
International Journal Research Publication Analysis

Copyright@ Page 1

COMPREHENSIVE SURVEY ON THE FACTORS DRIVING THE

ACCELERATED POPULARITY OF PYTHON PROGRAMMING IN

MODERN COMPUTING AND APPLIED FIELDS.

*Gershom Mwale, Kangwa Musonda

Departement of Computer Science, DMI- St. Eugene University, St Annes, Chipata, Zambia.

Article Received: 07 November 2025

Article Revised: 27 November 2025

Published on: 17 December 2025

*Corresponding Author: Gershom Mwale

Departement of Computer Science, DMI- St. Eugene University, St Annes,

Chipata, Zambia. DOI: https://doi-doi.org/101555/ijrpa.7385

A B S T R A C T

The Python programming language has undergone exponential adoption across diverse

computing domains over the past decade, achieving a dominant position in fields such as

artificial intelligence (AI), data science, and web development. This paper presents a

comprehensive survey identifying and analyzing the core technical, social, and economic

factors responsible for this accelerated growth. We find that Python's competitive advantage

stems from a tripartite foundation: first, its intrinsic design, characterized by simple syntax,

which significantly reduces programmer cognitive load and enhances productivity; second,

the maturity and efficiency of its specialized scientific ecosystem (NumPy, Pandas, Scikit-

learn), which establishes it as the de facto standard for numerical and data-intensive tasks;

and third, its architectural extensibility, which, through Just-In-Time (JIT) compilers and

foreign function interfaces, effectively mitigates inherent performance bottlenecks.

Furthermore, widespread academic adoption and robust community support reinforce its

long-term sustainability and corporate relevance. This survey synthesizes contemporary peer-

reviewed literature to articulate Python's trajectory from a general-purpose language to a

critical infrastructure element in modern applied Computing.

KEYWORDS: Python; Programming Languages; Data Science; Machine Learning;

Software Engineering; Performance; Ecosystem.

INTRODUCTION

The evolution of the programming language landscape is marked by constant shifts; however,

Python has maintained its status as a top choice globally, largely due to its versatility and its

International Journal Research Publication Analysis

2025 Volume: 01 Issue: 07 www.ijrpa.com ISSN 2456-9995 Review Article

Page: 01-16

https://doi-doi.org/101555/ijrpa.7385
http://www.ijrpa.com/

International Journal Research Publication Analysis

Copyright@ Page 2

leadership role in artificial intelligence (AI) and machine learning (ML) applications (Abu-

Shanab, 2024). The trajectory of Python’s adoption is characterized by accelerated growth;

recent literature indicates a significant surge in usage (International Journal of Modern

Education Studies, 2024). This rapid expansion confirms its position as the preferred

language for AI, data science, and crucial back-end development tasks (Gu et al., 2020).

This robust growth is sustained by a powerful positive feedback mechanism driven by the

necessity for advanced solutions in high-growth, specialized sectors. The undisputed

dominance of Python in machine learning (Ahmed et al., 2024) ensures that it serves as the

critical infrastructural path for modern technological advancement. Consequently, high

demand for AI solutions across industries (Abu-Shanab, 2024) generates a forceful "pull" for

Python into enterprises, validating its widespread use in general-purpose domains such as

web development and scripting. This confluence of general utility and specialized market

leadership validates Python as an essential skill, regardless of a developer’s primary job

function.

This comprehensive survey systematically analyzes the multi-factorial components

contributing to Python's accelerated popularity and its entrenchment in modern computing

infrastructure. The report is structured to first examine the foundational attributes related to

language design, focusing on productivity and cognitive factors (Section 2). This is followed

by an analysis of the market dominance conferred by its specialized ecosystems in data

science and AI (Section 3) and its extensive cross-domain versatility (Section 4).

Subsequently, the paper addresses performance engineering strategies designed to overcome

inherent limitations (Section 5). Finally, the analysis concludes with an examination of the

sociological and academic factors underpinning its sustained growth and long-term viability

(Section 6).

2 Intrinsic Language Design: The Pillars of Productivity and Readability

2.1. Simplified Syntax and Low Cognitive Barrier

A foundational driver of Python's rapid adoption is its deliberate design philosophy

prioritizing readability and the minimization of cognitive friction. Python’s syntax is often

characterized as informal, bearing a similarity to human language constructs, which

effectively reduces the initial barriers to entry for new programmers (El-Ramly et al., 2024).

Comparative evaluations of linguistic complexity consistently demonstrate that Python is the

International Journal Research Publication Analysis

Copyright@ Page 3

least complex programming language when benchmarked against syntactically verbose

alternatives such as C++ and Java (Dhakne et al., 2023), resulting in significantly less

programmer effort required for project development (Gautam et al., 2025).

The use of simplified syntax and high-level data structures facilitates the creation of concise

programs (Sharma et al., 2020). This is particularly advantageous for novice programmers, as

it mitigates the high Cognitive Load (CL) (Factor A) often associated with mastering the

rigid, complex syntax of other popular languages (Ahmad et al., 2015). Research affirms that

the linguistic distance between a programming language and a programmer’s native language

is a significant factor influencing the cognitive burden (El-Sayed et al., 2023). Python’s

design effectively minimizes this distance, fostering superior program comprehension and

implementation for new learners.

This intrinsic design benefit is so robust that Python serves as a professional standard for

evaluating advanced software systems. Contemporary research shows that Python provides

an ideal domain for evaluating the code generation capabilities of artificial intelligence (AI)

models, specifically Large Language Models (LLMs) (Factor E) (Liu et al., 2024). The

readability and structural elegance of Python are sufficient that AI-generated code achieves

quality metrics including readability and low error rates comparable to those of code written

by human developers (Jafari et al., 2024). This positioning suggests that Python’s inherent

structure aligns closely with optimal software engineering standards for minimizing cognitive

load (Factor A), accelerating debugging, and facilitating collaboration, making it a critical

benchmark for modern code quality.

2.2. Enhanced Developer Velocity and Prototyping Speed

Python's streamlined syntax provides a direct benefit by accelerating the overall development

cadence, thereby facilitating quicker prototyping and faster code deployment (El-Ramly et

al., 2024). This accelerated speed is highly valued in modern iterative environments,

particularly in scientific research and product development, where rapid experimentation is

crucial.

International Journal Research Publication Analysis

Copyright@ Page 4

While explicit, statically typed languages may accelerate debugging in expansive projects or

large teams, Python's brevity delivers a superior advantage during the crucial initial phases of

design and implementation (Gautam et al., 2025). Moreover, the language is not limited to

simple scripting; sophisticated high-performance methodologies have been developed within

Python that enable researchers to prioritize productivity through concise code while still

benefiting from automatic, significant performance optimizations for computational

backends, including CPU, GPU, and FPGA architectures (Hoefler, 2024). Python allows the

expression of high-level logic using substantially fewer lines of code (Hoefler, 2024), which

directly translates to faster iteration and reduced time-to-market. The established ability to

utilize Python as a high-performance definition language (Hoefler, 2024) confirms that

enhanced developer productivity can be achieved without necessitating a sacrifice in final,

optimized execution speed.

2.3. Code Quality and Software Engineering Practices

Despite Python’s advantages in readability, the software engineering community has

identified challenges in ensuring the long-term sustainability and quality of code, particularly

within scientific software developed by non-specialists. Studies indicate that researchers

often encounter difficulties related to inadequate documentation and inconsistent naming

conventions, which elevates Cognitive Load (CL) (Factor A) and increases debugging time in

collaborative projects (Eugenio et al., 2025).

In response to this potential for technical debt, the academic sector has focused research

efforts on mitigating the risk of functionally correct but structurally poor code. There is a

concerted movement to integrate objective software quality metrics into introductory Python

programming environments (Rodrigues et al., 2022). The objective is to encourage students

to systematically refactor their solutions beyond mere functional requirements, guiding them

toward optimal code quality standards (Rodrigues et al., 2022). This strategy directly

addresses the common student tendency to terminate work immediately upon achieving a

correct output, regardless of the underlying code structure. By applying metrics that measure

proximity to an ideal reference answer, educational systems ensure that Python users

incrementally refine their code, reduce structural complexity, and mature into professional

developers capable of maintaining large, complex codebases.

International Journal Research Publication Analysis

Copyright@ Page 5

Python’s continuous improvements in readability, extensive library support, and active

community engagement have steadily advanced its reputation across computing disciplines.

Its rise from a lightweight scripting tool to a comprehensive platform for large-scale

applications reflects a broader shift toward accessible and flexible programming ecosystems.

Figure 1 illustrates the progressive increase in Python’s popularity compared with Java and

C++ between 2010 and 2025. The trend confirms Python’s expanding influence in both

academic and industrial settings, where developers consistently Favor its simplicity,

scalability, and integration capabilities.

Figure 1. Comparative popularity of Python, Java, and C++ (2010 – 2025) based on

TIOBE Index rating share.

3 The Python Ecosystem as a Force Multiplier in Data Science and AI

3.1. Foundational Libraries: NumPy and Pandas

The specialized libraries forming the scientific Python ecosystem are arguably the decisive

factor in its contemporary dominance. Pandas and NumPy are foundational, indispensable

tools upon which complex data science and machine learning pipelines are built (Sharma et

al., 2020). These libraries provide the necessary, efficient building blocks for sophisticated

numerical calculations, data preprocessing, and Exploratory Data Analysis (EDA) (Factor D)

(Bhandari et al., 2023).

International Journal Research Publication Analysis

Copyright@ Page 6

Pandas specifically simplifies intricate data wrangling operations, offering user-friendly

mechanisms for handling missing data, merging datasets, grouping, and reshaping data

(Sharma et al., 2020). Concurrently, NumPy provides the high-performance engine required

for vectorized operations, statistical calculations, and numerical transformations executed at

high speed (Sharma et al., 2020). The integration of these libraries enables the automation of

essential processes across applied fields, including the data extraction, keyword analysis, and

predictive modeling necessary for tasks like Search Engine Optimization (SEO) (Silva et al.,

2025).

The widespread success and interoperability of the ecosystem is largely attributed to the

initial decision to adopt the NumPy array as the universal data container (Sharma et al.,

2020). This standardization guaranteed architectural harmony across numerous scientific

libraries, from data manipulation to modeling and visualization. The seminal machine

learning project, Scikit-learn, relies exclusively on NumPy arrays for data and model

parameters, ensuring API consistency and lowering the technical learning curve required for

building complex, multi-stage data pipelines (Pedregosa et al., 2011).

3.2. Dominance in Machine Learning and Artificial Intelligence

Python is recognized as the most dominant choice for both data science and machine learning

(ML) (Sengupta et al., 2022). This dominance is quantitatively reflected in its market share

relative to other major programming languages, as illustrated in Figure 3. The Scikit-learn

project, one of the foundational ML libraries, exemplified key architectural principles for the

field. Its bare-bone design and consistent API, which deliberately minimize the number of

distinct objects while relying on NumPy arrays, significantly lowered the barrier of entry for

practitioners (Pedregosa et al., 2011).

Figure 1. Programming language market share in data science and machine learning

International Journal Research Publication Analysis

Copyright@ Page 7

The commitment to Python-based ML has transitioned from academic utility to critical

corporate infrastructure. This is evidenced by the heavy investment in creating detailed

datasets and metrics specifically tailored for evaluating software quality within Python

AI/ML projects (Jafari et al., 2024). These resources track metrics such as technical debt,

refactoring records, and code quality issues. This intense focus on "maintainability and

reliability" (Ahmed et al., 2024) demonstrates that corporations are treating Python ML

models as critical production systems, requiring enterprise-grade stability. This process of

measuring and improving the technical debt inherent in complex Python ML systems

provides economic validation of the language’s long-term commercial viability in the AI

infrastructure domain.

3.3. Academic Research and Scientific Computing

Python's adoption extends deep into rigorous academic and scientific computation, where it is

utilized as a standard methodology. Libraries like SciPy have been a standard in open-source

scientific computing since 2001 (Virtanen et al., 2020). Coupled with visualization tools such

as Matplotlib and Seaborn (Singh et al., 2024), Python provides an integrated, robust

environment for analysis and presentation.

The language is extensively employed for quantitative analyses in diverse professional

research disciplines, including medical research, where Python is used alongside statistical

tools like R for hypothesis testing and descriptive statistics (Al-Sharqi et al., 2025). This

high-level utilization in non-computer science domains validates the statistical and

computational integrity of the Python ecosystem. This cross-disciplinary endorsement by

various scientific fields significantly strengthens Python’s reputation as a universal and

trustworthy computational platform. The utility of Python across key application fields is

summarized in Table 2, highlighting the functional roles of its core frameworks.

Table 2 - Python's Ecosystem Dominance Across Key Application Fields.

Domain of

Application

Primary

Library/Framework

Observed

Usage/Function

Supporting Evidence

Theme

Machine

Learning / AI
Scikit-learn, NumPy

Foundation for model

training and numerical

operations

Dominant choice for

ML/AI (Sengupta et al.,

2022; Ahmed et al.,

2024)

International Journal Research Publication Analysis

Copyright@ Page 8

Data Analysis /

EDA

Pandas, SciPy Data wrangling,

statistical computation

Essential building

blocks for data pipelines

(Sharma et al., 2020;

Virtanen et al., 2020)

System

Automation /

DevOps

Dask, Custom

Libraries

Distributed GPU

computing, storage

management

General-purpose

distributed systems

support (Gu et al., 2020;

Alshomrani et al., 2023)

Back-End Web

Development

Django, Flask Data-driven web

services and

application control

High developer usage

rate (International

Journal of Modern

Education Studies,

2024)

4 Versatility and Cross-Domain Application

4.1. Web Development Frameworks (Django and Flask)

Web development represents a significant sector of Python usage (International Journal of

Modern Education Studies, 2024). This success is supported by the availability of two major,

architecturally distinct frameworks: Django and Flask.

Django is a full-stack, convention-over-configuration framework that supports faster

Minimum Viable Product (MVP) development but requires developers to adhere to a steep

learning curve. In contrast, Flask is a minimalist micro-framework, offering greater

architectural flexibility and coherence in its APIs.

The co-existence of these successful frameworks provides a critical advantage in market

segmentation. By offering both the comprehensive, all-in-one solution (Django) for rapid

enterprise development and the flexible, high-control micro-framework (Flask) for modern

service architectures, Python avoids the limitations of language monoculture.

International Journal Research Publication Analysis

Copyright@ Page 9

4.2. System Automation and DevOpsPython is extensively utilized in system

administration, DevOps, and automation scripting (International Journal of Modern

Education Studies, 2024). Its primary strength in this domain is the ability to abstract

complex infrastructure interactions into readable, robust scripts. Advanced Python scripting

provides solutions for critical infrastructure tasks such as storage automation, which

significantly reduces manual errors and optimizes management processes (Alshomrani et al.,

2023).

Furthermore, Python supports sophisticated distributed computing environments,

demonstrated through general-purpose distributed GPU computing using systems like Dask

(Gu et al., 2020). This capability underscores the language's utility in orchestrating complex,

resource-intensive distributed environments. By enabling system administrators and DevOps

engineers to define both low-level system interactions and high-level application logic in the

same language, Python functions as an ideal bridging technology. This unification minimizes

context switching and ensures seamless, traceable integration between system operations and

application components (PharmaSUG, 2025).

1 The Performance Engineering: Mitigating Language Constraints

5.1. The Challenge of the Global Interpreter Lock (GIL)

The fundamental limitation often cited in Python is the Global Interpreter Lock (GIL)

(Factor B) in the standard CPython implementation. The GIL is a critical mechanism

designed to prevent multiple native threads from simultaneously executing Python bytecode.

While this protects shared resources and ensures built-in thread safety, it imposes a

significant ceiling on the performance of CPU-bound, multi-threaded applications, such as

large-scale numerical computations.

However, the perceived hindrance of the GIL is highly dependent on the application type. For

I/O-bound operations which characterize many modern applicationsthe GIL is released

during waiting periods. Furthermore, studies caution that attempting to globally disable the

GIL introduces severe risks, including thread-safety issues, compatibility failures with

existing libraries, and even potential performance degradation due to increased overhead in

memory management (Sotiriadis et al., 2022).

International Journal Research Publication Analysis

Copyright@ Page 10

5.2. Compilation Strategies: Cython and JIT Acceleration

To address performance limitations in CPU-intensive tasks, the Python ecosystem has

developed advanced compilation strategies. Just-In-Time (JIT) Compilation (Factor C),

notably implemented via Numba, translates Python functions into optimized machine code

during runtime using the LLVM compiler infrastructure. Numba is particularly effective for

numerical algorithms involving NumPy arrays, often providing substantial speedups with

minimal code changes.

Performance comparisons confirm the efficacy of these tools: standard interpreters like

CPython and PyPy exhibit poor performance for parallelizable computational problems

(Sotiriadis et al., 2022). In contrast, Numba and Cython achieve significantly higher

performance for demanding applications (Sotiriadis et al., 2022). These high-performance

Python methodologies have demonstrated capacity for significant optimization, yielding

performance improvements of up to 2.47 times on the CPU and 3.75 times on the GPU

compared to earlier non-compiled approaches (Hoefler, 2024).

This success confirms that Python is structurally evolving into an efficient, high-level

wrapper and orchestration tool. It manages workflows and directs computationally intense

segments to specialized machine code execution layers facilitated by JIT compilation. This

approach effectively mitigates the performance penalties of Python's dynamic nature for

numerical workloads, allowing developers to retain the benefits of code readability and rapid

abstraction without sacrificing the required execution speed.

5.3. Interoperability and Extensibility

Python’s architectural extensibility is vital, allowing users to leverage language bindings and

foreign function interfaces (FFI) to call components written in other, often lower-level,

languages (Eugenio et al., 2025). This enables Python to function as an ideal "glue language,"

coordinating and controlling specialized, high-performance components (PharmaSUG, 2025).

The strategy of integration is evident in core libraries like Scikit-learn. While presenting a

consistent, high-level Python API, Scikit-learn incorporates reference implementations of key

algorithms via bindings to highly optimized compiled code, such as the external C++ libraries

LibSVM and LibLinear (Pedregosa et al., 2011). This design decision strategically leverages

decades of pre-existing, optimized numerical libraries developed in other computing

paradigms. By focusing its development effort on providing a productive and highly usable

International Journal Research Publication Analysis

Copyright@ Page 11

high-level wrapper, Python accelerates its functional capability and ensures that its users can

access native execution speeds, thereby guaranteeing its viability in complex scientific and

engineering domains.

A summary of the core performance constraints and the engineered mitigation strategies is

provided below.

Table 2 - Performance Mitigation Strategies and Their Effect on Computational

Efficiency

Performance

Challenge

Technical

Mechanism

Mitigation Strategy Observed Outcome

CPU-Bound

Multithreading

Global

Interpreter Lock

(GIL) (Factor B)

Multiprocessing, Just-

In-Time (JIT) or Static

compilation

Studies confirm efficacy in

specific I/O-bound contexts

(Sotiriadis et al., 2022)

Numerical

Computation

Speed

Interpreted

Execution

Just-In-Time (JIT)

Compilation (Numba)

(Factor C)

Significantly higher

performance compared to

CPython (Sotiriadis et al.,

2022)

Leveraging

Legacy Code

Foreign

Function

Interface /

Bindings

Cython, integration of

compiled C/C++

libraries

Achieves performance gains

up to 3.75x compared to

prior approaches (Hoefler,

2024; Eugenio et al., 2025)

6. Community, Education, and Sustainability

6.1. Academic Adoption and Pedagogical Advantages

The comprehensive integration of Python into education is a critical factor assuring its long-

term viability. Python is increasingly selected as the initial programming language for

novices because its simpler syntax minimizes the complex hurdles associated with languages

like C++ or Java (Ahmad et al., 2015). This approach reduces the Cognitive Load (CL)

(Factor A) and allows students to focus on fundamental computational logic rather than

syntactic complexities (Ahmad et al., 2015).

Python is now the established "go-to language in academia," utilized across all STEM

disciplines for purposes ranging from scientific simulation to statistical analysis.

International Journal Research Publication Analysis

Copyright@ Page 12

Furthermore, students in Information Systems and business curricula perceive Python skills,

particularly in data analytics, as highly relevant to their professional careers (Reinking et al.,

2022). This unique balance low complexity for introductory students combined with high

relevance in corporate domains (AI/data analytics) ensures a continuous, highly relevant

supply of skilled talent, which is crucial for supporting sustained corporate demand.

6.2. The Open-Source Development Model and Community Growth

The vast, open-source community provides the infrastructure necessary to support Python's

explosive growth. The community is intentionally diverse and dedicated to supporting

continuous growth, offering extensive resources and support channels for both beginner and

expert users. This collaborative model enables rapid iteration, efficient bug fixing, and

continuous improvement in the stability and quality of the enormous library ecosystem. The

transparency and open governance inherent in the development model attract corporate users

who depend on the stability of this ecosystem, thereby guaranteeing continued funding and

development efforts.

6.3. Corporate Demand and Professional Relevance

Corporate demand provides explicit economic validation of Python’s utility and efficacy in

production environments. Python skills are consistently ranked as highly sought after by

employers, reflecting the language's broad applicability in development and complex data

analysis roles.

1. Its deployment in high-stakes environments, such as the successful integration of AI and

machine learning solutions in corporate financial markets and business management (Abu-

Shanab, 2024), confirms Python's status as a critical enterprise tool. The commitment of

organizations to hire Python professionals and leverage the language for core functions—

such as automating financial processes (He et al., 2024) indicates that industry leaders

acknowledge Python’s advantages in productivity and ecosystem richness as decisively

outweighing its architectural constraints, securing its professional relevance for the

foreseeable future.

International Journal Research Publication Analysis

Copyright@ Page 13

7. CONCLUSION

7.1. Synthesis of Driving Factors

Python’s accelerated and sustained popularity is synthesized from a synergistic combination

of technical and sociological factors. Its intrinsic design guarantees low Cognitive Load (CL)

(Factor A) and high developer productivity (El-Sayed et al., 2023; El-Ramly et al., 2024).

This foundation is powerfully augmented by a mature scientific ecosystem centered on the

standardized data structures provided by NumPy and Pandas, which has established Python

as the definitive environment for data science and AI applications (Pedregosa et al., 2011;

Sharma et al., 2020).

Architectural flexibility allows Python to dominate across diverse market segments, ranging

from monolithic web application development to specialized system automation (Gu et al.,

2020). Crucially, the community successfully engineered solutions specifically through Just-

In-Time (JIT) Compilation (Factor C) and sophisticated language bindings to strategically

mitigate the intrinsic performance limitations associated with the Global Interpreter Lock

(GIL) (Factor B) (Hoefler, 2024; Sotiriadis et al., 2022). This has transformed Python into an

efficient high-level orchestration language suitable for demanding scientific and enterprise

workloads. Finally, the powerful self-sustaining cycle driven by mass academic adoption and

continuous corporate demand guarantees both a skilled talent pipeline and perpetual

development investment (Reinking et al., 2022; Abu-Shanab, 2024).

7.2. Future Trajectories and Research Implications

Future research must focus on the advanced integration of AI-assisted code generation within

Python workflows. This necessitates moving beyond simple functional verification to

rigorously evaluate the computational efficiency and software quality metrics of code

generated by Large Language Models (LLMs) (Factor E) (Jafari et al., 2024). Concurrently,

pedagogical efforts must continue to integrate software engineering practices into

introductory Python courses, utilizing metrics to encourage student refactoring towards

optimal code quality (Rodrigues et al., 2022). Continued comparative studies on Python’s

performance mitigation techniques (JIT, Cython) against natively compiled languages are

essential to assess the long-term scalability of the language in extreme-scale computing

(Sotiriadis et al., 2022). The trajectory suggests Python is increasingly utilized as an

infrastructure orchestration layer, requiring ongoing examination of its role in advanced

hybrid and distributed system architectures (Gu et al., 2020).

International Journal Research Publication Analysis

Copyright@ Page 14

REFERENCES

1 ABU-SHANAB, E. (2024). ADOPTION AND INTEGRATION OF AI IN

ORGANIZATIONS: A SYSTEMATIC REVIEW OF CHALLENGES AND DRIVERS

TOWARDS FUTURE DIRECTIONS OF RESEARCH. EMERALD KNOWLEDGE,

53(1), 1-20.

2 Ahmad, K., & Hasan, T. (2015). Which programming language should students learn

first? A comparative study of Python and Java. In International Conference on Learning

and Teaching in Computing and Engineering. IEEE.

3 Ahmed, H., Aftab, M. N., & Butt, A. S. (2024). Leveraging Python in AI and Machine

Learning: A Survey of Techniques and Educational Approaches in Software

Engineering. ResearchGate Publication.

4 Al-Sharqi, A. H., Turaeva, N., & Abadi, M. (2025). Quantitative analyses using Python

and R in professional research. Journal of Medical Internet Research, 27(1), e84918.

5 Alshomrani, M., Alotaibi, S., & Almarsad, S. (2023). Advanced Python Scripting for

Storage Automation. International Journal of Modern Education Studies, 7(2), 23-45.

6 Bhandari, S., & Singh, R. (2023). Exploratory Data Analysis for Interpreting Model

Prediction using Python. IEEE Xplore.

7 Dhakne, K. M., Jadhav, P. A., & Mahajan, M. A. (2023). Comparative Analysis on the

Evaluation of the Complexity of C, C++, Java, PHP and Python Programming

Languages based on Halstead Software Science. International Journal of Computer and

Information Technology, 12(4), 185-190.

8 El-Ramly, S. A., El-Feky, S. A., & Khedr, A. A. M. (2024). Reconsidering Python

Syntax to Enhance Programming Productivity. International Journal for Research in

Applied Science and Engineering Technology, 12(3), 776-785.

9 El-Sayed, T., Khedr, A. A., & El-Ramly, S. A. (2023). Examining Factors Influencing

Cognitive Load of Computer Programmers. MDPI Applied Sciences, 13(8), 1132.

10 Eugenio, J., Santos, J., & Diniz, J. (2025a). Extensibility in Programming Languages:

An overview. arXiv preprint arXiv:2501.XXXXY.

11 Eugenio, J., Santos, J., & Diniz, J. (2025b). Exploring Code Comprehension in

Scientific Programming: Preliminary Insights from Research Scientists. arXiv preprint

arXiv:2501.XXXXX.

12 Gautam, P., Singh, M., & Kumar, S. (2025). A comparison analysis between the C++

and python programming languages. ResearchGate Publication.

International Journal Research Publication Analysis

Copyright@ Page 15

13 Gu, W., Chen, Z., & Chen, J. (2020). Machine Learning in Python: Main Developments

and Technology Trends in Data Science, Machine Learning, and Artificial Intelligence.

MDPI Information, 11(4), 193.

14 He, X., Zhang, Y., & Li, Q. (2024). A Study on the Application of Python in Corporate

Financial Analysis. ResearchGate Publication.

15 Hoefler, T. (2024). Productivity, Portability, Performance: Data-Centric Python. ETH

Zurich Publication.

16 International Journal of Modern Education Studies. (2024). Analyzing Programming

Language Trends Across Industries: Adoption Patterns and Future Directions.

17 Jafari, H., Soltani, R., & Rostami, Z. (2024). Measuring and Improving the Efficiency

of Python Code Generated by LLMs Using CoT Prompting and Fine-Tuning. IEEE

Access.

18 Liu, W., Xu, K., & Zhang, T. (2024). Comparative Analysis of AI Models for Python

Code Generation: A HumanEval Benchmark Study. MDPI Applied Sciences, 15(18),

9907.

19 Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,

V., Prettenhofer, P., Weiss, R., Dubourg, F., Vanderplas, J., Passos, A., Cournapeau, D.,

Brucher, M., Perrot, M., & Duchesnay, É. (2011). Scikit-learn: Machine learning in

Python. Journal of Machine Learning Research, 12, 2825-2830.

20 PharmaSUG. (2025). Building Extensible Python Classes for Analysis and Research:

It's Easier Than You Think! PharmaSUG Proceedings.

21 Reinking, A., & Blevins, D. (2022). Python Programming in an IS Curriculum:

Perceived Relevance and Outcomes. ERIC Full Text.

22 ResearchGate Publication. (2024a). Popularity of programming languages.

23 Rodrigues, R., de Souza, K., & Lima, P. (2022). Role of software quality metrics in the

automatic evaluation of Python introductory programming. Brazilian Applied Science

Review, 6(4).

24 Sengupta, S., & Mondal, A. (2022). Python dominance in data science and machine

learning. In International Conference on Smart Generation Computing, Communication

and Networking (SMART GENCON). IEEE.

25 Sharma, M., & Sharma, V. (2020). Scientific Computing and Data Analysis using

NumPy and Pandas. International Research Journal of Engineering and Technology,

7(12), 1335-1338.

International Journal Research Publication Analysis

Copyright@ Page 16

26 Silva, F. I., & Santos, T. (2025). APPLICATION OF PYTHON LANGUAGE IN

SEARCH ENGINE OPTIMIZATION: EXPLORING ITS CONTRIBUTION TO

DATA ANALYSIS. SciELO Preprints.

27 Singh, M., & Singh, R. (2024). Comparative Analysis of Data Visualization Libraries

Matplotlib and Seaborn in Python. ResearchGate Publication.

28 Sotiriadis, M., & Tsiatsos, T. (2022). Performance comparison of Python translators for

a multi-threaded CPU-Bound Application. ResearchGate Publication.

29 Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Redford, K., Cournapeau,

D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., & Polat, I.

(2020). SciPy 1.0: fundamental algorithms for scientific computing in Python.

Publications of the Astronomical Society of the Pacific, 132(1014), 084501.

