsing, semantic job indexing, bookmarking, and multi-job skill-gap analysis into a
cohesive, production-ready architecture.

Data Ingestion Layer

e Al Search Ingest: Accepts job feeds, partner APIs, and manual job posts; an Al
enrichment layer normalizes descriptions and extracts semantic metadata (skills, seniority,
location, salary band).

e Resume Ingest: Secure file upload (PDF/DOCX) pipeline that forwards files to resume
parsing workers.

Processing & Standardization Layer

e NLP & ETL pipelines transform raw job text and resume text into normalized artifacts:
canonical skill tokens, experience-level tags, and structured JSONB resume_analysis.

« Validation stages remove duplicates, normalize casing, and enforce schema for Al
outputs (JSON Schema).

Al/ML Analytics Layer

e Resume Parsing & Entity Extraction: LLM-based service (Gemini) converts resume text
— skills, projects, experience, education.

e« Embeddings & Semantic Search: Generate vector embeddings for jobs and profile
summaries; vector index enables nearest-neighbor retrieval for matching.

e Skill-Gap & Recommendation Engine: Compares parsed resume vs bookmarked job
requirements to compute match%, missing skills, and prioritized learning recommendations.

o Safety Controls: Prompt templates, JSON constraints, schema validation, retry/backoff,
and optional human-in-loop verification.

Metadata & Storage Layer

e Primary DB: PostgreSQL (Supabase) with JSONB fields for resume_analysis and job
enrichment.

e Vector Store: Redis Vector / Milvus / Pinecone for embedding search.

e Object Storage: Supabase storage / S3 / MinlO for resume files and logos.

o Caching: Redis for backend caches; AsyncStorage for frontend offline cache.

e Indexes: GIN on JSONB and B-tree on user/job keys for performant queries.

Copyright@ Page 16

International Journal Research Publication Analysis

Visualization & Access Layer

e Mobile Frontend: React Native (Expo) delivering Dashboard, Job Search, Job Details,
Bookmarks (Al recommendations), and Profile (resume upload).

o UX Features: Pull-to-refresh, focus-aware reloads, offline caching, and instant bookmark
toggles.

e APIs: REST endpoints for jobs, profiles, bookmarks, and Al workflows; optional
GraphQL for aggregated queries.

Modules Description

Authentication & Access Control Module

e Supabase Auth (JWT) for authentication; role-based controls for admin and support
operations; secure server-side storage of GEMINI_API_KEY and service keys.

Data Quality Control (QC) Module

o Deduplication, schema validation, and data hygiene rules applied to skills and job
metadata; QC metadata persisted with versioning.

AIl/ML Processing Module

o Dedicated Al worker services for resume parsing, embedding generation, and skill-gap
analysis; manages async jobs with Redis/BullMQ workers and exposes status endpoints.
Data Governance Module

e JSONB provenance, audit logs for uploads and Al calls, configurable retention/deletion
policies, and export/delete options for user data.

Visualization & Reporting Module

e Mobile Ul components for aggregated insights and per-job breakdowns; exportable
recommendations and simple progress tracking for learned skills.

APl & Integration Module

e REST endpoints, webhook support for ingestion partners, and background indexing
pipelines for enrichment and embedding updates.

Technologies Used

e Backend: Node.js, Express, Redis, BullMQ

e Frontend: React Native (Expo), AsyncStorage

e Al/LLM: Gemini (LLM), embeddings via vector store (Redis Vector / Milvus /
Pinecone)

o Database & Storage: PostgreSQL (Supabase) + JSONB, Supabase/S3 for object storage

e Caching & Queueing: Redis, BullMQ

Copyright@ Page 17

International Journal Research Publication Analysis

o DevOps: Docker, Kubernetes (optional), GitHub Actions

e Observability: Prometheus/Grafana, Sentry/Jaeger

Technologies Used:

Backend Node.js, Express

Frontend (mobile) React Native (Expo), AsyncStorage

Al/LLM Google Gemini (via API), prompt templates, JSON-
schema validation

Vector store / Semantic Search Redis Vector / Milvus / Pinecone (one of these as
vector index)

Database & Storage Supabase (Postgres + JSONB), Supabase Storage for
resumes

Caching Redis (backend cache), AsyncStorage (frontend
cache)

Authentication & Authorization Supabase Auth (JWT), role-based access controls

File handling & Validation PDF/DOCX validation, server-side file upload
handling (object store)

APl & Integration RESTful APIs (jobs, profiles, bookmarks, Al),
webhooks for partners

Dev utilities dotenv (.env), migration scripts, JSON Schema for
Al outputs

System Architecture

e Presentation Layer: Mobile client (React Native) consumes REST APIs and caches
results locally.

e Application Layer: Modular microservices (profiles, jobs, bookmarks, Al workers)
expose clear REST endpoints and run background tasks for long Al jobs.

o Data Layer: Relational store for authoritative records, JSONB for flexible Al outputs,
and a vector store for semantic search.

e This separation enables independent scaling, isolated failure domains, and targeted
optimization of Al workloads.

Security Features

e TLS everywhere; server-side secret management for GEMINI_API_KEY.

e Authenticated endpoints, RBAC for admin actions, file-type/size validation on uploads.

o Rate limiting and quotas on Al endpoints; audit logs for Al requests and resume access.

e JSON Schema validation for Al responses to prevent malformed or misleading outputs.
Scalability and Deployment

o Containerized services (Docker) deployable to Kubernetes for horizontal scaling.

o Background workers scale independently to handle CPU/latency-intensive Al tasks.

Copyright@ Page 18

International Journal Research Publication Analysis

o Multi-level caching (frontend AsyncStorage, Redis backend) reduces latency and LLM
call volume.

e CI/CD pipelines for safe rollouts and automated migrations for DB schema changes.

This overview captures the end-to-end design: secure resume ingestion — Al parsing —
semantic job enrichment — bookmark-driven analysis — actionable recommendations

delivered via a resilient mobile UX.

5.1. Working

The AIl-Driven Career Intelligence Platform operates through a layered workflow that
automates end-to-end job discovery, resume ingestion and parsing, and personalized skill-gap
recommendations. An Al search layer normalizes and enriches job listings, secure resume
uploads are parsed by LLM-based workers to produce structured profiles, and a vectorized
matching + recommendation engine compares bookmarked roles against the user’s resume to
generate prioritized learning plans. Background workers handle long-running Al tasks, multi-
level caching preserves fast and persistent UX, and authenticated APIs provide traceability

and auditability—ensuring seamless, transparent, and scalable career guidance.

Data Ingestion & Acquisition

e Job data enters via partner feeds, APIs, and manual postings; an Al search/enrichment
layer normalizes incoming descriptions and extracts semantic metadata (skills, seniority,
location, salary band).

e Users upload resumes (PDF/DOCX) through a secured endpoint; files are stored in
object storage and queued for parsing by background workers.

Data Standardization & Transformation

e Resume and job text are transformed by NLP pipelines into canonical tokens: normalized
skills, experience levels, project items, and structured JSONB records.

e Deduplication, case normalization, and schema validation are applied; normalized
records and embeddings are written to the enriched/indexed storage tier for fast retrieval.
Al/ML-Driven Processing & Analysis

e LLM-based services (Gemini) perform resume parsing, skill extraction, requirement
parsing, and generation of JSON-constrained recommendations using prompt templates and
schema validation.

o Embeddings are generated for jobs and profile summaries and stored in a vector index;

the skill-gap engine compares resume_extracted skills against bookmarked job requirements

Copyright@ Page 19

International Journal Research Publication Analysis

to compute match percentages, missing skills, and prioritized learning plans.

e Long-running Al tasks run asynchronously via a job queue with status endpoints and
retry/backoff logic to handle transient failures.

Metadata & Governance Management

e Structured Al outputs, provenance metadata, and audit logs are persisted in Postgres
(JSONB) and linked to user records; bookmarks are stored with UNIQUE(user _id, job_id) to
prevent duplicates.

e Access control uses JWT-based authentication; sensitive keys (GEMINI_API_KEY) are
server-side only, and user data deletion/export is supported for privacy compliance.
Visualization & Analytics

e« Mobile Ul (React Native) renders dashboards for suggested jobs, bookmarked jobs,
per-job match scores, and learning recommendations; Ul indicates bookmark state
persistently across pages.

e Visual elements include match percentage bars, prioritized skill lists, and
resource/project suggestions; progress and analysis statuses are shown for async Al jobs.
Data Access & Interoperability

e« REST APIs expose profile, jobs, bookmarks, and Al analysis endpoints; Al endpoints
accept jobld arrays for multi-job aggregation and return JSON-validated recommendations.

e Webhooks or partner API integrations enable external ingestion and result delivery;
vector search endpoints support semantic queries from the client.

Monitoring & Logging

e System metrics, job-queue status, and Al call usage are tracked (Prometheus/Grafana or
hosted equivalents); structured logs record resume uploads, Al requests, and bookmark
operations for audit and debugging.

o Rate limiting and quota monitoring protect LLM usage; failures degrade gracefully to
cached results.

Deployment & Scalability

e Services are modular (API, Al worker, indexing, background queue) and containerized
for horizontal scaling; background workers scale independently for CPU-intensive Al tasks.

e Multi-level caching (frontend AsyncStorage, Redis backend) reduces latency and LLM
calls; CI/CD pipelines and migration scripts manage safe rollouts.

User Interaction & Output

o Userssign in, upload a resume, browse suggested jobs, and bookmark roles; bookmarking

Copyright@ Page 20

International Journal Research Publication Analysis

persists immediately and highlights until manually toggled off.
o From Bookmarks, users can trigger to run aggregated skill-gap analysis; results present
match scores, missing/prioritized skills, estimated learning effort, curated resources, and

suggested practice projects.

Auth / Sign in & Sign up

o Purpose: Authenticate users and obtain JWT for protected API calls.

o Key components: Supabase Auth flow, token storage, auth gate for app.

o APIs: Supabase Auth endpoints; local token refresh.

o UX notes: Simple email/password with persistence; redirect to Dashboard after sign-in.
Dashboard (Home)

o Purpose: Landing view with personalized job suggestions, recent activity, and quick

actions.

o Key components: Suggested jobs feed, recent searches, bookmark count badge.

o UXnotes: Loads cached data from AsyncStorage instantly, refreshes in background.
Job Search

o Purpose: Discover roles via query, filters, and sorting with semantic relevance.
o Key components: Search bar (debounced), filters (location, experience, specialization),
paginated list.

o UX notes: Debounced queries, infinite scroll, bookmark toggle on cards.

e Job Details

o Purpose: Show full job description, requirements, and actions (bookmark, apply).

o Key components: Description, extracted skills, company info, salary, apply/bookmark
buttons.

o UXnotes: Ensure job persisted before bookmarking; optimistic Ul for bookmark toggle.
o Bookmarks

o Purpose: Central place for saved jobs and Al-driven fit analysis for those jobs.

o Key components: Bookmarked list, total count, “Analyze My Fit” button, Al
Recommendations panel.

o UX notes: Async analysis with progress Ul; results show per-job match %, missing
skills, prioritized suggestions.

e Profile

o Purpose: User profile management and resume upload / Al analysis center.

Copyright@ Page 21

International Journal Research Publication Analysis

o Key components: Profile fields (name, location, skills), resume upload (PDF/DOCX),
parsed resume summary.

o UX notes: Validate file type/size client-side, show parsed skills and allow re-run of
analysis.

o Specializations / Explore

o Purpose: Browse role categories or domains (Data Science, DevOps, Design) to discover
focused feeds.

o Key components: Category cards, curated lists, filter by specialization.

o UX notes: Useful for targeted job discovery and bookmarking.

5.2: Block Diagram and Explanation

st gt
rhen

Figure5.2.1: Block Diagram.

5.2.2 ONBOARDING PAGE
. Y o
in ﬁ
<0
Find your suitable Get the internship Get the opportunities
internship now to your nearest from multiple media

location
(©— ©@ O —0 © —Q

Figure 5.2.2: Onboarding Page

Copyright@ Page 22

International Journal Research Publication Analysis

5.2.3 LOGIN PAGE

Sign up

Please sign up to create a new account

Signin

Please sign in to your registered account

s N

/o \
| |

\\/ﬂ ‘/
(8 Email)) _
CB Email)

C@] Password ’-‘)
(@ Password @)
G ...

Forgot Password? Reset here

Or sign in with

Or sign up with
[Google] [(£)]
[Google] [[£]]
Don‘'t have an account? Sign up Already have an account? Sign in

Figure 5.2.3: Login Page.

5.24 DETAILS FILLING PAGE

Education Personal
+ Skills and
Details Details A i
Competencies
Name
Degree skills
- N k(", Name ‘ -
[Q BEBIECH J / [Python, ML, DL, ... ~
L
Date of Birth
stream/Major Areas of Interests
[8 102000 |
(E Computer Science w AN J [SDE, Cloud Engineer, ... ~
J :
Gender
Institute Name ~ Interests (Technical Domains)
\ ‘ T Male v
r @ sriShakthi Institute J [MLOps, Generative Al,... ~ j
Email
Year Of Graduation ~ Experience
| B example@gmail.com j -
(B 202 j \ (0-3yrs v)
Mobile No)
CGPA - ~ Preferred City
| % 0123456789 |
[& 822 | / Coimbatore

District

State
Location
(Select vj [smem v)
(©® Coimbatore, Tamil Nadu w
.

Figure 5.2.4: Details Filling Page

Copyright@ Page 23

International Journal Research Publication Analysis

5.2.5 DASHBOARD PAGE

M le S Boack -
Hello! Srmith =

Let s Find a new jois
Suitable for you

e T [Re——
sSuggested Jobs sao an
- = -
Froduct Desigmer Product
Appas sne Appae dne
- P — PR -

Recent Jobs wewan
J— WU Developer
— = eoogee = mongolees
=¥ Custormer Service
—— Data ancalytics
1 S relorcmoit | sy

L\ I v

= mcioE e

- = = =

Figure 5.2.5: Dashboard Page.

5.2.6 JOB LISTING PAGE

Design

—
-

UI/UX Designer

Google inc - California, USA

Design Full time Senior designer

BISK

_—
av

Lead Designer
Dribbble inc - California, USA

Design Full time Senior designer

$20K

o

UX Researcher
Twitter inc . California, USa

Design Full time Senior designer

$12K

n ‘a (=)

Figure 5.2.6: Job listing page

Copyright@ Page 24

International Journal Research Publication Analysis

5.2.7 JOB DETAILS PAGE

ul/ux Designer

Google e Bangalore e 1dayago

Google e - 1 day ago

+ Follow 2 visit website

Sed ut perspiciatis unde omnis iste natus error sit
voluptatern accusantium doloremque laudantium,
totam rem cperiam, eaque ipsa quae ab illo inventore Job Description
veritatis et quasi architecto beatae vitae dicta sunt
explicabo.

Sed ut perspiciatis unde omnis iste natus error sit
voluptatem accusantium doloremque laudantium,
totam rem aperiam, eaque ipsa quae ab illo inventore
at

At vero eos et accusamus et iusto odio dignissimos
entium voluptatum de!
atque corrupti quos dolores et quas

niti

ducimus qui blanditiis prae

veritatis et quasi architec

© beatae vitae dicta s

explicabo
Website At vero eos et acc
ducimus qul bianditiis prae:
atque corrupti quos dolore

samus et iusto odio dignissimos

hteg

sntium voluptatum deles
s et quas

Industry

Internet product

skills Required

Head office At vero eos et accusamus et iusto odio dignis
Mountain View, California, Amerika Serikat ducimus qui blanditiis praesentium voluptatum deleniti
Type salary
Multinational company S20K/Montn
since
Location
1908
Bangalore
Speciatization
Search technology, Web computing, Software Period
and Oniine advertising 2 Months

Company Gallery
“
+5 pictures

o TSN

Figure 5.2.7: Job Details Page

5.2.8 BOOKMARKS PAGE

Bookmarks @9 L)

e =
1 o -

saved Jobs Applied Match Rate

[= -y

DevOps Engineer -
Capgemini - Coimbatore, Tamil MNadu

et - tirre

EIN - TTC

% Al Career Recommendations

SGet persor zed insights on how well your ski matckh
these joks VO MR AT T I P ronet
- A e Sl Gap

I

Figure 5.2.8: Bookmark Page.

Copyright@ Page 25

International Journal Research Publication Analysis

5.29 PROFILE PAGE

My Profile

User
lifeatsrishakthistudentO7 @gmail.com

(=) About Me 4+ o~
i=n Education & Career +
7 Skills & Interests +
[Z2] Resume & Al Analysis +

Figure 5.2.9: Profile Page.

5.2.10 CONFIRMATION AND PASSWORD MANAGEMNT PAGE

) Successfully
.
check YOUI‘ EmCI II Fo rg Ot Pussword . Your password has been updated, please change your
We have sent the reset password to the email To reset your password, you need your email or password regularly to avoid this happening
address brandonelouis@gmial.com mobile number that can be authenticated
=< A\ Q ‘)

Email

‘OPEN YOUR EMAIL
BACK TO LOGIN ‘ _ “

‘ BACK TO LOGIN ‘

You have not received the email? Resend (
BACK TO LOGIN

Figure 5.2.10: Confirmation and Password management Page

CHAPTER 6 VALIDATION AND TESTING
6.1 VALIDATION:
Validation and testing are integral to ensure the Career Intelligence & Job Recommendation

Platform operates accurately, securely, and reliably. The validation process targets data

Copyright@ Page 26

International Journal Research Publication Analysis

integrity, Al output correctness, API security, and end-user experience under realistic
conditions.

Validation Techniques Used

o Data Ingestion Validation

o All incoming job feeds and partner API payloads pass schema validation (required fields:
title, description, location, postedAt, skills) before enrichment.

o Resume uploads (PDF/DOCX) are validated for MIME type and size limits (e.g.,
<10MB); corrupted files are rejected and quarantined.

o Checksums and server-side file validation ensure upload integrity.

e Metadata & Standardization Validation

o Normalized job and profile metadata (canonical skill tokens, seniority tags) are validated
against controlled vocabularies and JSON Schema.

o Deduplication routines and casing normalization run client- and server-side to prevent
duplicate skills or job entries.

e AI/ML Model & LLM Output Validation

o LLM prompts enforce JSON-constrained outputs; responses are validated against JSON
Schema before persistence.

o Embedding generation and vector indexing are sanity-checked (dimension, non-NaN).

o Automated checks detect improbable recommendations (e.g., recommending beginner
resources for senior roles) and flag them for review.

e APl & Access Control Validation

o Automated API tests (Postman / supertest) verify request/response shapes, status codes,
input validation, and error handling.

o RBAC and JWT validation tests ensure endpoints restrict actions appropriately (profile
edit, admin analytics).

o Penetration checks for common API attacks (injection, malformed payloads).

o Data Pipeline & Workflow Validation

o Background job workflows (resume parse, async Al analysis) validated end-to-end; retry
and dead-letter handling tested.

o Cache invalidation and focus-aware reload flows tested to ensure Ul consistency after
navigation.

e File & Object Storage Validation

o Object storage entries validated for path integrity, access permissions, and checksum

Copyright@ Page 27

International Journal Research Publication Analysis

correctness.

o Resume retrieval and reprocessing tested for idempotency.

e Session, Authentication & Encryption Validation

o Token lifecycle tests (issue, expiration, refresh) and replay-attack checks.

o All communications validated to run over TLS in staging/production.

o Secrets (GEMINI_API_KEY) confirmed server-side only.

e Ul & UX Validation

o Component tests ensure bookmark toggle, optimistic Ul, and highlight state behave
consistently across job cards and job details.

o Resume upload, parsed summary display, and "Analyze My Fit" flows validate correct
states (loading, error, completed).

o Performance & Reliability Validation

o Load tests validate API latency under concurrent users and check LLM call backpressure
behavior.

o Cost-control checks validate batching/caching reduce duplicate LLM invocations.

6.2 TESTING:

A layered testing strategy verifies units, integrations, systems, models, and user acceptability.
e Unit Testing

o Backend: Jest / Mocha tests for controllers, validators, DB access (mocked).

o Frontend: Jest/React Testing Library for components (bookmark button, job card, profile
forms).

o Al helpers: prompt templates, JSON Schema validators, and skill-normalization utilities
covered by unit tests.

e Integration Testing

o Containerized integration tests exercise API — DB — object store flows (resume upload
— analyze — store resume _analysis).

o Background worker integration: enqueue job, worker processes LLM call (mocked
LLM), result persisted and status updated.

e System Testing

o End-to-end scenarios emulate user journeys (signup — upload resume — bookmark jobs
— analyze bookmarks — view recommendations).

o Monitoring of latency, queue lengths, error rates via observability stack during tests.

e Model & LLM Validation

Copyright@ Page 28

International Journal Research Publication Analysis

o Offline evaluation of extraction templates using labeled resumes; metrics: extraction
precision/recall, entity F1.

o Skill-gap heuristics validated on held-out job/resume pairs; spot checks for hallucinations
and plausibility.

o Drift detection: monitor recommendation quality and trigger retrain or prompt
adjustments.

e Manual & Exploratory Testing

o QA verifies edge cases: very long resumes, multilingual resumes, jobs with minimal
descriptions, intermittent network.

o UXreviewers validate clarity of recommendations, resource links, and privacy controls.

e User Acceptance Testing (UAT)

o Beta testers validate usefulness of recommendations, match accuracy, and overall flow;
feedback cycles used to refine prompts, Ul copy, and error handling.

e Regression & CI Testing

o CI pipeline runs unit + integration tests and lints on every PR; mocks used for LLM-
dependent tests to keep Cl stable.

o Nightly regression suite covers critical user flows and Al response schema validation.

7.1 MERITS:

CHAPTER 7 MERITS AND DEMERIT

Personalized matching: resume-aware comparisons produce job recommendations tailored to
a user’s actual skills and experience rather than simple keyword matches.

e Actionable guidance: bookmark-driven multi-job analysis yields prioritized, practical
learning steps (skills, resources, project ideas).

e Enhanced discoverability: semantic/embedding-based job indexing captures synonyms
and context, improving relevance over lexical search.

o Data quality & consistency: client+server deduplication and normalized skill tokens
reduce noise and duplicate records.

e Persistent, responsive UX: frontend caching and focus-aware reloads preserve state
across navigation and support offline access.

« Reliable bookmark workflows: referential integrity (store job before bookmark) and
UNIQUE constraints prevent duplicate bookmarks and count errors.

e Asynchronous Al handling: background workers and status endpoints keep Ul

Copyright@ Page 29

International Journal Research Publication Analysis

responsive while long LLM tasks run safely.

o Cost and latency control: batching, caching, and async processing minimize unnecessary
LLM calls and operational cost.

e Security & privacy controls: server-side API keys, authenticated endpoints, file-type/size
validation, and audit logging protect sensitive resume data.

o Extensible architecture: modular services (indexing, Al, profile, bookmarks) enable
independent scaling and future feature additions.

e Observability & maintainability: structured logs, metrics, and migration scripts support
debugging and safe deployments.

e Measurable impact: explicit metrics (match accuracy, analysis latency, bookmark usage)
enable iterative improvement and validation.

7.2 DEMERITS

e Heavy dependency on LLM (Gemini): cost, rate limits, and availability may affect
features (resume analysis, skill-gap).

e LLM hallucination risk: Al may produce incorrect or misleading recommendations;
requires prompt validation and human review (backend/src/controllers/aiController.js).

o Latency for Al tasks: long running analyses can degrade UX unless reliably handled
async with status updates (bookmarks analysis in frontend/app/bookmarks.tsx).

e Privacy and compliance concerns: storing parsed resume text (PIl) increases regulatory
and security burden; needs strict access controls and retention policies (resume
fields/migration backend/migrations/add_resume_columns.sql).

o Cost and scaling of vector/embedding store and LLM calls: production scale may require
additional budget and engineering (batching/caching essential).

« Partial test coverage for Al flows: LLM-dependent logic needs robust unit/integration
tests and mocked Al responses for CI.

e Operational complexity: background workers, queues, and retries add maintenance
overhead and failure modes (resume/job ingest + async Al).

o Data quality dependence on input text: poor or multilingual resumes and sparse job
descriptions yield low-quality recommendations.

e Potential for duplicate or transient job IDs: must persist jobs before bookmarking to
avoid FK errors (route/order and storage assumptions).

e Mobile performance limits: large lists, images, and frequent Al calls can increase

bandwidth and battery usage; caching and pagination required.

Copyright@ Page 30

International Journal Research Publication Analysis

e Security surface: server must protect GEMINI_API_KEY and ensure file validation
(PDF/DOCX) and anti-abuse rate limits are enforced.
e Migration & backward compatibility: DB schema changes (resume_analysis column)

require careful rollout and migration scripts to avoid downtime.

CHAPTER 8 FUTURE SCOPE

e Recruiter & Employer Portal

Introduce a dedicated dashboard for employers to post jobs, manage candidates, and discover
anonymized talent profiles. Backend routes and admin Ul can be implemented to support
recruiter-specific workflows and analytics.

e One-Click Apply & ATS Integration

Enable seamless job applications directly from the app, automatically forwarding user data to
external Applicant Tracking Systems (ATS) or employer webhooks through secured API
endpoints.

e Application Tracking System (ATS)

Implement in-app application tracking to display job application history, current status, and
updates through notifications. Extend existing job and bookmark models to support tracking
and analytics.

e Multi-Resume & Profile Versioning

Allow users to maintain multiple resume versions and select a preferred one for each job
application. Store these variations as structured JSONB arrays in the profile schema.

e Resume Redaction & Privacy Controls

Integrate automated redaction tools to remove personally identifiable information (PII) such
as phone numbers or emails before sharing resumes with recruiters. Offer user-controlled
export options for anonymized sharing.

e Anonymized Candidate Search for Recruiters

Provide privacy-preserving candidate discovery using vector embeddings for skill-based
similarity without exposing PII. Implement this via redacted vector search endpoints and
recruiter-facing interfaces.

e Human-in-the-Loop Review Mechanism

Introduce an admin moderation layer where Al-generated recommendations can be reviewed
or approved before being shown to users, ensuring higher accuracy and ethical Al

governance.

Copyright@ Page 31

International Journal Research Publication Analysis

e Explainable Al Recommendations

Enhance transparency by including evidence snippets or extracted context behind each Al
suggestion (e.g., skill extraction source lines), stored in the resume_analysis JSONB field and
displayed in the Ul.

e Scheduled & Batch Bookmark Analysis

Automate re-evaluation of bookmarked jobs at scheduled intervals using background workers
(Redis + BullMQ). This ensures updated skill-gap analyses as new jobs or resume updates

occur.

e Webhooks & Partner Integrations

Support external integrations through webhook endpoints for job feed ingestion and result
delivery to partner systems, expanding the platform’s ecosystem connectivity.

e Multi-Language Resume Parsing

Extend resume parsing capabilities to support multiple languages using enhanced Gemini
LLM prompts and localized rule-based extraction fallbacks.

e Portfolio & Document Integration

Allow users to link GitHub repositories, personal websites, or project portfolios for richer
skill profiling. Extract repository metadata such as languages, technologies, and
contributions.

e Export, Import & Reporting Features

Provide options to export or import user data, analysis results, and bookmarks in CSV/JSON
formats for compliance (GDPR) and personal recordkeeping.

e Notifications & Scheduling

Add push notifications and email summaries for important events such as Al analysis
completion, new matching jobs, or recruiter responses, integrated with Expo push and
background schedulers.

e Operational & Cost Optimization Dashboards

Develop monitoring dashboards to visualize LLM usage, API costs, and model fallback rates.
Implement adaptive batching and caching mechanisms to balance performance with cost

efficiency.

CHAPTER 9 CONCLUSION
The project delivers an Al-driven Job recommendation app that unifies resume parsing,

semantic job indexing, bookmark-driven skill-gap analysis, and prioritized learning

Copyright@ Page 32

International Journal Research Publication Analysis

recommendations into a single, scalable system. Implemented features include secure resume
upload and JSONB resume analysis, LLM-based parsing and recommendations (Gemini),
vectorized semantic matching, persistent bookmark workflows with deduplication, async Al
processing, and an offline-friendly React Native client. The architecture emphasizes
modularity, security, observability, and cost controls (caching, batching), making it ready for
staged deployment and iterative improvement. With validated core flows and clear
migration/admin procedures, the platform is positioned to improve job relevance and user
employability while accommodating future enhancements such as course integrations,

explainability, and enterprise-grade privacy controls.

REFERENCE

1. Google Makersuite — Generative Al & Gemini APl Google Cloud /
Makersuite. https://makersuite.google.com/app/apikey

2. Supabase Documentation — Auth, Storage, and Postgres (JSONB).
Supabase. https://supabase.com/docs

3. React Native (Expo) Documentation. Meta /
Expo. https://reactnative.dev/ & https://docs.expo.dev/

4. Node.js & Express.js Documentation. Node.js Foundation /
Express. https://nodejs.org/ & https://expressjs.com/

5. PostgreSQL Documentation (JSONB). The PostgreSQL Global Development
Group. https://www.postgresql.org/docs/

6. Redis & BullMQ (background jobs). Redis Labs / OptimalBits
BullMQ. https://redis.io/ & https://docs.bullmg.io/

7. Vector Search & Embeddings — Milvus / Pinecone / Redis Vector (product
docs). https://milvus.io/ https://www.pinecone.io/ https://redis.io/docs/stack/search/

8. JSON Schema — Validation best practices. IETF & json-schema.org. https://json-

schema.org/

9. OWASP Top Ten — Web application security guidance. OWASP
Foundation. https://owasp.org/www-project-top-ten/
10. JWT (RFC 7519) — JSON Web Token specification.

IETF. https://datatracker.ietf.org/doc/html/rfc7519

11. MLflow — Model lifecycle & tracking. Databricks / MLflow. https://mlflow.org/

12. Prompt Engineering & LLM Safety Guidelines — Best practices (technical blogs /
papers). OpenAl & community

Copyright@ Page 33

vscode-file://vscode-app/c:/Users/chand/AppData/Local/Programs/Microsoft%20VS%20Code/resources/app/out/vs/code/electron-browser/workbench/workbench.html
vscode-file://vscode-app/c:/Users/chand/AppData/Local/Programs/Microsoft%20VS%20Code/resources/app/out/vs/code/electron-browser/workbench/workbench.html
vscode-file://vscode-app/c:/Users/chand/AppData/Local/Programs/Microsoft%20VS%20Code/resources/app/out/vs/code/electron-browser/workbench/workbench.html
vscode-file://vscode-app/c:/Users/chand/AppData/Local/Programs/Microsoft%20VS%20Code/resources/app/out/vs/code/electron-browser/workbench/workbench.html
vscode-file://vscode-app/c:/Users/chand/AppData/Local/Programs/Microsoft%20VS%20Code/resources/app/out/vs/code/electron-browser/workbench/workbench.html
vscode-file://vscode-app/c:/Users/chand/AppData/Local/Programs/Microsoft%20VS%20Code/resources/app/out/vs/code/electron-browser/workbench/workbench.html
vscode-file://vscode-app/c:/Users/chand/AppData/Local/Programs/Microsoft%20VS%20Code/resources/app/out/vs/code/electron-browser/workbench/workbench.html
vscode-file://vscode-app/c:/Users/chand/AppData/Local/Programs/Microsoft%20VS%20Code/resources/app/out/vs/code/electron-browser/workbench/workbench.html
vscode-file://vscode-app/c:/Users/chand/AppData/Local/Programs/Microsoft%20VS%20Code/resources/app/out/vs/code/electron-browser/workbench/workbench.html
vscode-file://vscode-app/c:/Users/chand/AppData/Local/Programs/Microsoft%20VS%20Code/resources/app/out/vs/code/electron-browser/workbench/workbench.html
vscode-file://vscode-app/c:/Users/chand/AppData/Local/Programs/Microsoft%20VS%20Code/resources/app/out/vs/code/electron-browser/workbench/workbench.html
vscode-file://vscode-app/c:/Users/chand/AppData/Local/Programs/Microsoft%20VS%20Code/resources/app/out/vs/code/electron-browser/workbench/workbench.html
vscode-file://vscode-app/c:/Users/chand/AppData/Local/Programs/Microsoft%20VS%20Code/resources/app/out/vs/code/electron-browser/workbench/workbench.html
vscode-file://vscode-app/c:/Users/chand/AppData/Local/Programs/Microsoft%20VS%20Code/resources/app/out/vs/code/electron-browser/workbench/workbench.html
vscode-file://vscode-app/c:/Users/chand/AppData/Local/Programs/Microsoft%20VS%20Code/resources/app/out/vs/code/electron-browser/workbench/workbench.html
vscode-file://vscode-app/c:/Users/chand/AppData/Local/Programs/Microsoft%20VS%20Code/resources/app/out/vs/code/electron-browser/workbench/workbench.html
vscode-file://vscode-app/c:/Users/chand/AppData/Local/Programs/Microsoft%20VS%20Code/resources/app/out/vs/code/electron-browser/workbench/workbench.html

International Journal Research Publication Analysis

13.

14.

15.

16.

17.

resources. https://platform.openai.com/docs/guides/prompting

React Navigation & useFocusEffect Hook (navigation lifecycle). React Navigation
Docs. https://reactnavigation.org/

AsyncStorage (React Native) — Offline caching patterns. React Native
Community. https://react-native-async-storage.github.io/async-storage/

Software Architecture Patterns — Microservices, Background Workers, Caching
(general references). Martin Fowler & cloud provider
docs. https://martinfowler.com/articles/microservices.html

Secure File Uploads — MIME/type and size validation practices. OWASP File Upload
Cheat

Sheet. https://cheatsheetseries.owasp.org/cheatsheets/File_Upload_Cheat_Sheet.html
User Experience & Mobile Performance — Pagination, optimistic Ul, and caching
patterns. Platform design guides (Google, Apple) & React Native performance

docs. https://developer.android.com/ & https://developer.apple.com/

Copyright@ Page 34

vscode-file://vscode-app/c:/Users/chand/AppData/Local/Programs/Microsoft%20VS%20Code/resources/app/out/vs/code/electron-browser/workbench/workbench.html
vscode-file://vscode-app/c:/Users/chand/AppData/Local/Programs/Microsoft%20VS%20Code/resources/app/out/vs/code/electron-browser/workbench/workbench.html
vscode-file://vscode-app/c:/Users/chand/AppData/Local/Programs/Microsoft%20VS%20Code/resources/app/out/vs/code/electron-browser/workbench/workbench.html
vscode-file://vscode-app/c:/Users/chand/AppData/Local/Programs/Microsoft%20VS%20Code/resources/app/out/vs/code/electron-browser/workbench/workbench.html
vscode-file://vscode-app/c:/Users/chand/AppData/Local/Programs/Microsoft%20VS%20Code/resources/app/out/vs/code/electron-browser/workbench/workbench.html
vscode-file://vscode-app/c:/Users/chand/AppData/Local/Programs/Microsoft%20VS%20Code/resources/app/out/vs/code/electron-browser/workbench/workbench.html
vscode-file://vscode-app/c:/Users/chand/AppData/Local/Programs/Microsoft%20VS%20Code/resources/app/out/vs/code/electron-browser/workbench/workbench.html

