AR 8, 2025 Volume: 01 Issue: 07 www.ijrpa.com ISSN 2456-9995 Review Article

,
o

oW

International Journal Research Publication Analysis

\“‘ematio,, 7 %
» %,

8

‘Is’fIEuv u

Page: 01-16

COMPREHENSIVE SURVEY ON THE FACTORS DRIVING THE
ACCELERATED POPULARITY OF PYTHON PROGRAMMING IN
MODERN COMPUTING AND APPLIED FIELDS.

*Gershom Mwale, Kangwa Musonda

Departement of Computer Science, DMI- St. Eugene University, St Annes, Chipata, Zambia.

Avrticle Received: 07 November 2025 *Corresponding Author: Gershom Mwale

Article Revised: 27 November 2025 Departement of Computer Science, DMI- St. Eugene University, St Annes,
Published on: 17 December 2025 Chipata, Zambia. DOI: https://doi-doi.org/101555/ijrpa.7385

ABSTRACT

The Python programming language has undergone exponential adoption across diverse
computing domains over the past decade, achieving a dominant position in fields such as
artificial intelligence (Al), data science, and web development. This paper presents a
comprehensive survey identifying and analyzing the core technical, social, and economic
factors responsible for this accelerated growth. We find that Python's competitive advantage
stems from a tripartite foundation: first, its intrinsic design, characterized by simple syntax,
which significantly reduces programmer cognitive load and enhances productivity; second,
the maturity and efficiency of its specialized scientific ecosystem (NumPy, Pandas, Scikit-
learn), which establishes it as the de facto standard for numerical and data-intensive tasks;
and third, its architectural extensibility, which, through Just-In-Time (JIT) compilers and
foreign function interfaces, effectively mitigates inherent performance bottlenecks.
Furthermore, widespread academic adoption and robust community support reinforce its
long-term sustainability and corporate relevance. This survey synthesizes contemporary peer-
reviewed literature to articulate Python's trajectory from a general-purpose language to a

critical infrastructure element in modern applied Computing.

KEYWORDS: Python; Programming Languages; Data Science; Machine Learning;

Software Engineering; Performance; Ecosystem.

INTRODUCTION
The evolution of the programming language landscape is marked by constant shifts; however,

Python has maintained its status as a top choice globally, largely due to its versatility and its

Copyright@ Page 1

https://doi-doi.org/101555/ijrpa.7385
http://www.ijrpa.com/

International Journal Research Publication Analysis

leadership role in artificial intelligence (Al) and machine learning (ML) applications (Abu-
Shanab, 2024). The trajectory of Python’s adoption is characterized by accelerated growth;
recent literature indicates a significant surge in usage (International Journal of Modern
Education Studies, 2024). This rapid expansion confirms its position as the preferred

language for Al, data science, and crucial back-end development tasks (Gu et al., 2020).

This robust growth is sustained by a powerful positive feedback mechanism driven by the
necessity for advanced solutions in high-growth, specialized sectors. The undisputed
dominance of Python in machine learning (Ahmed et al., 2024) ensures that it serves as the
critical infrastructural path for modern technological advancement. Consequently, high
demand for Al solutions across industries (Abu-Shanab, 2024) generates a forceful "pull” for
Python into enterprises, validating its widespread use in general-purpose domains such as
web development and scripting. This confluence of general utility and specialized market
leadership validates Python as an essential skill, regardless of a developer’s primary job

function.

This comprehensive survey systematically analyzes the multi-factorial components
contributing to Python's accelerated popularity and its entrenchment in modern computing
infrastructure. The report is structured to first examine the foundational attributes related to
language design, focusing on productivity and cognitive factors (Section 2). This is followed
by an analysis of the market dominance conferred by its specialized ecosystems in data
science and Al (Section 3) and its extensive cross-domain versatility (Section 4).
Subsequently, the paper addresses performance engineering strategies designed to overcome
inherent limitations (Section 5). Finally, the analysis concludes with an examination of the
sociological and academic factors underpinning its sustained growth and long-term viability
(Section 6).

2 Intrinsic Language Design: The Pillars of Productivity and Readability

2.1. Simplified Syntax and Low Cognitive Barrier

A foundational driver of Python's rapid adoption is its deliberate design philosophy
prioritizing readability and the minimization of cognitive friction. Python’s syntax is often
characterized as informal, bearing a similarity to human language constructs, which
effectively reduces the initial barriers to entry for new programmers (EI-Ramly et al., 2024).

Comparative evaluations of linguistic complexity consistently demonstrate that Python is the

Copyright@ Page 2

International Journal Research Publication Analysis

least complex programming language when benchmarked against syntactically verbose
alternatives such as C++ and Java (Dhakne et al., 2023), resulting in significantly less

programmer effort required for project development (Gautam et al., 2025).

The use of simplified syntax and high-level data structures facilitates the creation of concise
programs (Sharma et al., 2020). This is particularly advantageous for novice programmers, as
it mitigates the high Cognitive Load (CL) (Factor A) often associated with mastering the
rigid, complex syntax of other popular languages (Ahmad et al., 2015). Research affirms that
the linguistic distance between a programming language and a programmer’s native language
is a significant factor influencing the cognitive burden (El-Sayed et al., 2023). Python’s
design effectively minimizes this distance, fostering superior program comprehension and

implementation for new learners.

This intrinsic design benefit is so robust that Python serves as a professional standard for
evaluating advanced software systems. Contemporary research shows that Python provides
an ideal domain for evaluating the code generation capabilities of artificial intelligence (Al)
models, specifically Large Language Models (LLMs) (Factor E) (Liu et al., 2024). The
readability and structural elegance of Python are sufficient that Al-generated code achieves
quality metrics including readability and low error rates comparable to those of code written
by human developers (Jafari et al., 2024). This positioning suggests that Python’s inherent
structure aligns closely with optimal software engineering standards for minimizing cognitive
load (Factor A), accelerating debugging, and facilitating collaboration, making it a critical

benchmark for modern code quality.

2.2. Enhanced Developer Velocity and Prototyping Speed

Python's streamlined syntax provides a direct benefit by accelerating the overall development
cadence, thereby facilitating quicker prototyping and faster code deployment (EI-Ramly et
al., 2024). This accelerated speed is highly valued in modern iterative environments,
particularly in scientific research and product development, where rapid experimentation is

crucial.

Copyright@ Page 3

International Journal Research Publication Analysis

While explicit, statically typed languages may accelerate debugging in expansive projects or
large teams, Python's brevity delivers a superior advantage during the crucial initial phases of
design and implementation (Gautam et al., 2025). Moreover, the language is not limited to
simple scripting; sophisticated high-performance methodologies have been developed within
Python that enable researchers to prioritize productivity through concise code while still
benefiting from automatic, significant performance optimizations for computational
backends, including CPU, GPU, and FPGA architectures (Hoefler, 2024). Python allows the
expression of high-level logic using substantially fewer lines of code (Hoefler, 2024), which
directly translates to faster iteration and reduced time-to-market. The established ability to
utilize Python as a high-performance definition language (Hoefler, 2024) confirms that
enhanced developer productivity can be achieved without necessitating a sacrifice in final,
optimized execution speed.

2.3. Code Quality and Software Engineering Practices

Despite Python’s advantages in readability, the software engineering community has
identified challenges in ensuring the long-term sustainability and quality of code, particularly
within scientific software developed by non-specialists. Studies indicate that researchers
often encounter difficulties related to inadequate documentation and inconsistent naming
conventions, which elevates Cognitive Load (CL) (Factor A) and increases debugging time in

collaborative projects (Eugenio et al., 2025).

In response to this potential for technical debt, the academic sector has focused research
efforts on mitigating the risk of functionally correct but structurally poor code. There is a
concerted movement to integrate objective software quality metrics into introductory Python
programming environments (Rodrigues et al., 2022). The objective is to encourage students
to systematically refactor their solutions beyond mere functional requirements, guiding them
toward optimal code quality standards (Rodrigues et al., 2022). This strategy directly
addresses the common student tendency to terminate work immediately upon achieving a
correct output, regardless of the underlying code structure. By applying metrics that measure
proximity to an ideal reference answer, educational systems ensure that Python users
incrementally refine their code, reduce structural complexity, and mature into professional

developers capable of maintaining large, complex codebases.

Copyright@ Page 4

International Journal Research Publication Analysis

Python’s continuous improvements in readability, extensive library support, and active
community engagement have steadily advanced its reputation across computing disciplines.
Its rise from a lightweight scripting tool to a comprehensive platform for large-scale
applications reflects a broader shift toward accessible and flexible programming ecosystems.
Figure 1 illustrates the progressive increase in Python’s popularity compared with Java and
C++ between 2010 and 2025. The trend confirms Python’s expanding influence in both
academic and industrial settings, where developers consistently Favor its simplicity,
scalability, and integration capabilities.

Comparative Popularity: Python vs. Dominant Languages (2010 vs 2025)

NN 2010 Rating
. 2025 Rating

TIOBE Index Rating Share (%)

Python Java C++
Programming Language

Figure 1. Comparative popularity of Python, Java, and C++ (2010 — 2025) based on
TIOBE Index rating share.

3 The Python Ecosystem as a Force Multiplier in Data Science and Al

3.1. Foundational Libraries: NumPy and Pandas

The specialized libraries forming the scientific Python ecosystem are arguably the decisive
factor in its contemporary dominance. Pandas and NumPy are foundational, indispensable
tools upon which complex data science and machine learning pipelines are built (Sharma et
al., 2020). These libraries provide the necessary, efficient building blocks for sophisticated
numerical calculations, data preprocessing, and Exploratory Data Analysis (EDA) (Factor D)
(Bhandari et al., 2023).

Copyright@ Page 5

International Journal Research Publication Analysis

Pandas specifically simplifies intricate data wrangling operations, offering user-friendly
mechanisms for handling missing data, merging datasets, grouping, and reshaping data
(Sharma et al., 2020). Concurrently, NumPy provides the high-performance engine required
for vectorized operations, statistical calculations, and numerical transformations executed at
high speed (Sharma et al., 2020). The integration of these libraries enables the automation of
essential processes across applied fields, including the data extraction, keyword analysis, and
predictive modeling necessary for tasks like Search Engine Optimization (SEO) (Silva et al.,
2025).

The widespread success and interoperability of the ecosystem is largely attributed to the
initial decision to adopt the NumPy array as the universal data container (Sharma et al.,
2020). This standardization guaranteed architectural harmony across numerous scientific
libraries, from data manipulation to modeling and visualization. The seminal machine
learning project, Scikit-learn, relies exclusively on NumPy arrays for data and model
parameters, ensuring API consistency and lowering the technical learning curve required for

building complex, multi-stage data pipelines (Pedregosa et al., 2011).

3.2. Dominance in Machine Learning and Artificial Intelligence

Python is recognized as the most dominant choice for both data science and machine learning
(ML) (Sengupta et al., 2022). This dominance is quantitatively reflected in its market share
relative to other major programming languages, as illustrated in Figure 3. The Scikit-learn
project, one of the foundational ML libraries, exemplified key architectural principles for the
field. Its bare-bone design and consistent API, which deliberately minimize the number of
distinct objects while relying on NumPy arrays, significantly lowered the barrier of entry for

practitioners (Pedregosa et al., 2011).

Programming Language Market Share in Data Science and Machine Learning (2025)
80

71.8%
70

60

Usage Share (%)
83 8 8 8

3

(=}

Python Java Cs+
Programming Language

Figure 1. Programming language market share in data science and machine learning

Copyright@ Page 6

International Journal Research Publication Analysis

The commitment to Python-based ML has transitioned from academic utility to critical
corporate infrastructure. This is evidenced by the heavy investment in creating detailed
datasets and metrics specifically tailored for evaluating software quality within Python
AI/ML projects (Jafari et al., 2024). These resources track metrics such as technical debt,
refactoring records, and code quality issues. This intense focus on "maintainability and
reliability” (Ahmed et al., 2024) demonstrates that corporations are treating Python ML
models as critical production systems, requiring enterprise-grade stability. This process of
measuring and improving the technical debt inherent in complex Python ML systems
provides economic validation of the language’s long-term commercial viability in the Al

infrastructure domain.

3.3. Academic Research and Scientific Computing

Python's adoption extends deep into rigorous academic and scientific computation, where it is
utilized as a standard methodology. Libraries like SciPy have been a standard in open-source
scientific computing since 2001 (Virtanen et al., 2020). Coupled with visualization tools such
as Matplotlib and Seaborn (Singh et al., 2024), Python provides an integrated, robust

environment for analysis and presentation.

The language is extensively employed for quantitative analyses in diverse professional
research disciplines, including medical research, where Python is used alongside statistical
tools like R for hypothesis testing and descriptive statistics (Al-Shargi et al., 2025). This
high-level utilization in non-computer science domains validates the statistical and
computational integrity of the Python ecosystem. This cross-disciplinary endorsement by
various scientific fields significantly strengthens Python’s reputation as a universal and
trustworthy computational platform. The utility of Python across key application fields is
summarized in Table 2, highlighting the functional roles of its core frameworks.

Table 2 - Python's Ecosystem Dominance Across Key Application Fields.

Domain of Primary Observed Supporting Evidence

Application Library/Framework | Usage/Function Theme

) Dominant choice for
Foundation for model

Machine o .) ML/AI (Sengupta et al.,
] Scikit-learn, NumPy training and numerical
Learning / Al) 2022; Ahmed et al.,
operations
2024)

Copyright@ Page 7

International Journal Research Publication Analysis

Data Analysis / | Pandas, SciPy Data wrangling, Essential building

EDA statistical computation | blocks for data pipelines
(Sharma et al., 2020;
Virtanen et al., 2020)

System Dask, Custom Distributed GPU General-purpose

Automation /
DevOps

Libraries

computing, storage

management

distributed systems
support (Gu et al., 2020;
Alshomrani et al., 2023)

Back-End Web

Development

Django, Flask

Data-driven web
services and

application control

High developer usage
rate (International
Journal of Modern
Education Studies,
2024)

4 Versatility and Cross-Domain Application

4.1. Web Development Frameworks (Django and Flask)

Web development represents a significant sector of Python usage (International Journal of

Modern Education Studies, 2024). This success is supported by the availability of two major,

architecturally distinct frameworks: Django and Flask.

Django is a full-stack, convention-over-configuration framework that supports faster

Minimum Viable Product (MVP) development but requires developers to adhere to a steep

learning curve. In contrast, Flask is a minimalist micro-framework, offering greater

architectural flexibility and coherence in its APIs.

The co-existence of these successful frameworks provides a critical advantage in market

segmentation. By offering both the comprehensive, all-in-one solution (Django) for rapid

enterprise development and the flexible, high-control micro-framework (Flask) for modern

service architectures, Python avoids the limitations of language monoculture.

Copyright@

Page 8

International Journal Research Publication Analysis

4.2. System Automation and DevOpsPython is extensively utilized in system
administration, DevOps, and automation scripting (International Journal of Modern
Education Studies, 2024). Its primary strength in this domain is the ability to abstract
complex infrastructure interactions into readable, robust scripts. Advanced Python scripting
provides solutions for critical infrastructure tasks such as storage automation, which
significantly reduces manual errors and optimizes management processes (Alshomrani et al.,
2023).

Furthermore, Python supports sophisticated distributed computing environments,
demonstrated through general-purpose distributed GPU computing using systems like Dask
(Gu et al., 2020). This capability underscores the language's utility in orchestrating complex,
resource-intensive distributed environments. By enabling system administrators and DevOps
engineers to define both low-level system interactions and high-level application logic in the
same language, Python functions as an ideal bridging technology. This unification minimizes
context switching and ensures seamless, traceable integration between system operations and
application components (PharmaSUG, 2025).

1 The Performance Engineering: Mitigating Language Constraints

5.1. The Challenge of the Global Interpreter Lock (GIL)

The fundamental limitation often cited in Python is the Global Interpreter Lock (GIL)
(Factor B) in the standard CPython implementation. The GIL is a critical mechanism
designed to prevent multiple native threads from simultaneously executing Python bytecode.
While this protects shared resources and ensures built-in thread safety, it imposes a
significant ceiling on the performance of CPU-bound, multi-threaded applications, such as

large-scale numerical computations.

However, the perceived hindrance of the GIL is highly dependent on the application type. For
I/O-bound operations which characterize many modern applicationsthe GIL is released
during waiting periods. Furthermore, studies caution that attempting to globally disable the
GIL introduces severe risks, including thread-safety issues, compatibility failures with
existing libraries, and even potential performance degradation due to increased overhead in

memory management (Sotiriadis et al., 2022).

Copyright@ Page 9

International Journal Research Publication Analysis

5.2. Compilation Strategies: Cython and JIT Acceleration

To address performance limitations in CPU-intensive tasks, the Python ecosystem has
developed advanced compilation strategies. Just-In-Time (JIT) Compilation (Factor C),
notably implemented via Numba, translates Python functions into optimized machine code
during runtime using the LLVVM compiler infrastructure. Numba is particularly effective for
numerical algorithms involving NumPy arrays, often providing substantial speedups with

minimal code changes.

Performance comparisons confirm the efficacy of these tools: standard interpreters like
CPython and PyPy exhibit poor performance for parallelizable computational problems
(Sotiriadis et al., 2022). In contrast, Numba and Cython achieve significantly higher
performance for demanding applications (Sotiriadis et al., 2022). These high-performance
Python methodologies have demonstrated capacity for significant optimization, yielding
performance improvements of up to 2.47 times on the CPU and 3.75 times on the GPU
compared to earlier non-compiled approaches (Hoefler, 2024).

This success confirms that Python is structurally evolving into an efficient, high-level
wrapper and orchestration tool. It manages workflows and directs computationally intense
segments to specialized machine code execution layers facilitated by JIT compilation. This
approach effectively mitigates the performance penalties of Python's dynamic nature for
numerical workloads, allowing developers to retain the benefits of code readability and rapid
abstraction without sacrificing the required execution speed.

5.3. Interoperability and Extensibility

Python’s architectural extensibility is vital, allowing users to leverage language bindings and
foreign function interfaces (FFI) to call components written in other, often lower-level,
languages (Eugenio et al., 2025). This enables Python to function as an ideal "glue language,”
coordinating and controlling specialized, high-performance components (PharmaSUG, 2025).
The strategy of integration is evident in core libraries like Scikit-learn. While presenting a
consistent, high-level Python API, Scikit-learn incorporates reference implementations of key
algorithms via bindings to highly optimized compiled code, such as the external C++ libraries
LibSVM and LibLinear (Pedregosa et al., 2011). This design decision strategically leverages
decades of pre-existing, optimized numerical libraries developed in other computing

paradigms. By focusing its development effort on providing a productive and highly usable

Copyright@ Page 10

International Journal Research Publication Analysis

high-level wrapper, Python accelerates its functional capability and ensures that its users can
access native execution speeds, thereby guaranteeing its viability in complex scientific and

engineering domains.

A summary of the core performance constraints and the engineered mitigation strategies is

provided below.

Table 2 - Performance Mitigation Strategies and Their Effect on Computational

Efficiency

Performance Technical Mitigation Strategy Observed Outcome

Challenge Mechanism

CPU-Bound Global Multiprocessing, Just- | Studies confirm efficacy in

Multithreading Interpreter Lock | In-Time (JIT) or Static | specific 1/0-bound contexts
(GIL) (Factor B) | compilation (Sotiriadis et al., 2022)

Numerical Interpreted Just-In-Time (JIT) Significantly higher

Computation Execution Compilation (Numba) | performance compared to

Speed (Factor C) CPython (Sotiriadis et al.,

2022)

Leveraging Foreign Cython, integration of | Achieves performance gains

Legacy Code Function compiled C/C++ up to 3.75x compared to
Interface / libraries prior approaches (Hoefler,
Bindings 2024; Eugenio et al., 2025)

6. Community, Education, and Sustainability

6.1. Academic Adoption and Pedagogical Advantages

The comprehensive integration of Python into education is a critical factor assuring its long-
term viability. Python is increasingly selected as the initial programming language for
novices because its simpler syntax minimizes the complex hurdles associated with languages
like C++ or Java (Ahmad et al., 2015). This approach reduces the Cognitive Load (CL)
(Factor A) and allows students to focus on fundamental computational logic rather than

syntactic complexities (Ahmad et al., 2015).

Python is now the established "go-to language in academia,” utilized across all STEM

disciplines for purposes ranging from scientific simulation to statistical analysis.

Copyright@ Page 11

International Journal Research Publication Analysis

Furthermore, students in Information Systems and business curricula perceive Python skills,
particularly in data analytics, as highly relevant to their professional careers (Reinking et al.,
2022). This unique balance low complexity for introductory students combined with high
relevance in corporate domains (Al/data analytics) ensures a continuous, highly relevant

supply of skilled talent, which is crucial for supporting sustained corporate demand.

6.2. The Open-Source Development Model and Community Growth

The vast, open-source community provides the infrastructure necessary to support Python's
explosive growth. The community is intentionally diverse and dedicated to supporting
continuous growth, offering extensive resources and support channels for both beginner and
expert users. This collaborative model enables rapid iteration, efficient bug fixing, and
continuous improvement in the stability and quality of the enormous library ecosystem. The
transparency and open governance inherent in the development model attract corporate users
who depend on the stability of this ecosystem, thereby guaranteeing continued funding and

development efforts.

6.3. Corporate Demand and Professional Relevance

Corporate demand provides explicit economic validation of Python’s utility and efficacy in
production environments. Python skills are consistently ranked as highly sought after by
employers, reflecting the language's broad applicability in development and complex data

analysis roles.

1. Its deployment in high-stakes environments, such as the successful integration of Al and
machine learning solutions in corporate financial markets and business management (Abu-
Shanab, 2024), confirms Python's status as a critical enterprise tool. The commitment of
organizations to hire Python professionals and leverage the language for core functions—
such as automating financial processes (He et al., 2024) indicates that industry leaders
acknowledge Python’s advantages in productivity and ecosystem richness as decisively
outweighing its architectural constraints, securing its professional relevance for the

foreseeable future.

Copyright@ Page 12

International Journal Research Publication Analysis

7. CONCLUSION

7.1. Synthesis of Driving Factors

Python’s accelerated and sustained popularity is synthesized from a synergistic combination
of technical and sociological factors. Its intrinsic design guarantees low Cognitive Load (CL)
(Factor A) and high developer productivity (El-Sayed et al., 2023; EI-Ramly et al., 2024).
This foundation is powerfully augmented by a mature scientific ecosystem centered on the
standardized data structures provided by NumPy and Pandas, which has established Python
as the definitive environment for data science and Al applications (Pedregosa et al., 2011,
Sharma et al., 2020).

Architectural flexibility allows Python to dominate across diverse market segments, ranging
from monolithic web application development to specialized system automation (Gu et al.,
2020). Crucially, the community successfully engineered solutions specifically through Just-
In-Time (JIT) Compilation (Factor C) and sophisticated language bindings to strategically
mitigate the intrinsic performance limitations associated with the Global Interpreter Lock
(GIL) (Factor B) (Hoefler, 2024; Sotiriadis et al., 2022). This has transformed Python into an
efficient high-level orchestration language suitable for demanding scientific and enterprise
workloads. Finally, the powerful self-sustaining cycle driven by mass academic adoption and
continuous corporate demand guarantees both a skilled talent pipeline and perpetual
development investment (Reinking et al., 2022; Abu-Shanab, 2024).

7.2. Future Trajectories and Research Implications

Future research must focus on the advanced integration of Al-assisted code generation within
Python workflows. This necessitates moving beyond simple functional verification to
rigorously evaluate the computational efficiency and software quality metrics of code
generated by Large Language Models (LLMs) (Factor E) (Jafari et al., 2024). Concurrently,
pedagogical efforts must continue to integrate software engineering practices into
introductory Python courses, utilizing metrics to encourage student refactoring towards
optimal code quality (Rodrigues et al., 2022). Continued comparative studies on Python’s
performance mitigation techniques (JIT, Cython) against natively compiled languages are
essential to assess the long-term scalability of the language in extreme-scale computing
(Sotiriadis et al.,, 2022). The trajectory suggests Python is increasingly utilized as an
infrastructure orchestration layer, requiring ongoing examination of its role in advanced
hybrid and distributed system architectures (Gu et al., 2020).

Copyright@ Page 13

International Journal Research Publication Analysis

REFERENCES

1

10

11

12

ABU-SHANAB, E. (2024). ADOPTION AND INTEGRATION OF Al IN
ORGANIZATIONS: A SYSTEMATIC REVIEW OF CHALLENGES AND DRIVERS
TOWARDS FUTURE DIRECTIONS OF RESEARCH. EMERALD KNOWLEDGE,
53(1), 1-20.

Ahmad, K., & Hasan, T. (2015). Which programming language should students learn
first? A comparative study of Python and Java. In International Conference on Learning
and Teaching in Computing and Engineering. IEEE.

Ahmed, H., Aftab, M. N., & Butt, A. S. (2024). Leveraging Python in Al and Machine
Learning: A Survey of Techniques and Educational Approaches in Software
Engineering. ResearchGate Publication.

Al-Sharqi, A. H., Turaeva, N., & Abadi, M. (2025). Quantitative analyses using Python
and R in professional research. Journal of Medical Internet Research, 27(1), e84918.
Alshomrani, M., Alotaibi, S., & Almarsad, S. (2023). Advanced Python Scripting for
Storage Automation. International Journal of Modern Education Studies, 7(2), 23-45.
Bhandari, S., & Singh, R. (2023). Exploratory Data Analysis for Interpreting Model
Prediction using Python. IEEE Xplore.

Dhakne, K. M., Jadhav, P. A., & Mahajan, M. A. (2023). Comparative Analysis on the
Evaluation of the Complexity of C, C++, Java, PHP and Python Programming
Languages based on Halstead Software Science. International Journal of Computer and
Information Technology, 12(4), 185-190.

El-Ramly, S. A., El-Feky, S. A., & Khedr, A. A. M. (2024). Reconsidering Python
Syntax to Enhance Programming Productivity. International Journal for Research in
Applied Science and Engineering Technology, 12(3), 776-785.

El-Sayed, T., Khedr, A. A., & EI-Ramly, S. A. (2023). Examining Factors Influencing
Cognitive Load of Computer Programmers. MDPI Applied Sciences, 13(8), 1132.
Eugenio, J., Santos, J., & Diniz, J. (2025a). Extensibility in Programming Languages:
An overview. arXiv preprint arXiv:2501. XXXXY.

Eugenio, J., Santos, J.,, & Diniz, J. (2025b). Exploring Code Comprehension in
Scientific Programming: Preliminary Insights from Research Scientists. arXiv preprint
arXiv:2501. XXXXX.

Gautam, P., Singh, M., & Kumar, S. (2025). A comparison analysis between the C++

and python programming languages. ResearchGate Publication.

Copyright@ Page 14

International Journal Research Publication Analysis

13

14

15

16

17

18

19

20

21

22

23

24

25

Gu, W., Chen, Z., & Chen, J. (2020). Machine Learning in Python: Main Developments
and Technology Trends in Data Science, Machine Learning, and Aurtificial Intelligence.
MDPI Information, 11(4), 193.

He, X., Zhang, Y., & Li, Q. (2024). A Study on the Application of Python in Corporate
Financial Analysis. ResearchGate Publication.

Hoefler, T. (2024). Productivity, Portability, Performance: Data-Centric Python. ETH
Zurich Publication.

International Journal of Modern Education Studies. (2024). Analyzing Programming
Language Trends Across Industries: Adoption Patterns and Future Directions.

Jafari, H., Soltani, R., & Rostami, Z. (2024). Measuring and Improving the Efficiency
of Python Code Generated by LLMs Using CoT Prompting and Fine-Tuning. IEEE
Access.

Liu, W., Xu, K., & Zhang, T. (2024). Comparative Analysis of Al Models for Python
Code Generation: A HumanEval Benchmark Study. MDPI Applied Sciences, 15(18),
9907.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
V., Prettenhofer, P., Weiss, R., Dubourg, F., Vanderplas, J., Passos, A., Cournapeau, D.,
Brucher, M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research, 12, 2825-2830.

PharmaSUG. (2025). Building Extensible Python Classes for Analysis and Research:
It's Easier Than You Think! PharmaSUG Proceedings.

Reinking, A., & Blevins, D. (2022). Python Programming in an IS Curriculum:
Perceived Relevance and Outcomes. ERIC Full Text.

ResearchGate Publication. (2024a). Popularity of programming languages.

Rodrigues, R., de Souza, K., & Lima, P. (2022). Role of software quality metrics in the
automatic evaluation of Python introductory programming. Brazilian Applied Science
Review, 6(4).

Sengupta, S., & Mondal, A. (2022). Python dominance in data science and machine
learning. In International Conference on Smart Generation Computing, Communication
and Networking (SMART GENCON). IEEE.

Sharma, M., & Sharma, V. (2020). Scientific Computing and Data Analysis using
NumPy and Pandas. International Research Journal of Engineering and Technology,
7(12), 1335-1338.

Copyright@ Page 15

International Journal Research Publication Analysis

26 Silva, F. I, & Santos, T. (2025). APPLICATION OF PYTHON LANGUAGE IN
SEARCH ENGINE OPTIMIZATION: EXPLORING ITS CONTRIBUTION TO
DATA ANALYSIS. SciELO Preprints.

27 Singh, M., & Singh, R. (2024). Comparative Analysis of Data Visualization Libraries
Matplotlib and Seaborn in Python. ResearchGate Publication.

28 Sotiriadis, M., & Tsiatsos, T. (2022). Performance comparison of Python translators for
a multi-threaded CPU-Bound Application. ResearchGate Publication.

29 Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Redford, K., Cournapeau,
D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., & Polat, I.
(2020). SciPy 1.0: fundamental algorithms for scientific computing in Python.
Publications of the Astronomical Society of the Pacific, 132(1014), 084501.

Copyright@ Page 16

