

International Journal Research Publication Analysis

Page: 01-12

GREEN CONCRETE: A SUSTAINABLE APPROACH IN MODERN CONSTRUCTION-A REVIEW

K Siva Prasad ^{1*}, P Tharun Kumar²

¹ Assistant Professor, Sanskrithi School of engineering, puttaparthi, andrapradesh, India

² PG Student, Jawaharlal Nehru Technological University -Autonomous, Anantapur India

Article Received: 2 November 2025

***Corresponding Author: K Siva Prasad**

Article Revised: 22 November 2025

Assistant Professor, Sanskrithi School of engineering, puttaparthi, andrapradesh,

Published on: 12 December 2025

India. DOI: <https://doi-doi.org/101555/ijrpa.6003>

ABSTRACT

Green concrete is produced using eco-friendly waste materials, significantly reducing CO₂ emissions and minimizing environmental impact. It also reduces water consumption by up to 20%. Key factors driving the growth of the green concrete market include the reduction of carbon footprints by approximately 40-50% during production, the increasing construction activities in developing nations, and, most notably, the use of less water. In addition to these benefits, green concrete provides excellent thermal insulation and enhanced fire resistance, making structures built with it more durable and safer. There is considerable potential in using waste materials for green concrete production. By partially replacing traditional ingredients with waste materials and admixtures, green concrete can offer improved compressive and tensile strength, better sulfate resistance, reduced permeability, and enhanced workability.

KEY WORDS: Green concrete, Fly ash, Recycled aggregates, Blast furnace slag.

INTRODUCTION

Green concrete represents a revolutionary development in the history of the concrete industry, first invented in Denmark in 1998. The global construction industry is growing rapidly, and green concrete offers a cost-effective solution for this expansion. It is cheaper to produce because waste products are used as partial substitutes for cement, reducing disposal charges, lowering energy consumption during production, and enhancing durability. Waste materials can be repurposed to create new products or used as admixtures, leading to more

efficient use of natural resources and helping protect the environment from waste accumulation.

Green concrete typically incorporates 25% to 100% fly ash, replacing a full mixture of Portland cement. This process helps reduce carbon dioxide emissions and lowers the use of fossil fuels by increasing the use of waste-derived fuels in the cement industry. Additionally, structures made with green concrete have a minimal environmental impact throughout their service life. Replacing 50% of cement with slag, for example, has been shown to improve the tensile strength of recycled aggregate concrete. With the growing concern over climate change and environmental degradation, sustainable development has become a necessity for modern construction practices. One such innovation is green concrete, a revolutionary concept that combines environmental sustainability with structural performance. Green concrete is designed to minimize the carbon footprint associated with conventional concrete production, making it an essential material for eco-friendly infrastructure projects. This is achieved through the use of alternative materials, such as industrial by-products (like fly ash, slag, and rice husk ash) or recycled aggregates, which reduce the need for virgin raw materials. Additionally, the production of green concrete often involves lower energy consumption and fewer greenhouse gas emissions, contributing to the overall reduction of environmental impact in construction. Beyond environmental benefits, green concrete can also offer enhanced durability, which results in longer service life for structures and reduces the need for maintenance or premature replacements. This combination of sustainability and performance is increasingly critical as governments and industries strive to meet strict environmental regulations and contribute to climate change mitigation efforts. Green concrete not only helps reduce the environmental burden of construction but also promotes the development of resilient, sustainable infrastructure that supports the long-term well-being of communities and ecosystems.

1.1 What is Green Concrete?

Green concrete refers to concrete that is produced using recycled materials, industrial by-products, or eco-friendly alternatives to traditional cement and aggregates. The aim is to reduce the consumption of natural resources and decrease greenhouse gas emissions, particularly carbon dioxide (CO₂), which is a major by-product of cement manufacturing.

Unlike traditional concrete, green concrete incorporates sustainable materials such as:

- **Fly ash** (a by-product of coal combustion)

- **Ground granulated blast furnace slag (GGBS)**
- **Silica fume**
- **Recycled aggregates** (crushed concrete, construction waste, etc.)
- **Natural or artificial pozzolans**
- **Waste plastic fibers or rubber particles**

Fig.1: Concept of green concrete, depicting its integration into sustainable construction practices.

1.2 Need for Green Concrete

Concrete is the most widely used construction material worldwide, with an annual production exceeding 4 billion tons. However, its environmental impact is significant:

1. **CO₂ Emissions:** Cement production alone accounts for approximately 8% of global CO₂ emissions.
2. **Resource Depletion:** The extraction of natural aggregates and raw materials causes habitat destruction and resource scarcity.
3. **Energy Consumption:** Cement manufacturing is energy-intensive, contributing to higher carbon footprints.
4. **Waste Generation:** Construction and demolition activities generate enormous amounts of waste.

Green concrete addresses these challenges by offering a sustainable alternative that reduces emissions, conserves natural resources, and promotes the reuse of waste materials.

1.3 Composition and Materials in Green Concrete

Green concrete incorporates a variety of materials to achieve sustainability without compromising performance:

1. Cementitious Materials:

- Fly ash: Enhances workability and durability.
- GGBS: Improves strength and reduces permeability.
- Silica fume: Provides high strength and resistance to chemical attack.

2. Aggregates:

- Recycled concrete aggregates (RCA) from demolition waste.
- Crushed glass or ceramics as partial aggregate replacements.
- Lightweight aggregates from industrial by-products.

3. Admixtures:

- Superplasticizers to reduce water content.
- Air-entraining agents for improved freeze-thaw resistance.

4. Fibers and Additives:

- Waste plastic fibers, rubber particles, or steel fibers to enhance tensile strength and durability.

5. Water:

- Treated wastewater or recycled water can be used for mixing and curing.

2. METHODOLOGY

A. Use of inorganic waste in Green Concrete

Various materials have been identified as suitable for concrete production and selected for further development after extensive comparisons and evaluations focused on both concrete technology and environmental considerations. The primary type of cement used is Portland Pozzolana Cement, in accordance with the IS CODE 1489 (PART-1) 1991 standards.

B. Stone Dust

Stone dust, a byproduct of the crushing, breaking, and grinding of aggregates, is a non-reactive material with particle sizes that fall between those of cement and sand. It is intended to be used as a partial substitute for sand in concrete production.

C. Concrete Slurry

Concrete slurry is a waste material generated during the cleaning of equipment such as mixers in the concrete manufacturing process. It can exist in either dry or wet form, depending on its origin, and is recyclable in both states—either as dry powder or as a water-based slurry. Processing the dry material into powder is essential for its recycling. Its pozzolanic properties make it suitable for use as a partial replacement for cement.

D. Combustion Ash / Fly Ash

Fly ash is a byproduct of water-purification plants and factories. This type of ash shares similar characteristics in terms of particle size and shape with traditional fly ash, and its heavy metal content is roughly comparable. Additionally, it demonstrates a degree of pozzolanic activity, making it suitable for use in concrete production.

E. Smoke Waste

Smoke waste is generated from waste combustion processes. This material exhibits some pozzolanic-like properties. Notably, its metal content exceeds that of locally available fly ash. The presence of certain metals in smoke waste, such as chloride, fluoride, and sulfate, can influence factors such as reinforcement corrosion, retardation, and the formation of thaumasite—a calcium sulfate carbonate silicate hydrate that forms under cold, wet conditions. Further refinement and thorough analysis are necessary before considering its use in concrete production.

F. Different Methodologies for Green Concrete Manufacturing

To promote the responsible use of by-products in the concrete industry and reduce clinker content, one strategy involves replacing a portion of cement with materials such as micro silica and fly ash. The amount of cement replaced by fly ash can vary depending on the desired strength requirements for specific construction applications. Using waste or by-products from the construction industry is particularly beneficial for temporary structures with lower durability needs. Another approach focuses on developing various types of green cements and binding materials by exploring alternative raw materials that have lower carbon footprints while retaining essential properties similar to traditional concrete ingredients.

G. Selection of Method to Produce Green Concrete

Considering the availability and ease of access to fly ash, the method selected for the experimental study of green concrete involves replacing a portion of cement with fly ash at varying levels. This approach aims to explore its potential for producing more sustainable and eco-friendly concrete.

LITERATURE REVIEW

In 2024, researchers such as **Smith et al. (2024)** focused on enhancing the performance of green concrete by incorporating nanomaterials like nano-silica. Studies, including those by **Kumar et al. (2024)**, have shown that combining bio-based materials, such as hemp, straw, and bamboo, with green concrete can significantly enhance its sustainability and contribute to carbon sequestration.

The cement industry continues to explore alternative fuels and supplementary cementitious materials (SCMs) like fly ash, slag, and calcined clay to reduce CO₂ emissions and enhance the properties of green concrete. This work has been extensively studied by **Jones and Lee (2024)**, who emphasize the importance of these materials in creating more sustainable concrete.

The growing demand for green concrete in the global market is driven by its cost-effectiveness and environmental benefits. **Chavez and Gupta (2024)** highlight that waste-derived fuels and materials like fly ash are key drivers of adoption, especially in rapidly developing countries.

Researchers like **Patel et al. (2023)** and **Singh and Shah (2023)** focused on enhancing the durability of green concrete by incorporating nanoparticles and admixtures. Their findings showed that green concrete with 25% to 50% fly ash replacement had comparable or superior durability to conventional concrete, especially in terms of sulfate resistance, reduced permeability, and improved workability.

In a study by **Davis and Kumar (2022)**, it was found that while fly ash reduces the early compressive strength of green concrete, its strength continues to improve over time, particularly when combined with other materials like slag or silica fume.

Studies by **Patel and Gupta (2021)** and **Clark et al. (2021)** focused on reducing the carbon footprint of green concrete by incorporating alternative materials. Fly ash, slag, and recycled aggregates helped reduce CO₂ emissions by up to 50%, making green concrete an attractive option for sustainable construction. The environmental benefits were particularly emphasized in regions with high cement production and energy consumption.

Ali et al. (2021) reported that green concrete uses up to 20% less water than conventional concrete due to the lower water requirements of materials like fly ash and slag. This is particularly important in areas facing water scarcity (Elsevier).

Research by **Chandra and Kumar (2019)** and **Zhang et al. (2019)** focused on utilizing industrial waste products, such as fly ash, slag, and silica fume, as replacements for traditional cement. These waste materials not only helped in reducing environmental pollution but also lowered production costs. Their studies found that using up to 50% fly ash did not significantly reduce the strength of concrete, making it a viable alternative.

According to **Yadav and Singh (2019)**, green concrete demonstrated excellent thermal insulation properties and high fire resistance, which made it suitable for energy-efficient buildings. These properties also contributed to the safety and sustainability of structures made with green concrete.

Green concrete gained attention for its potential to reduce CO₂ emissions in the construction industry. Early studies by **Ghosh et al. (2017)** emphasized its potential in infrastructure projects, especially in urban areas where construction volumes were high. Researchers faced challenges in standardizing mix proportions and ensuring consistent performance compared to conventional concrete.

Studies by **Bhattacharya and Singh (2017)** confirmed that replacing traditional Portland cement with materials like fly ash and slag could cut CO₂ emissions by up to 40%, contributing to more sustainable construction practices.

Vinita Vishwakarma et al (2017) have investigated the waste materials from agriculture, industries, bio-waste, marine waste and e-waste can be recycled and used as a supplementary green concrete material. The waste products can be reused directly as a partial substitute of cement and save the energy consumption during the production of cement. The author also analysed the waste materials such as rice husk ash (RHA), saw dust ash (SDA), rubber crumb, plastic waste, coconut husk and shell, textile waste (sludge and fibre) etc recycle of such types of wastes can be used as an admixture to make the Green Concrete structures. This will reduce the quantity of cement used and CO₂ emission and reduce the global warming.

K.M.Liew et al (2017) have investigated the green concrete offers numerous environmental, technical benefits and economic benefits such as high strength, increased durability, improved workability and pump ability, reduced permeability, controlled bleeding, superior resistance to acid attack, and reduction of plastic shrinkage cracking .They also studied the Green concrete comes in various forms such as high-volume fly ash concrete, ultrahigh performance concrete, geopolymers concrete, lightweight concrete to mention a few. On the other hand, green concrete exhibit numerous advantages such as improvement in concrete properties, low carbon footprint, conservation of natural resources.

Roushan Kumar et al (2017) have studied it is a concept of thinking environment into concrete considering every aspect from raw materials manufacture over mixture design to structural design, construction, and service life. This was first invented in Denmark in the year 1998. GREEN concrete has nothing to do with colour. Green concrete is very Often and also cheap to produce, because for example, waste products are used as a partial substitute for cement, charges. The replacement of traditional ingredients of concrete by waste materials and by products gives an opportunity to manufacture economical and environment friendly concrete.

Nurdeen M. Altwair et al (2011) have investigated the flexural performance of green engineered cementitious composites (ECCs) containing high volume of palm oil fuel ash (POFA). The author also analysed some available experiments to monitor the flexural performance by curing the concrete using four-point bending test. The experimental results show the flexural performance was assessed after 3, 28, and 90 days. The results suggest that there is a corresponding reduction in the first cracking strength and flexural strength of the ECC beams with the increase of water–binder ratios and POFA content.

Bambang Suhendro et al (2014) have investigated the 8 to 10 percent of the world's total CO₂ emissions come from manufacturing cement. Green concrete is defined as a concrete which uses waste material as at least one of its components, or its production process does not lead to environmental destruction, or it has high performance and life cycle sustainability. Various efforts have been conducted by researchers to arrive at some alternatives that are able to significantly reduce high energy consumed and environmental impacts during fabrication process of cement.

Janez Turk et al (2015) have investigated the green concrete mixes were prepared from three different types of industrial by-products, i.e. (1) foundry sand, and (2) steel slag, both of which were used as manufactured aggregates, and (3) fly ash, which was used as a mineral admixture. Some green concrete mixes were also prepared from a recycled aggregate, which was obtained from reinforced concrete waste. In this way a circular economy could be established, so that the materials loops could be closed, as well as reducing the amount of waste which needs to be land filled.

Jing Yu et al (2016) have studied using a high dosage of fly ash in concrete is an effective approach to control the heat release rate, reduce the material cost and enhance the sustainability. However, ultrahigh-volume fly ash (UHVFA) concrete, with fly ash replacing over 60% of the binder by weight, often exhibits low compressive strength at an early stage, which limits the material to non-structural or semi-structural applications. Mechanical properties up to 360-day age were recorded, and the cementing efficiency factor of the fly ash was studied. The utilization of POFA was also observed to improve the resistance of concrete to chloride ion penetration reduce heat development, increase resistance to acidic environment and improve sulphate resistance of concrete.

Tomasz Błaszczyński (2015) have investigated the CO₂ is major gas just after steam causing this problem. The anthropogenic one is being real problem. It is because the fact that people are working hard to make CO₂ grow. Unfortunately, there is no technology to reduce carbon dioxide emission of clean Portland cement. According to data published in 1993 by founder of this technology, prof. Joseph Davidovits, is possible to reduce CO₂ emission from 40% to even 90% due to ordinary cement. This is possible because of fact, that geopolymers cement does not require calcium carbonate for binding.

The sustainable use of resources is especially important in the concrete production industry, since concrete is, worldwide, the most consumed building material (**Gursel et al., 2014**). However, it was concluded that the results of the alternative scenarios are, in general, not very sensitive to the delivery distances of the alternative materials.

Mohammed S. Imbabi (2013) have studied every tonne of Ordinary Portland Cement (OPC) that is produced releases on average a similar amount of CO₂ into the atmosphere, or in total roughly 6% of all man-made carbon emissions. Emission reduction is also needed to counter the impacts on product cost of new regulations, green taxes and escalating fuel prices .Fly

ash, Blast furnace slag and silica fumes are three well known examples of cement replacement materials that are in use today that, like OPC, have been documented and validated both in laboratory tests and in practice. Carbon-reducing cements, if they could be developed for commercial-scale application, probably offer the safest, most economical and elegant Carbon Capture and Storage (CCS) technology. The use of other fossil fuels such as biomass, on the other hand, can be an effective fuel substitute, producing CO₂ emissions that are about 20–25% less than those of coal.

Marie and Quasrawi, 2012; Van den Heede and De Belie, 2012 Author speculated that in next two decades worlds cement production will grow 3.5 times. From 1 billion of tones in year 1994 till 3.5 billion of tones in year 2014. Additional resources given by authorities and government on global, national and even local fields would really accelerate research which should be performing to implement new green binders. M.A. Megat Johari et al (2011) have studied the engineering and transport properties of high-strength green concrete (HSGC) containing up to 60% of ultrafine palm oil fuel ash (POFA). The ultrafine POFA obtained was then utilized in the production of HSGCs with POFA replacement levels of 0%, 20%, 40% and 60% by mass of ordinary Portland cement.

M.A. Megat Johari et al (2011) investigated the engineering and transport properties of high-strength green concrete (HSGC) incorporating up to 60% ultrafine palm oil fuel ash (POFA). The ultrafine POFA was used to produce HSGC with POFA replacement levels of 0%, 20%, 40%, and 60% by mass of ordinary Portland cement. The findings revealed that the treatment processes resulted in a highly effective pozzolan. These by-products, typically used as fuel in palm oil factories for boiler heating and electricity generation, showed promise in concrete production. However, the study also highlighted some limitations of POFA as a replacement material.

4. Benefits of Green Concrete

Reduced Carbon Footprint: By replacing a portion of cement with supplementary cementitious materials (SCMs), green concrete significantly cuts down CO₂ emissions.

- 1. Waste Utilization:** It promotes recycling by incorporating industrial waste, construction debris, and other by-products, reducing landfill stress.
- 2. Energy Efficiency:** The production of SCMs like fly ash and GGBS consumes less energy compared to cement, leading to energy savings.

3. **Durability and Strength:** Properly designed green concrete can achieve equal or superior mechanical properties compared to traditional concrete.
4. **Cost Savings:** The use of waste materials can lower production costs, making green concrete an economical choice.
5. **Resource Conservation:** Green concrete minimizes the consumption of natural resources like limestone, sand, and water.

4.1 Applications of Green Concrete

- **Pavements and roads**
- **Residential and commercial buildings**
- **Bridges and tunnels**
- **Retaining walls and dams**
- **Precast concrete products** (e.g., blocks, pipes, and panels)

4.2 Challenges and Limitations

1. **Material Availability:** Access to quality industrial by-products may be limited in certain regions.
2. **Initial Costs:** While long-term savings exist, initial investments in research, technology, and material procurement can be higher.
3. **Performance Variability:** The properties of recycled materials may vary, affecting the consistency and quality of green concrete.
4. **Lack of Awareness:** Many stakeholders in the construction industry remain unaware of the advantages and feasibility of green concrete.

4.3 Future Prospects

Green concrete holds immense potential for transforming the construction industry into a more sustainable sector. Future advancements include:

- Improved recycling technologies for consistent material quality.
- Development of alternative binders like **geopolymers** to replace cement completely.
- Adoption of **carbon capture technologies** in cement plants.
- Increased use of nanotechnology to enhance the properties of green concrete.

CONCLUSION

From review on the green concrete the following conclusion are made:

- **Sustainable Construction:** Green concrete is a significant step toward sustainable construction and environmental stewardship.

- **Recycled Materials:** It incorporates recycled materials such as fly ash, slag, and other industrial by-products, offering an eco-friendly alternative to conventional concrete.
- **Lower CO₂ Emissions:** Green concrete helps reduce CO₂ emissions, providing a more sustainable option without compromising performance.
- **Minimized Environmental Impact:** Unlike traditional concrete, which is energy-intensive and contributes to greenhouse gas emissions, green concrete uses waste materials that would otherwise end up in landfills.
- **Energy Efficiency:** Its production process requires less energy compared to traditional concrete, further reducing its carbon footprint.
- **Environmental Awareness:** Green concrete has emerged as a solution to reduce the environmental impact of the construction industry amid growing awareness of the challenges posed by traditional materials.
- **Technological Advancements:** Advancements in technology and material science are making green concrete production more efficient, cost-effective, and improving its strength, durability, and workability.
- **Ongoing Research:** Research continues to explore novel additives and waste materials to enhance green concrete's properties and broaden its applications.
- **Sustainability Targets:** Green concrete helps the construction industry meet sustainability targets and regulatory requirements.
- **Resource Efficiency:** It reduces dependence on non-renewable resources and promotes the recycling of industrial by-products.
- **Carbon Emissions Reduction:** Green concrete plays a key role in reducing carbon emissions, supporting the shift towards greener construction materials.
- **Broader Goals of Sustainable Development:** The adoption of green concrete represents a significant step toward achieving sustainable development goals in the construction sector.

Green concrete is a key advancement in sustainable construction, utilizing recycled materials like fly ash, slag, and other industrial by-products while reducing CO₂ emissions. It offers an eco-friendly alternative to conventional concrete, requiring less energy in production and minimizing environmental impact. Unlike traditional concrete, green concrete helps reduce landfill waste and lowers carbon footprints. With advancements in technology, it is becoming more cost-effective and efficient, improving strength, durability, and workability. As the construction industry faces growing sustainability demands, green concrete supports reduced

reliance on non-renewable resources, promotes recycling, and helps meet regulatory requirements, contributing to a more sustainable future and supporting broader sustainable development goals.

Data Availability Statement: All data and supporting reviews relevant to the findings of this study are fully presented in this paper.

Acknowledgment

This work is funded by the Sankrithi School of engineering, puttaprthi, Andhra Pradesh India. These supports are gratefully acknowledged.

REFERENCES:

1. H. K. Kim, G. Kim, and J. Lee, "Development of green concrete with high strength and sustainability using industrial by-products," *Journal of Cleaner Production*, vol. 156, pp. 803-811, Aug. 2017.
2. M. Thomas, "Optimizing the use of fly ash in concrete," *Portland Cement Association*, Skokie, IL, USA, Report EB227, 2007.
3. J. Khatib, "Performance of self-compacting concrete containing fly ash," *Construction and Building Materials*, vol. 22, no. 9, pp. 1963-1971, Sep. 2008.
4. V. G. Gopala Krishna Sastry, A. Bhargav, and C. Ganesh Kumar, "Utilization of waste materials in green concrete: A review," in *Proc. 4th Int. Conf. Recent Trends in Eng., Technol. Sci.*, Hyderabad, India, Mar. 2020, pp. 223-229.
5. R. Siddique, "Effect of fine aggregate replacement with class F fly ash on the mechanical properties of concrete," *Cement and Concrete Research*, vol. 33, no. 4, pp. 539-547, Apr. 2003.
6. H. Mehta and M. Shinde, "Advances in green concrete: A review on the influence of industrial by-products," in *Proc. IEEE Green Technologies Conf.*, Denver, CO, USA, Apr. 2021, pp. 49-54.
7. Kumar, S. Kumar, and R. Siddique, "Utilization of recycled concrete aggregates in self-compacting concrete," *Materials Today: Proceedings*, vol. 4, no. 2, pp. 1754-1762, Jan. 2017.
8. Singh and M. Kaur, "Green concrete: A sustainable approach using waste materials," *International Journal of Sustainable Construction Engineering and Technology*, vol. 12, no. 4, pp. 30-38, Dec. 2022.

9. S. Kou and C. Poon, "Properties of self-compacting concrete prepared with recycled glass aggregate," *Cement and Concrete Composites*, vol. 31, no. 2, pp. 107-113, Feb. 2009.
10. J. Yang, C. Liang, and W. Wu, "Recycling waste concrete in green building materials," *Environmental Science & Technology*, vol. 50, no. 1, pp. 235-243, Jan. 2016.
11. R. Malhotra, "High-performance high-volume fly ash concrete," *ACI Materials Journal*, vol. 101, no. 5, pp. 391-396, Sep. 2004.
12. M. Colangelo, R. Cioffi, and F. Montagnaro, "Recycling industrial waste in green concrete," *Sustainable Cities and Society*, vol. 27, pp. 259-266, Oct. 2016.
13. F. U. A. Shaikh, "Mechanical and durability properties of fly ash geopolymer concrete containing recycled coarse aggregates," *International Journal of Sustainable Built Environment*, vol. 5, no. 2, pp. 277-287, Dec. 2016.
14. D. Limbachiya, T. Leelawat, and R. Dhir, "Use of recycled concrete aggregate in high-strength concrete," *Materials and Structures*, vol. 33, no. 9, pp. 574-580, Sep. 2000.
15. K. M. Liew and S. A. Akbar, "The sustainability of using steel slag in concrete," *Journal of Cleaner Production*, vol. 120, pp. 1-14, May 2016.
16. P. K. Mehta, "Greening of the concrete industry for sustainable development," *Concrete International*, vol. 24, no. 7, pp. 23-28, Jul. 2002.
17. W. Wongkeo and P. Chaipanich, "Compressive strength and chloride resistance of self-compacting concrete containing high-level fly ash and silica fume," *Materials & Design*, vol. 35, pp. 584-589, Mar. 2012.
18. M. N. Soutsos, K. Tang, and S. G. Millard, "Use of recycled demolition aggregate in precast products," *Construction and Building Materials*, vol. 25, no. 11, pp. 4006-4019, Nov. 2011.
19. G. Li, "Recycling of waste glass in eco-friendly concrete," *Construction and Building Materials*, vol. 209, pp. 109-117, Jun. 2019.
20. S. K. Duggal, "A review on use of green materials in concrete for sustainability," *Materials Today: Proceedings*, vol. 46, pp. 1309-1315, 2021.
21. Mehta, P.K., & Monteiro, P.J.M. (2014). *Concrete: Microstructure, Properties, and Materials* (4th ed.). McGraw-Hill.
22. Kumar, P., & Garg, S. (2020). "Recent Advances in Green Concrete: A Review." *Construction and Building Materials*, 256, 119359.
23. Rashad, A. M. (2015). "A comprehensive overview about the influence of different materials used in the production of green concrete." *Construction and Building Materials*, 75, 75-91.

24. Zhang, M.H., & Li, H. (2017). "The Role of Waste Materials in Concrete Production." *Waste and Biomass Valorization*, 8, 1757-1772.
25. Megat Johari, M.A., & Omar, W. (2011). "Engineering and transport properties of high-strength green concrete containing ultrafine palm oil fuel ash." *Journal of Sustainable Development*, 4(6), 101-110.
26. Patel, M., & Shah, S. (2021). "Sustainability in the Construction Industry: Green Concrete Materials and Technology." *Sustainability*, 13, 2427.
27. Pacheco-Torgal, F., & Jalali, S. (2012). "Green Concrete: Sustainable Construction Materials." Springer Science & Business Media.
28. Purnell, P., & Blackburn, R. (2019). "The Role of Green Concrete in Reducing the Carbon Footprint of Construction." *Journal of Cleaner Production*, 232, 314-326.
29. Aci, M., & Tazehkand, A. (2020). "Review of green concrete materials and their applications in sustainable construction." *Materials Today: Proceedings*, 28, 755-762.
30. Kumar, P., & Garg, S. (2020). "Recent Advances in Green Concrete: A Review." *Construction and Building Materials*, 256, 119359.