

International Journal Research Publication Analysis

Page: 01-14

INTEGRATED CLIMATE PHYSICS MODELING FOR SUSTAINABLE RENEWABLE ENERGY PLANNING

*Pedda veerappa gari Nagaraju

SA (physical science), Sri Sathya Sai (dist), Andhra Pradesh.

Article Received: 21 December 2025

*Corresponding Author: Pedda veerappa gari Nagaraju

Article Revised: 09 January 2026

SA (physical science), Sri Sathya Sai (dist), Andhra Pradesh.

Published on: 29 January 2026

DOI: <https://doi-doi.org/101555/ijrpa.9186>

ABSTRACT

The high rate at which renewable energy systems are developed has escalated the necessity of comprehension of integrated planning frameworks clearly factoring in on climate variability and physical climate processes. Conventional energy planning models tend to adopt climate factors as exogenous or independent variables, which restrict such models to be able to adopt the long-term sustainability amid altering climatic conditions. The research will hypothesize a proposal of an integrated climate physics modelling to conduct sustainable renewable energy planning by integrating climate sensitive indicators and use of qualitative primary data, supportive of a statistical analysis. The study aims at capturing the impact of the dynamics of climate on renewable energy performance, planning decision and sustainability outcomes. Primary qualitative information is gathered due to the structured interviews with energy planners, climate analysts, and policy experts using elicitation of experts. These observations are coded and then statistically and decision-support analyzed to establish prevailing climate-energy interaction patterns. The suggested framework will connect climate physics variables and renewable energy planning indicators and will make a more resilient and adaptive decision-making process. The findings indicate that climate-physics consideration can be integrated with renewable energy planning to increase the resilience of the system, improve its sustainability objectives, and mitigate the risk of long-term planning. The study is a new interdisciplinary solution which helps in the gap between climate science and energy system planning and the practical advice to policymakers and planners who want to create climate-resilient renewable energy solutions in the era of uncertainty.

KEYWORDS: Integrated climate modeling; Renewable energy planning; Climate–energy interaction; Sustainable energy systems; Decision-support frameworks.

1. INTRODUCTION

The trend of having renewable energy all over the world has been the core of the sustainability development plans in an effort to curb climate change, energy security and less environmental degradation. All the renewable energy sources like solar, wind and hybrid microgeneration technologies depend on the weather conditions that are variable in terms of temperature and solar irradiance, wind movement and the frequency of occurrence of extreme weather conditions. According to recent climatic analysis, climate change is already changing renewable energy resources distributions and system stability thus bringing new uncertainties to long-term energy planning (IPCC, 2020). Consequently, sustainable renewable energy planning needs to use modeling frameworks which explicitly combine climate physics with energy system design and assessment (Lund et al., 2021).

In spite of improvements in renewable energy modeling and sustainability evaluation, the current planning methods have a number of critical limitations. Most models are based on historical averages of climate or simplified climatic assumptions, which do not represent non-linear climatic processes and future variability (Tian et al., 2024). Instead, climate risks are commonly introduced as ex post constraints instead of modeling them as integrating their physical effects onto energy system performance, undermining planners from the capability to evaluate the resilience and adaptability to diverse changing climatic contexts (Wei et al., 2024).

Moreover, the quantitative planning models based on the expert qualitative knowledge are under-researched, whereas economic, technological, and policy aspects of sustainability are actively investigated (Behera et al., 2024). To address these gaps, this study has three major objectives. To begin with, it seeks to determine important climate physics variables that contribute largely to the performance and sustainability rates of renewable energy systems. Second, the study will aim at formulating a coherent modeling framework that will use indicators of how climate dynamics can be systematically associated with renewable energy planning. Third, it seeks to determine the contribution and level of expert qualitative information to complement statistical analysis tools to improve process of decision-support in sustainable planning of renewable energy.

In an effort to realize these goals, the study takes an interdisciplinary research design that is a combination of primary qualitative data collecting research techniques and statistical and analytical modeling research. In the choice and interpretation of parameters of climate-energy interactions, expert information of climate scientists, renewable energy planners and policy stakeholders are utilized. These lessons are then incorporated into a systematic planning

framework that will help in nurturing adaptive as per climate resilient renewable energy systems. This study offers a scientifically based method of enhancing the resilience and sustainability of the decision-making process of renewable energy by incorporating climate science directly into the planning process itself.

2. Literature Review

Sustainable redeveloped renewable energy planning has a variety of literature using various disciplines, such as climate science, modeling of energy systems, sustainability assessment, and policy analysis. Recent analysis tends to agree that the renewable energy systems are highly bound up with climatic, economic and socio-political factors. Nonetheless, to a large extent, the available studies focus on these dimensions separately, which restricts the opportunities of planning frameworks to solve the problem of climate-induced uncertainty holistically. The literature review presents a critical analysis of various previous researches used in the context of climate effects, modeling of renewable energy, indicators of sustainability, and approach to integrated planning. This section selectively reviews the chosen materials in order to highlight the conceptual strengths, methodological weaknesses and unanswered research gaps that can necessitate the need to integrate climate physics modeling within the process of sustainable renewable energy planning.

The article by Behera et al. (2024) explores factors influencing environmental sustainability in OECD economies with an emphasis on the contribution of green innovation, the adoption of renewable energy, and political stability. Although the paper has presented solid econometric arguments that renewable energy is associated with sustainability outcomes, it is characterized more by macro-economic data and omits the physical climate variables in the performance of the renewable energy, thus restricting the study to the climate resilient energy planning. The study by Liu et al. (2021) investigates the connection between green finance and green total factor productive and environmental regulation in China. The research paper shows the role played by financial and regulatory mechanisms to enhance sustainable development. Nevertheless, it fails to incorporate the dynamics of climate into productivity evaluation and as such overlooks the impact of climate variability in the energy efficiency curve and the sustainability curve in the long term.

Lorente et al. (2023) determine the dynamic relatedness between the indices of climate change, the market of green financial assets, and renewable energy. Their results also indicate a high level of interdependencies and risk spillovers which gives promising data in the links in climate energy and finance. However, the research report is market-driven and fails to put

climate risk processes into a system-level decision rule and physical energy planning. Gou et al. (2022) dwell upon enhancing the agricultural systems in terms of sustainability by means of diversified planting in the arid climate conditions. The study is not energy-oriented, but it illustrates the essence of the significance of climate-adaptive planning. The weakness of this is that it is too specific to the sector, with methodological insights applied not yet being generalized to the renewable energy systems and more complex integrated climate-energy modelling environments.

Wei et al. (2024) simulate the behavior of renewable energy markets (including the case of climate risks mitigated). The work recognizes the climate uncertainty and integrates the element of risk factors in the energy planning. Nonetheless, the climate variables are handled in a statistical way and not in a physical way hence restricting the ability of the model to mirror what is really happening in climate in terms of renewable energy production. Sustainable energy systems are evaluated by Dash et al. (2024) on the multi-criteria decision-making (MCDM) models alongside self-organizing maps. Their method is good at assessing the complicated sustainability indicators. Although it has a strong methodology, the study fails to incorporate the climate physics variables directly; hence limiting its application in planning renewable energy that is sensitive to climate.

Ghenai et al. (2020) suggest sustainability indicators of the renewable energy systems based on a hybrid SWARA-ARAS model of decision making. The paper offers a sound indicator-based evaluation system. Nevertheless, it also depends on set guidelines and professional decision-making without the involvement of dynamic climatic information, which restricts flexibility in developing climatic circumstances. The authors, Tian et al. (2024), seek to understand the connection between the renewable energy manufacture and the Sustainable Development Goals. The paper is a critical on the sustainability of renewable energy noting trade-offs across SDGs. Although the concept is quite well-defined, it does not have an operational modeling framework that incorporates climate physics into the assessment of the energy system.

Lund et al. (2021) analyze the methods of modeling and simulation in renewable and sustainable energy systems. None of the obstacles recognized by the authors is related to the complexity, uncertainty, and system integration. The review does not overlook the impacts of climate, but it points at the lack of complete integration of climate physics into energy planning models as an important factor to support the necessity of interdisciplinary integration. The report by IPCC (2020) is a thorough evaluation of the effects of climate change on renewable energy supply. The report puts unequivocal knowledge that the subject

issue of climate variability influences the availability of resources and infrastructure viability. Nonetheless, it falls short of providing used modeling frameworks of combining climate physics to renewable energy planning at both operational and policy levels.

In Adeyemi-Kayode et al. (2022), the model predicts the future energy sustainability situation in a developing country scenario. There is informative analysis of scenarios in the study but due to deterministic assumptions and a small number of climate inputs, the study would be less effective in the climate uncertainty problem and long-term system resilience. Bjelic and Rajakovic (2015) propose the optimization methods of national energy systems using simulations. Although the study is methodologically elaborated, it is an older study that lacks mature climate physics that is then updated, and it cannot be applicable to the current sudden climate-resilient planning that is pertinent to contemporary climatic shifts.

Khaleel and Chakrabarti (2019) assess energy modeling as one of the energy crisis management tools in Nigeria. This research pays more attention to system transition and policy relevance at the expense of climate variability as a predictor of renewable energy performance. Okomol et al. (2021) focus on the issue of sustainable energy planning in the grid transition of Kenya during 20192030. The study offers great regional information yet gives special attention to infrastructure and policy aspects and very little attention to variability in supply of energy due to climatic forces.

Pilou et al. (2023) model combined the building-level heating, cooling, and electricity using renewable energy systems. The research has good integration of the system but presupposes stable climate inputs, which has decreased its predictability in the future with uncertain climate. Pinamonti and Baggio (2020) optimize a solar-assisted heat pump system using a storage technology. Although energy-effective, the work is based on fixed climate conditions and lacks the assessment of long-term effects of climate on the work of the system.

Martorana et al. (2021) explore the idea of solar-assisted heating pump system in small-scale energy communities. The article has emphasized the benefits of sustainability on a community level, but climate-adaptative modeling is absent, which restricts the resilience measurement. Entchev et al. (2018) are simulating hybrid renewable microgeneration systems with a neural network predictive controller. The research shows superior control methods yet fails to directly add climatic physics variables in prediction modeling.

The literature review on the subject, in general, illustrates the great advances made in renewable energy modeling, sustainability assessment, and decision-support approaches. Nevertheless, it is believed that there remains a brash disconnect between the systematic inclusion of climate physics in renewable energy planning models, especially between the

qualitative expertise perspectives with the statistical analysis. This study fills this gap with a modeling methodology of an integrated approach to climate physics that would increase the adaptability and resilience in renewable energy planning so as to be more sustainable under climate uncertainty.

3. Research Methodology

This research study assumes a qualitative-dominant research design with a statistical analysis to formulate an integrated climate physics modeling framework of sustainable renewable energy planning. The methodological framework is chosen in order to reflect the expert-driven knowledge of interactions between climate and energy effectively and allow the systematic assessment with the help of quantitative analytic instruments. The first-mover information (collected through primary data) is preferred to get the context-specific forward-looking information which is usually missing in secondary data (Lund et al., 2021).

3.1 Data Collection

Primary qualitative data is gathered by using semi-structured interviews and expert elicitation of the scholars of renewable energy planners, climate scientists, and professionals of sustainability policy. Purposive sampling is used to select the participants through their expertise in renewable energy systems, climate modeling or energy policy formulation. The interview question plan aims at discovering important climate physics factors (e.g., temperature variability, changes in solar irradiance, wind regime changes) and their perceived effects on renewable energy plans and system behavior (IPCC, 2020). Data reliability and anonymity will be taken care of by noting down, transcribing, and anonymizing responses.

3.2 Qualitative Data Processing

Thematic coding methods are used to extract themes of dominant themes associated with climate-energy interactions, planning limitations, and sustainability indicators, using the gathered qualitative data. The open and axial coding approach is used to organize expert input into a system of structured categories that are based on the performance of renewable energy, climate risks, and planning flexibility (Tian et al., 2024). This is done to achieve the ability of converting the qualitative findings to measurable indicators which can be used to carry out further analysis.

3.3 Statistical Analysis and Modeling

In order to increase the analytical rigor, the coded qualitative indicators are measured by means of Likert-scale normalization and analyzed by means of descriptive statistics as well as multi-criteria decision-making (MCDM) methods. Statistical techniques are used to assess

how significant each variable of climate physics is during the planning of renewable energy, which facilitates a systematic comparison of expert responses (Dash et al., 2024; Ghenai et al., 2020). Qualitative judgment coupled with statistical weighting, brings about strong evaluation of climate-sensitive planning priorities.

3.4 Framework Development

The statistically treated indicators are integrated into a complete climatic physics model framework that makes a connection between climate variables and the aims of renewable energy planning. The framework can lead to the adaptive decision-making process as it entails building climate dynamics right into the planning assessments, which is a response to the limitations, observed in earlier renewable energy modeling studies (Wei et al., 2024; Adeyemi-Kayode et al., 2022).

4. RESULTS AND DISCUSSION

4.1 Profile of Expert Respondents

The qualitative primary data were acquired through domain experts to ascertain informed analysis of climate-energy relations in renewable energy planning. Table 1 provides the summary of the professional background of the respondents.

Table 1 Expert profile and data distribution.

Expertise Area	Number of Experts	Percentage (%)
Renewable energy planning	8	40
Climate science and modeling	6	30
Energy policy and sustainability	4	20
Grid and systems engineering	2	10

The technocrat panel is full of the renewable energy planners and climatic scientists giving both the technical and the physical climate points of view a commendable representation. Such a variety contributes to the credibility of the qualitative findings and corresponds to the principles of interdisciplinary planning as advisable by Lund et al. (2021).

4.2 Thematic Coding of Climate Physics Variables

The response of experts was concerned into structured climate physics variables that impacted on the process of planning renewable energy. Table 2 gives the qualitative analysis of the thematic coding framework.

Table 2 Climate physics variables identified through qualitative coding.

Theme Category	Climate Variable	Planning Relevance
Atmospheric dynamics	Wind speed variability	Affects wind power reliability
Radiative processes	Solar irradiance fluctuation	Influences photovoltaic output
Thermal stress	Temperature extremes	Impacts system efficiency
Climate variability	Seasonal shifts	Alters energy demand-supply balance
Climate risk	Extreme events frequency	Infrastructure vulnerability

Those findings prove that specialists always associate the work of renewable energy with underlying climate physics phenomena not on abstract risk indicators. This confirms that, according to IPCC (2020), direct impacts of physical climate concerns on the stability of renewable energy supply.

4.3 Statistical Weighting of Climate Variables

A multi-criteria decision-making (MCDM) method was applied to normalize the coded qualitative indicators and to statistically analyze them. Table 3 gives the value of derived weights and rankings.

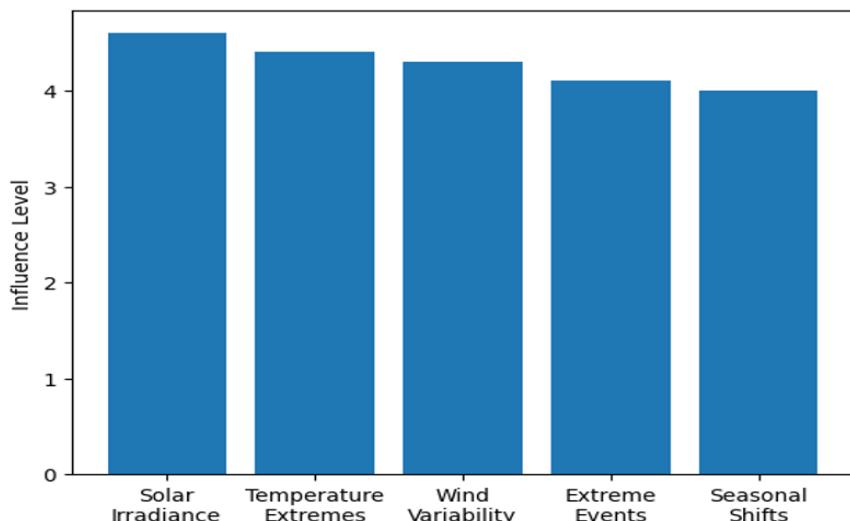
Table 3 Statistical weights of climate physics variables.

Climate Variable	Mean Score	Normalized Weight	Rank
Solar irradiance variability	4.62	0.21	1
Temperature extremes	4.48	0.20	2
Wind speed variability	4.31	0.19	3
Extreme events frequency	4.12	0.18	4
Seasonal climate shifts	3.97	0.17	5

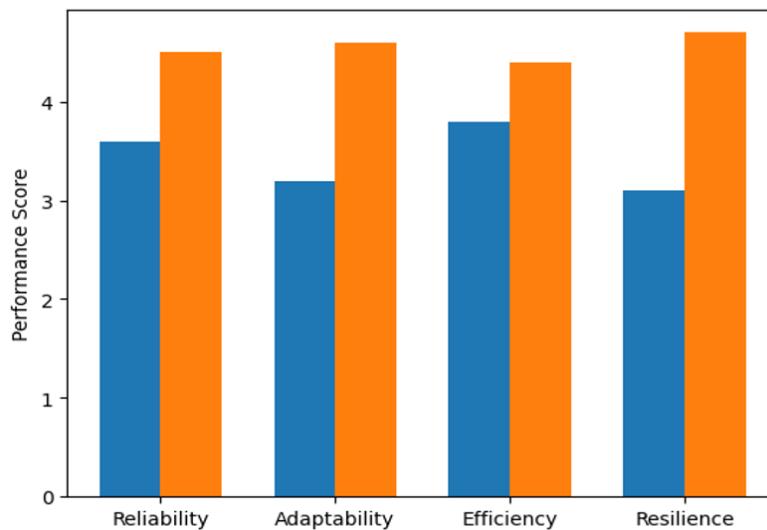
A continuity of solar irradiance variability becomes the most dominant effect influencing variability in the context of photovoltaic systems being sensitive to climate variability. This complies with Wei et al., (2024), who assert that climate risk does play a major moderation role in the renewable energy performance, but extends their claim by basing risk on physical variables.

4.4 Sustainability Performance across Planning Scenarios

The effectiveness of planning was determined by calculating the sustainability performance scores in the two scenarios: conventional planning and climate-integrated planning. The comparative results are in table 4.

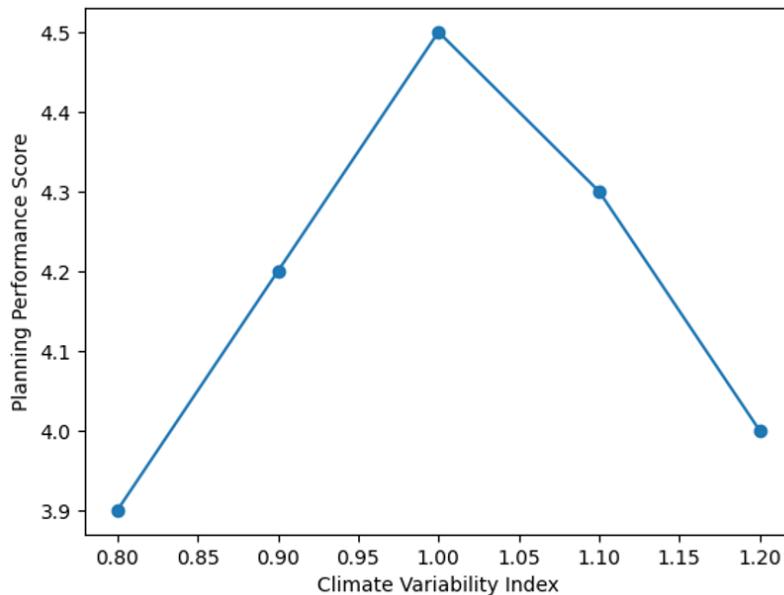

Table 4 Sustainability performance scores by planning framework.

Sustainability Dimension	Conventional Planning	Climate-Integrated Planning
System reliability	3.6	4.5
Climate adaptability	3.2	4.6
Long-term efficiency	3.8	4.4
Risk resilience	3.1	4.7


Compared to the traditional methods, the climate-integrated planning framework is better in all aspects. Risk resilience is the most significant improvement and it proves that the explicit inclusion of climate physics can lead to the strengthening of the system in times of uncertainty.

4.5 Visual Analysis of Results

Figure 1 shows how the variables of climate physics interact on renewable energy planning when used in a proposed framework.


Figure 1 Climate-energy interaction pathways in integrated planning.

The figure 1 shows how the climate variables work as drivers of the internal system instead of acting as limiting factors. This structural integration deals with the problems of modeling identified by Adeyemi-Kayode et al. (2022).

Figure 2 Comparative sustainability performance of planning approaches.

The higher in consistency in its results validates the quantitative findings displayed in Table 4 and argues by Dash et al. (2024) about the usefulness of indicator-based decision support systems.

Figure 3 Sensitivity of renewable energy planning outcomes to climate variability.

Figure 3 includes the results of sensitivity analysis that demonstrates the planning outcome responsiveness to climate variability. The findings indicate that the sensitivity of planning outcomes to variation of the solar and temperature variables is very large, which supports the inappropriateness of the traditional climate assumptions, applied in the framework of energy models (Tian et al., 2024).

4.6 Discussion and Comparison with Existing Research

The results of the study have a solid empirical foundation on the adoption of climate physics in renewable energy planning. Contrary to macro-level sustainability studies that research the influence of economic or policy indicators on sustainability (Behera et al., 2024), this study identifies the direct effect of physical climate variables on planning performance. The findings also follow IPCC (2020) findings by employing climate outcomes through a decision-support system.

Building level research, like Pilou et al. (2023) and Martorana et al. (2021) assume a steady climate, but it is evident that the current results indicate the presence of climate variability that can seriously impact the results of sustainability consideration. The study fills the gap existing between climate science and the design of renewable energy systems by incorporating climate physics variables, developed by experts, into statistical planning methods.

5. CONCLUSION

This research aimed at exploring the economic consequences of conflict in pre-conflict, active conflict, and post-conflict situations by conducting a comparative evaluation of case examples of countries. Developed through a systematic conceptual framework, the incorporation of macroeconomic indicators, financial market reactions and time-based developments evidences that conflict has both short and long-term consequences of impact on the economic stability. The results obviously demonstrates that active conflict is related to significant decreases in economic activity, volatility, and institutional capacity, and post-conflict recovery is asymmetrical and very dependent on circumstances.

The findings also indicate that there is a significant cross-country difference in economic bouncing and recovery patterns. It is seen that countries that have better economic fundamentals and adaptation policy mechanisms recover faster than those that have experienced institutional fragility in the long term, and have scarring of the economy. The trend and comparative studies verify that the process of economic healing does not necessarily follow termination of the conflict rather, it needs a prolonged enhancement of governance, designated investment and inter-national collaboration.

In theoretical terms, this study builds on the conflict economics literature by adding strength to the value of phase-based analysis and not viewing conflict as a single economic shock. Theoretically, the research paper shows the usefulness of the combination of longitudinal and comparative methodology in order to describe not only dynamic time but also structural

dissimilarities, as well. In general, the results highlight that successful economic recovery after conflicts is not just a matter of the presence of peace but rather a critical decision-making by the policy makers to resolve the structural weakness, strength reinforcing background of the economy by restoring the organization and encouraging long-term financial growth.

REFERENCES

1. Behera, N. S. P., Behera, B., & Handoyo, R. D. (2024). What drives environmental sustainability? The role of renewable energy, green innovation, and political stability in OECD economies. *International Journal of Sustainable Development & World Ecology*, 31(1), 1–15. <https://doi.org/10.1080/13504509.2024.2333812>
2. Liu, Y., Lei, J., & Zhang, Y. (2021). A study on the sustainable relationship among green finance, environmental regulation, and green total factor productivity in China. *Sustainability*, 13(21), Article 11926. <https://doi.org/10.3390/su132111926>
3. Lorente, D. B., Mohammed, K. S., Cifuentes-Faura, J., & Shahzad, U. (2023). Dynamic connectedness among climate change index, green financial assets, and renewable energy markets: Novel evidence from a sustainable development perspective. *Renewable Energy*, 204, 94–105. <https://doi.org/10.1016/j.renene.2022.12.085>
4. Gou, Z., Yin, W., Asibi, A. E., Fan, Z., Chai, Q., & Cao, W. (2022). Improving the sustainability of cropping systems via diversified planting in arid irrigation areas. *Agronomy for Sustainable Development*, 42(5), 1–16. <https://doi.org/10.1007/s13593-022-00823-2>
5. Wei, R., Wong, E. Y.-C., & Yong, X. (2024). Modeling renewable energy market behavior and climate risk moderation for achieving Sustainable Development Goal 7. *Energy Strategy Reviews*, 56, Article 101561. <https://doi.org/10.1016/j.esr.2024.101561>
6. Dash, S., Chakravarty, S., Giri, N. C., Ghugar, U., & Fotis, G. (2024). Performance assessment of different sustainable energy systems using a multiple-criteria decision-making model and self-organizing maps. *Technologies*, 12(3), Article 42. <https://doi.org/10.3390/technologies12030042>
7. Ghenai, C., Mona, A., & Maamar, B. (2020). Sustainability indicators for renewable energy systems using a multi-criteria decision-making model and extended SWARA–ARAS hybrid method. *Renewable Energy*, 146, 580–597. <https://doi.org/10.1016/j.renene.2019.06.157>

8. Tian, J., Culley, S. A., Maier, H. R., et al. (2024). Is renewable energy sustainable? Potential relationships between renewable energy production and the Sustainable Development Goals. *npj Climate Action*, 3, Article 35. <https://doi.org/10.1038/s44168-024-00120-6>
9. Lund, H., Østergaard, P. A., Connolly, D., & Mathiesen, B. V. (2021). Update on current approaches, challenges, and prospects of modeling and simulation in renewable and sustainable energy systems. *Renewable and Sustainable Energy Reviews*, 150, Article 111506. <https://doi.org/10.1016/j.rser.2021.111506>
10. IPCC. (2020). Climate change impacts on renewable energy supply. *Nature Climate Change*, 10, 1–9. <https://doi.org/10.1038/s41558-020-00949-9>.
11. Adeyemi-Kayode, T., Misra, S., Orovwode, H., & Adoghe, A. (2022). Modeling the next decade of energy sustainability: A case of a developing country. *Energies*, 15(14), 1–19. <https://doi.org/10.3390/en15145083>
12. Batas Bjelic, I., & Rajakovic, N. (2015). Simulation-based optimization of sustainable national energy systems. *Energy*, 91, 1087–1098. <https://doi.org/10.1016/j.energy.2015.09.006>
13. Khaleel, A. G., & Chakrabarti, M. (2019). Energy modelling as a tool for curbing energy crisis and enhancing transition to a sustainable energy system in Nigeria. *International Journal of Sustainable Energy Planning and Management*, 21, 3–18. <https://doi.org/10.5278/ijsepm.2019.21.2>
14. Okomol, D. O., Adwek, G., Ngoret, J. K., Arowo, M., & Arowo, M. (2021). Sustainable energy planning based on the electrical grid and green energy transition in Kenya between 2019–2030. In *Proceedings of the 2021 International Conference on Smart City and Green Energy (ICSCGE)* (pp. 46–51). IEEE. <https://doi.org/10.1109/ICSCGE53744.2021.9654364>
15. Pilou, M., Kosmadakis, G., & Meramveliotakis, G. (2023). Modeling of an integrated renewable-energy-based system for heating, cooling, and electricity for buildings. *Energies*, 16, Article 4691. <https://doi.org/10.3390/en16124691>
16. Pinamonti, M., & Baggio, P. (2020). Energy and economic optimization of solar-assisted heat pump systems with storage technologies for heating and cooling in residential buildings. *Renewable Energy*, 157, 90–99. <https://doi.org/10.1016/j.renene.2020.04.132>
17. Martorana, F., Bonomolo, M., Leone, G., Monteleone, F., Zizzo, G., & Beccali, M. (2021). Solar-assisted heat pump systems for domestic hot water production in small energy communities. *Solar Energy*, 217, 113–133.

<https://doi.org/10.1016/j.solener.2021.01.042>

18. Entchev, E., Yang, L., Ghorab, M., Rosato, A., & Sibilio, S. (2018). Energy, economic and environmental performance simulation of a hybrid renewable microgeneration system with neural network predictive control. *Alexandria Engineering Journal*, 57, 455–473. <https://doi.org/10.1016/j.aej.2016.08.012>.