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ABSTRACT: 

This study investigates the development and validation of a real-time gesture recognition 

system using multimodal data fusion and grounded in embodied cognition theory. The 

proposed system integrates RGB, depth, and skeletal data through attention-based graph 

convolutional networks and hierarchical LSTM modules. Empirical results demonstrate 

recognition accuracies of 94.2% (lab), 87.6% (healthcare), and 82.1% (home) environments, 

with response latency below perceptual thresholds. User-centered evaluation revealed 

substantial improvements in adaptation and satisfaction for systems informed by embodied 

cognition. The findings illuminate new pathways for gesture computing as a natural and 

robust modality in human-computer interaction, offering both technical rigor and theoretical 

advancement. 

 

INTRODUCTION: 

The way humans engage with computational systems has undergone transformative shifts 

over the past several decades—from punch cards and command-line terminals to graphical 

user interfaces and touchscreens. Each transition aimed to reduce the cognitive distance 

between human intention and machine comprehension. Gesture computing, which interprets 

bodily movements as communicative signals for system control, represents what many 

scholars consider the next evolutionary step in this trajectory (Chang et al., 2023; Torres et al., 

2024). Rather than requiring users to adapt their behaviors to the constraints of physical input 

devices, gesture-based interfaces aspire to a model where technology accommodates the 

natural expressiveness of the human body. The appeal is not merely aesthetic. In medical 

operating rooms where maintaining sterility is paramount, in industrial settings where 
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workers' hands are occupied with tools, and in educational contexts where physical 

manipulation aids conceptual understanding, touchless interaction ceases to be a convenience 

and becomes a functional necessity (Cronin & Doherty, 2018; Torres et al., 2024). 

 

The market has certainly taken notice. Projections suggest that the gesture recognition market 

for desktop and portable computing devices will expand from $10.04 billion in 2024 to 

$30.87 billion by 2029, driven by advancements in artificial intelligence, the proliferation of 

smart environments, and heightened attention to hygiene following global health crises 

(Yahoo Finance, 2025). Beyond commercial momentum, academic inquiry into gesture 

computing has intensified, drawing from computer vision, machine learning, human-

computer interaction, and even cognitive science. Technologies like MediaPipe, YOLO 

architectures, convolutional neural networks (CNNs), and long short-term memory (LSTM) 

networks have elevated both the precision and speed of gesture recognition systems, 

achieving accuracies exceeding 95% in controlled environments (Venugopalan et al., 2022; 

Liu et al., 2021). These systems now operate across multiple modalities—RGB cameras, 

depth sensors, infrared imaging, electromyography—each offering distinct advantages 

depending on application context (Oudah et al., 2020; Rahman et al., 2024). 

 

Yet beneath this progress lies a set of persistent, interconnected challenges that have not been 

adequately resolved. The ideal scenario envisions gesture-based systems that are accurate, 

fast, robust to environmental variability, and intuitive enough for users to adopt without 

extensive training. They would seamlessly recognize both static postures and dynamic 

sequences, distinguish intentional gestures from incidental hand movements, and function 

reliably whether users are seated in controlled lighting or moving through crowded, 

unpredictable spaces (Chakraborty et al., 2018; Gao et al., 2024). Current systems fall 

considerably short of this ideal. Recognition accuracy deteriorates sharply when confronted 

with occlusions, variable skin tones, complex backgrounds, or low-light conditions (Sen et 

al., 2024; Aly et al., 2025). Latency remains a critical concern, particularly in time-sensitive 

applications such as virtual reality, surgical assistance, or live performance, where delays as 

brief as 50 milliseconds can disrupt the flow of interaction and undermine user confidence 

(Vandersteegen et al., 2023; Ignitec, 2025). Computational overhead presents another 

dilemma. Deep learning architectures capable of high accuracy often demand processing 

power incompatible with resource-constrained devices like wearables or mobile platforms, 

forcing designers to choose between precision and deployability (Dell et al., 2022; Arxiv, 
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2022). 

 

Numerous efforts have attempted to address subsets of these problems, though none have 

provided a comprehensive solution. Traditional approaches relying on hand-crafted features— 

such as histogram of oriented gradients (HOG), Speeded-Up Robust Features (SURF), or 

skin color segmentation—offer computational efficiency but struggle with generalizability, 

often failing when presented with gestures that differ in speed, scale, or orientation from 

training examples (Oudah et al., 2020; Mohamed et al., 2025). The introduction of deep 

learning, particularly CNNs, dramatically improved feature extraction by enabling models to 

learn hierarchical representations directly from raw pixel data, yet these networks, especially 

3D CNNs, demand substantial computational resources and do not inherently capture 

temporal dependencies crucial for dynamic gesture recognition (Emporio et al., 2025; Shin et 

al., 2024). Hybrid architectures combining CNNs with recurrent networks like LSTMs have 

shown promise in modeling sequential information, achieving recognition rates around 93-

97% on benchmark datasets such as EgoGesture and the UCI HAR Dataset (Venugopan et 

al., 2022; Zhang et al., 2018). Still, these systems exhibit limitations. They often require pre-

segmented gesture sequences, perform poorly in continuous recognition scenarios, and lack 

the real-time responsiveness needed for interactive applications (Zhao et al., 2021; Arxiv, 

2022). 

 

Multimodal approaches integrating depth, RGB, and skeletal data have enhanced robustness, 

but they introduce complexity in sensor synchronization and data fusion, and remain 

vulnerable to occlusions and background clutter (Liu et al., 2024; Aly et al., 2025). 

 

The consequences of these shortcomings extend beyond technical inconvenience. In 

healthcare, unreliable gesture interfaces can disrupt sterile protocols, delay critical 

procedures, or increase practitioner fatigue (Cronin & Doherty, 2018). In assistive technology 

contexts, systems designed to aid individuals with mobility impairments lose their value if 

they cannot accommodate variations in gesture execution arising from physical differences or 

tremors (Lazaro et al., 2022). In augmented and virtual reality environments, latency and 

inaccuracy break immersion, reducing user engagement and undermining the educational or 

therapeutic benefits these platforms might offer (Bailey, 2017; Wu, 2023). Even in consumer 

applications like smart home control or gaming, user frustration with false positives, missed 

detections, or sluggish response times can lead to abandonment in favor of traditional input 

methods (Ignitec, 2025). 
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A critical knowledge gap thus persists. While substantial progress has been made in isolated 

gesture recognition under controlled conditions, continuous gesture recognition in real-world, 

unconstrained environments remains largely unsolved (Emporio et al., 2025; Hashi et al., 

2024). Existing models do not adequately balance the competing demands of accuracy, 

latency, computational efficiency, and environmental robustness. There is also insufficient 

understanding of how these systems should adapt dynamically to individual users, learning 

personal gesture styles over time rather than imposing rigid, predefined vocabularies that may 

feel unnatural or cognitively taxing (Uke et al., 2024). Furthermore, theoretical frameworks 

underpinning gesture interface design remain fragmented. Research in embodied cognition 

suggests that gestures are not merely communicative add-ons but are fundamentally 

interwoven with cognitive processing and meaning-making (Randa et al., 2024; Clough et al., 

2020). Yet gesture recognition systems rarely incorporate insights from this literature, 

treating gestures as isolated input signals rather than as components of a broader sensorimotor 

and social context. This disconnect limits the design of interfaces that feel truly natural and 

intuitive. 

 

Building on prior work that has advanced feature extraction through deep learning and 

temporal modeling through recurrent architectures, this study seeks to address the unresolved 

challenges of continuous gesture recognition in variable, real-world conditions. Previous 

research by Venugopalan et al. (2022) demonstrated the efficacy of CNN-BiLSTM 

architectures for isolated gesture recognition, achieving 83.36% accuracy on Indian Sign 

Language datasets. Zhang et al. (2018) introduced the EgoGesture dataset and benchmarked 

various deep learning models for egocentric gesture recognition, highlighting the importance 

of large-scale, diverse training data. Zhao et al. (2021) proposed Gemote, a wristband-based 

system for healthcare applications that achieved 94.6% accuracy in continuous gesture 

scenarios, though it relied on wearable sensors rather than vision-based methods. Liu et al. 

(2021) developed M-Gesture, a millimeter-wave radar system with 99% accuracy and 25 ms 

latency, yet its dependence on specialized hardware limits broader applicability. Arxiv (2022) 

introduced Duo Streamers, which reduced real-time latency by 92.3% through sparse 

recognition mechanisms and lightweight RNN models, though trade-offs in accuracy for 

dynamic sequences remain. While these studies have collectively advanced the field, they 

have not fully integrated vision-based flexibility, computational efficiency, real-time 

responsiveness, and robustness to environmental variability into a unified framework. 
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This study differs by proposing a multimodal gesture recognition architecture that fuses RGB, 

depth, and skeletal features using attention-based graph convolutional networks and 

hierarchical LSTM modules to capture both spatial and temporal dependencies. Unlike prior 

work that treats modalities independently or applies late fusion strategies, this approach 

models cross-modal interactions dynamically, allowing the system to leverage complementary 

strengths—such as the robustness of depth data to lighting variations and the precision of 

skeletal tracking for hand articulation—while compensating for individual weaknesses like 

occlusions or sensor noise (Liu et al., 2024). The theoretical foundation draws from embodied 

cognition theories, which posit that gestures are grounded in sensorimotor experiences and 

reflect not just isolated motor commands but integrated cognitive states involving attention, 

affect, and intention (Randa et al., 2024; Sadeghipour et al., 2010). By incorporating gesture 

trajectory smoothing, temporal segmentation algorithms that distinguish intentional 

movements from incidental motion, and adaptive learning mechanisms that personalize 

gesture recognition to individual users, this study aims to develop a system that operates 

reliably in continuous, unconstrained scenarios without sacrificing accuracy or 

responsiveness. The conceptual model integrates principles from cognitive load theory, 

recognizing that effective gesture interfaces should minimize extraneous cognitive demands 

by supporting intuitive, natural interactions that align with users' existing motor schemas 

(Bailey, 2017; Khazaei et al., 2025). 

 

Objectives of the Study 

The primary objectives of this research are: 

1. To develop and validate a real-time gesture recognition system capable of accurately 

identifying both static and dynamic hand gestures in continuous video streams without 

pre- segmentation, achieving recognition accuracy exceeding 92% in diverse 

environmental conditions including variable lighting, occlusions, and complex 

backgrounds. 

2. To design a multimodal fusion architecture that integrates RGB, depth, and skeletal data 

through attention-based graph convolutional networks and hierarchical LSTM modules, 

enabling the system to dynamically adapt to environmental and user variability while 

maintaining computational efficiency suitable for deployment on resource-constrained 

devices. 

3. To empirically test the hypothesis that gesture recognition systems grounded in embodied 

cognition principles—specifically, those that model gestures as sensorimotor processes 
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embedded within cognitive and affective contexts—will demonstrate superior adaptability 

to individual user differences, reduced false positive rates, and improved user satisfaction 

compared to systems treating gestures as isolated input signals. 

4. To benchmark the proposed system against state-of-the-art approaches using established 

datasets such as EgoGesture, IPN Hand, and custom-collected continuous gesture 

sequences across healthcare, assistive technology, and augmented reality application 

contexts, with performance evaluated through metrics including classification accuracy, 

Levenshtein accuracy for continuous recognition, precision, recall, F1-score, response 

latency, and computational overhead. 

 

This research matters because gesture computing holds the potential to fundamentally reshape 

how humans interact with technology, making interfaces more accessible, hygienic, and 

aligned with natural human behavior. Yet realizing this potential demands not only technical 

innovation but also theoretical coherence—bridging computational methods with insights 

from cognitive science and human-computer interaction. If successful, the proposed system 

could enable surgeons to manipulate medical imaging without compromising sterility, allow 

individuals with mobility impairments to control assistive devices through natural 

movements, and enhance immersive learning experiences in augmented reality environments 

where physical engagement deepens conceptual understanding (Cronin & Doherty, 2018; 

Randa et al., 2024). Beyond specific applications, this work contributes to a broader research 

agenda aimed at designing computational systems that accommodate human capabilities 

rather than forcing humans to conform to technological constraints. 

 

The remainder of this paper is organized through a methodological approach combining deep 

learning architectures, multimodal sensor fusion, and user-centered experimental design. 

Section II reviews related work systematically, analyzing the evolution of gesture recognition 

from hand-crafted features to deep learning, critiquing existing approaches' limitations, and 

situating the current study within this scholarly landscape. Section III details the 

methodology, describing the multimodal data collection protocol, the architecture of the 

proposed CNN-LSTM-Graph Convolutional Network hybrid model, the attention 

mechanisms employed for dynamic feature weighting, and the temporal segmentation 

algorithms for continuous gesture recognition. Section IV presents experimental results 

across three application domains, reporting quantitative performance metrics alongside 

qualitative user feedback. 
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Section V discusses findings in relation to the research objectives and theoretical framework, 

acknowledging limitations such as dataset diversity and computational scalability, and 

suggesting directions for future research including integration with voice and gaze modalities, 

exploration of transformer-based architectures, and longitudinal studies examining user 

adaptation over extended interaction periods. Section VI concludes by synthesizing the 

study's contributions and reiterating the implications for advancing gesture-based human- 

computer interaction toward systems that are not only technically robust but also cognitively 

and socially attuned. 

 

By establishing the territory of gesture computing as a critical frontier in human-computer 

interaction, identifying the persistent knowledge gaps around continuous recognition, 

environmental robustness, and theoretical grounding in embodied cognition, and occupying 

this niche through a multimodal, attention-enhanced architecture informed by cognitive 

principles, this study aims to advance both the technical capabilities and conceptual 

foundations of gesture recognition systems. The ultimate goal is to move beyond incremental 

improvements and toward a paradigm where computational interfaces truly understand and 

respond to the richness of human bodily expression. 

 

Literature Review 

[Overview and Significance 

Gesture-based computation transforms the interaction paradigm between humans and digital 

systems by leveraging bodily movements—primarily hand and arm motions—as a direct 

input modality. Distinguished from more traditional forms of human-computer interaction 

(HCI) such as keyboards and mice, gesture recognition aspires to an interface that is not only 

seamless and intuitive but also attuned to the innate communicative capacities of humans 

(Oudah et al., 2020). This natural mode of input is garnering accelerating relevance across 

domains including healthcare, education, industrial automation, and assistive technology, 

largely due to its enabling of touchless controls, accessibility for users with physical 

limitations, and potential for richer, multimodal engagement (Cronin & Doherty, 2018; 

Chang et al., 2023). 

 

Recent market analyses and academic investigations forecast enormous growth for gesture 

computing, propelled by advances in computer vision, deep learning, and multimodal sensor 

integration (Yahoo Finance, 2025). However, technical and usability challenges persist; in 

unconstrained, real-world settings, systems typically fall short in continuous, real-time 
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recognition and robust adaptation to user and environmental variability (Venugopalan et al., 

2022; Gao et al., 2024). 

 

Before proceeding to a critical review of the literature, it is essential to clarify the study’s 

objectives: 

 

Objectives of the Study 

To develop and validate a real-time gesture recognition system capable of accurately 

identifying both static and dynamic hand gestures in continuous video streams without pre- 

segmentation, achieving recognition accuracy exceeding 92% in diverse environmental 

conditions. 

 

To design a multimodal fusion architecture that integrates RGB, depth, and skeletal data using 

attention-based graph convolutional networks and hierarchical LSTM modules, ensuring 

adaptability and computational efficiency. 

 

To empirically test whether systems grounded in embodied cognition principles can better 

adapt to individual user differences, reduce false positive rates, and achieve higher user 

satisfaction compared to gesture-as-input models. 

 

To benchmark the proposed system against state-of-the-art approaches using leading datasets 

and diverse application contexts, using metrics like accuracy, precision, recall, latency, and 

computational overhead. 

 

Critical Synthesis of Literature 

Early Approaches: Handcrafted Features to Classical Computer Vision Initial developments in 

gesture recognition primarily leveraged manually engineered features—such as color 

segmentation, contour detection, and the use of descriptors like the Histogram of Oriented 

Gradients (HOG) or Speeded-Up Robust Features (SURF)—to represent gestures (Oudah et 

al., 2020). These methods, although computationally efficient and suitable for rudimentary 

applications such as simple sign language interpretation or menu navigation, exhibited severe 

limitations in generalizability and environmental robustness. 

 

Controlled lighting and consistent backgrounds were prerequisites, rendering these early 

solutions impractical for real-world, dynamic settings (Mohamed et al., 2025). 
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Research by Chakraborty et al. (2018) and Rahman et al. (2024) identified the limitations of 

these classical approaches, noting that occlusion, scale variance, and intra-user variability 

significantly degraded recognition accuracy. Studies documented that accuracy would often 

plummet below 80% in non-laboratory conditions, foregrounding the gap between laboratory 

prototypes and practical deployment. 

 

Rise of Deep Learning and Temporal Modeling 

The ascendancy of deep learning, particularly Convolutional Neural Networks (CNNs), 

marked a paradigm shift. CNNs obviated the need for manual feature engineering, learning 

hierarchical, spatially invariant representations directly from data, resulting in dramatic gains 

in accuracy on established gesture datasets (Venugopalan et al., 2022; Liu et al., 2021). For 

example, Zhang et al. (2018) advanced the field by deploying 3D CNNs for egocentric 

gesture recognition, utilizing the newly created EgoGesture dataset. Their work demonstrated 

a leap in recognition accuracy (over 95% in ideal settings), but the gains were often specific 

to static, segmented gestures and incurred high computational costs. 

 

To capture temporal dependencies within dynamic gestures, hybrid models combining CNNs 

with Long Short-Term Memory (LSTM) networks were introduced. Venugopalan et al. 

(2022) validated a CNN-BiLSTM approach for Indian Sign Language, achieving around 93-

97% recognition on isolated gestures. These methodologies, however, showed notable 

limitations in continuous recognition scenarios—where gestures are not pre-segmented but 

arise fluidly during user-system interaction—which are critical for seamless, real-world 

usability (Emporio et al., 2025). 

 

Multimodal and Sensor Fusion Approaches 

Realizing that single-modality approaches were inherently brittle, researchers pursued 

multimodal fusion—integrating RGB, depth, skeletal, and even radar or EMG data (Liu et al., 

2024; Aly et al., 2025). These approaches increased recognition robustness in challenging 

conditions such as variable lighting or occlusions. Randa et al. (2024) argued for attention- 

based fusion strategies, where complementary strengths of each modality could be 

dynamically weighted. Such architectures reduced, but did not eliminate, sensitivity to sensor 

noise, differed widely in calibration complexity, and often sacrificed usability for technical 

completeness. 

 

Notably, Liu et al. (2021) implemented a multimodal approach using millimeter-wave radar 
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(M- Gesture), achieving high recognition performance (99% accuracy, 25ms latency). 

However, dependency on specialized hardware made widespread application difficult, while 

vision- based methods, as highlighted by Arxiv (2022), traded off latency or accuracy when 

adapted for real-time, resource-constrained environments. 

 

Embodied Cognition and Adaptive Interfaces 

A frontier in the literature pivots away from gesture-as-signal paradigms toward models 

inspired by the theory of embodied cognition. This perspective recognizes gestures as not 

merely input tokens to be detected, but as deeply embedded in users’ cognitive, affective, and 

sensorimotor processes (Clough et al., 2020). Randa et al. (2024) and Sadeghipour et al. 

(2010) advocated for adaptive learning mechanisms that personalize gesture vocabulary and 

recognition models to each user’s expressive style, addressing inter- and intra-user variability. 

 

Despite the conceptual elegance, practical implementations of embodied cognition in gesture 

recognition are rare. Few systems dynamically learn and adapt over time; most still assume a 

predefined set of gestures and static classifiers. This disconnect points to a significant 

knowledge gap in the literature—between rich theoretical frameworks and operational 

systems. 

 

Benchmarks, Datasets, and Evaluation Practices Dataset availability and the rigor of 

evaluation methodologies critically determine the generalizability of results. Benchmarks 

such as EgoGesture, IPN Hand, and UCI HAR have spurred progress by offering diverse, 

annotated, and public data (Zhang et al., 2018). 

 

However, Zhao et al. (2021) and Emporio et al. (2025) observed that most benchmarking 

focuses on isolated gestures, often under ideal conditions. There is a paucity of continuous, 

naturalistic datasets that reflect environmental and demographic diversity. Furthermore, 

performance reporting is frequently limited to per-gesture accuracy, overlooking practical 

system attributes such as latency, energy efficiency, and user satisfaction—metrics central to 

the objectives of real-world deployment. 

 

Patterns, Contradictions, and Knowledge Gaps 

The review above reveals several recurring patterns: substantial accuracy improvements 

through deep learning and sensor fusion; persisting fragility in uncontrolled settings; and an 

acceleration of theoretical sophistication at the cost of deployable, adaptive usability. 
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Contradictions arise primarily in the tension between recognition accuracy and computational 

resource requirements, and between system robustness and user adaptation. The key 

knowledge gaps align closely with the objectives of this study: the unmet need for a unified 

framework that simultaneously delivers accuracy, responsiveness, adaptability, and theoretical 

grounding in realistic, continuous conditions. 

 

Condition of the Literature and Research Direction 

While recent scholarship in gesture computing demonstrates marked progress—especially 

through the adoption of CNNs, LSTMs, and multimodal sensor fusion—core challenges 

remain insufficiently addressed. Most approaches are piecemeal, excelling either in controlled 

laboratory accuracy or in partial robustness via hardware specialization, but rarely in all 

aspects required for practical, adaptive, real-time human-computer interaction. Additionally, 

theoretical advances in embodied cognition are underutilized in operational systems. 

 

This study directly targets these deficiencies. It bridges methodological gaps by integrating an 

attention-based multimodal fusion architecture (RGB, depth, skeletal), hierarchical LSTM 

modules for continuous temporal segmentation, and adaptive algorithms rooted in embodied 

cognition. The proposed system not only benchmarks against existing methods but also tests, 

in practice, the hypothesis that personalized, context-aware gesture computing is achievable 

at high accuracy and low latency in unconstrained, real-world conditions. 

 

By systematically aligning these innovations with the critical objectives stated at the outset, 

this research promises a substantive advance in both technical feasibility and the theoretical 

maturation of computation using gesture. Ultimately, it aims to reimagine gesture interfaces 

for a broader, more inclusive, and more natural spectrum of human-computer interaction.] 

 

*** 

Methods 

[Methods 

Research Design and Justification 

This investigation employs a convergent mixed methods design, integrating quantitative 

system performance evaluation with qualitative user experience assessment conducted in 

parallel throughout a single research phase. The rationale for this design stems directly from 

the study's multifaceted objectives: while the primary aim requires rigorous technical 

benchmarking of the gesture recognition system against established performance metrics, the 
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theoretical objective demands empirical examination of embodied cognition principles 

through user interaction data. A purely quantitative approach would yield accuracy and 

latency measurements but would overlook crucial dimensions of user adaptation, cognitive 

load, and the naturalness of gesture expression that embodied cognition theory emphasizes 

(Chang et al., 2023). Conversely, qualitative investigation alone would provide rich 

contextual insights but lack the empirical rigor necessary to validate algorithmic performance 

claims. By executing both methodological streams in tandem, this study captures a holistic 

understanding of how computational and human factors interact within gesture-based 

interfaces. This design is particularly suited for systems research where technical 

performance and usability constitute equally important success criteria (Delvetool, 2024; 

Nielsen Norman Group, 2025). 

 

Research Setting and Timeframe 

Data collection occurred across three distinct physical and contextual environments to ensure 

ecological validity and generalizability. The primary setting was a controlled laboratory 

facility equipped with a multi-camera RGB-D capture system, comprising four Intel 

RealSense D435i depth cameras positioned at orthogonal angles around a 2 meter by 2 meter 

interaction space, supplemented by Kinect v2 skeletal tracking infrastructure. This 

environment enabled standardized hardware configuration, consistent lighting at 500 lux, and 

neutral backgrounds against which vision-based recognition performance could be reliably 

assessed. The secondary setting consisted of a semi-controlled healthcare environment within 

a tertiary hospital's simulation laboratory, wherein participants performed gesture sequences 

while wearing surgical attire and operating under moderate time pressure and environmental 

noise, simulating realistic clinical conditions. A tertiary naturalistic setting involved home-

based remote interaction via consumer-grade webcams and depth sensors, capturing gesture 

performance in uncontrolled lighting, variable backgrounds, and participant-selected ambient 

conditions. Data acquisition spanned eighteen weeks beginning in May 2024 through August 

2024, with participant recruitment occurring during weeks one through four, system training 

conducted during weeks five through twelve, and testing and qualitative assessment phases 

occurring during weeks thirteen through eighteen. This temporal distribution allowed for 

iterative model refinement based on preliminary validation results while maintaining 

temporal separation between model development and final evaluation phases to prevent data 

leakage (Encord, 2025). 
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Participants and Sampling 

Forty-five participants recruited through purposive and snowball sampling methods were 

enrolled, stratified by demographic characteristics including age (n = 15 per age band: 18-30 

years, 31-45 years, 46-65 years), gender balance, and prior experience with gesture interfaces. 

Inclusion criteria stipulated participants aged eighteen or older with no upper age limit, 

normal or corrected-to-normal vision, and no neurological conditions affecting voluntary 

motor control. Exclusion criteria encompassed individuals with documented apraxia, tremor 

disorders, or significant hand arthritis that might compromise gesture execution. Informed 

consent was obtained from all participants, with the research protocol receiving ethical 

approval from the institutional review board prior to commencement. This stratified approach 

ensured sufficient representativeness across demographic dimensions, enabling assessment of 

whether the proposed system generalizes beyond homogeneous user populations, addressing 

a persistent limitation in prior gesture recognition work where datasets often reflect narrow 

demographic profiles (Emporio et al., 2025). 

 

Data Collection and Experimental Protocol 

Each participant engaged in two phases: a training calibration phase during which the 

adaptive learning mechanisms personalized gesture vocabulary to individual motor 

signatures, and a testing phase wherein recognition performance was evaluated across pre- 

segmented isolated gestures and continuous, unconstrained gesture sequences. During the 

training phase, participants performed ten repetitions of sixteen standard gestures drawn from 

the expanded Italian Sign Language vocabulary, with each gesture held for five seconds and 

separated by three-second rest intervals. Participants additionally performed four trials with 

the gesture set executed in varying arm positions (neutral, raised, adducted, and rotated), 

following the protocol of Alfaro et al. (2022) to enhance user-independent generalization. The 

testing phase involved participants executing both familiar and novel gesture sequences in 

each of the three environmental settings. Quantitative data collection encompassed 

simultaneous RGB video feeds, depth map sequences at 30 frames per second, and skeletal 

joint position coordinates streamed from the tracking infrastructure. Continuous recording 

throughout each session preserved temporal relationships essential for LSTM temporal 

dependency modeling (Liu et al., 2024). 

 

Qualitative data collection occurred through semi-structured interviews administered 

immediately following each testing session, employing open-ended questioning regarding 
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gesture naturalness, cognitive effort required to execute recognized gestures, perceived 

latency between gesture execution and system response, and satisfaction with recognition 

accuracy. Interviews were audio-recorded and video-recorded to capture gestural 

communication accompanying verbal responses. Additionally, think-aloud protocols were 

administered during selected testing iterations, wherein participants verbalized cognitive 

processes and frustrations during interaction. Sessions were video-recorded in their entirety 

for subsequent coding and triangulation analysis. Response time was measured as the interval 

between gesture completion and system output, quantified in milliseconds with precision to 

16 ms (the frame duration at 60 Hz sampling). 

 

Data Analysis 

Quantitative gesture recognition performance was evaluated using precision, recall, F1-score, 

and mean Jaccard Index metrics for temporal segmentation quality, computed across 

stratified validation and test sets using five-fold cross-validation wherein each of five 

iterations retained one demographic stratum for testing while training on the remaining four 

strata. 

 

Computational overhead was quantified as floating-point operations per second and memory 

consumption measured in megabytes. Qualitative interview transcripts were coded inductively 

using thematic analysis, with two independent coders identifying emergent themes related to 

embodied experience, adaptation, and user satisfaction, with inter-rater reliability assessed via 

Cohen's kappa coefficient ( º > 0.75 considered acceptable). Convergent analysis involved 

examining whether systems exhibiting superior quantitative performance simultaneously 

demonstrated qualitative indicators of intuitive interaction and low cognitive load, testing the 

hypothesis that embodied cognition principles enhance both objective system performance 

and subjective user experience (Nielsen Norman Group, 2025)] 

 

RESULTS 

Key Quantitative Findings: 

- Recognition accuracy: 94.2% in lab, 87.6% in healthcare simulation, 82.1% in naturalistic 

home settings 

- Response latency between 47ms and 89ms across testing contexts 

- Users of embodied cognition-informed system reported 4.2/5 satisfaction versus 2.8/5 for 

non-adaptive baseline 

- False positive rates dropped from 12.3% to 3.1% - Personalized calibration time averaged 



International Journal Research Publication Analysis                                                

 

Copyright@                                                                                                               Page 15 
 

3 minutes 

Qualitative Findings: 

- Enhanced user adaptability and intuitive interaction emerged from personalized system 

calibration. 

 

DISCUSSION 

Discussion 

The findings of this study present a nuanced picture of how multimodal gesture recognition 

systems perform in realistic, continuous interaction scenarios when grounded in embodied 

cognition principles. This discussion contextualizes those findings within existing literature, 

examines theoretical implications, acknowledges methodological limitations, and identifies 

critical directions for future investigation. 

 

Performance Findings in Context of Prior Research 

The proposed system achieved recognition accuracy of 94.2% in continuous gesture streams 

across controlled laboratory conditions, with performance declining to 87.6% in semi- 

controlled healthcare settings and 82.1% in naturalistic home environments. These results 

compare favorably to several established benchmarks. Venugopalan et al. (2022) reported 

CNN-BiLSTM accuracy of 93-97% on isolated Indian Sign Language gestures; however, 

their evaluation examined pre-segmented, single-gesture sequences. By contrast, the current 

study addressed continuous, unsegmented recognition where gesture boundaries remain 

unknown and incidental hand movements must be distinguished from intentional gestures. 

Within this more challenging paradigm, the 94.2% performance in controlled settings aligns 

with state-of-the-art results reported by Shin et al. (2024), who achieved 98.96% accuracy on 

sEMG-based datasets using multi-stream architectures, though their approach relied on 

wearable sensors rather than vision-based methods suitable for broad deployment. The 

accuracy degradation observed in less constrained environments, while notable, reflects a 

pattern consistent with findings by Liu et al. (2024) and Aly et al. (2025), who similarly 

documented performance erosion under occlusion, variable lighting, and complex 

backgrounds. Critically, the present study's retention of 82.1% accuracy in naturalistic settings 

represents an improvement over prior vision-based systems, which often experienced 

dramatic collapse to 60-70% in such conditions (Gao et al., 2024). 

 

Response latency measurements revealed mean delays of 47 milliseconds in the primary 

setting, 63 milliseconds in the healthcare environment, and 89 milliseconds in the home 
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context. These values remain below the 100-millisecond threshold below which humans 

perceive interaction as instantaneous (Jaramillo-Yánez et al., 2020), even in the most 

challenging naturalistic condition. Notably, traditional 3D CNN architectures, while achieving 

comparable accuracy, typically incur latencies exceeding 150 milliseconds due to 

computational overhead (Emporio et al., 2025). The attention-based multimodal fusion 

strategy employed here achieves meaningful speed advantages through early dropout 

mechanisms and skeletal attention masking that suppress uninformative features, reducing 

computational demand while maintaining discriminative power. This represents a genuine 

methodological advance over prior approaches that treated multimodal fusion as late 

concatenation of independently processed streams (Liu et al., 2024). 

 

Embodied Cognition Theory and User Adaptation 

A central theoretical claim of this study posited that gesture recognition systems grounded in 

embodied cognition principles would demonstrate superior user adaptation and reduced false 

positive rates compared to systems treating gestures as isolated input signals. Qualitative 

findings provided substantive support for this hypothesis. Users interacting with the adaptive, 

personalization-enabled system reported significantly higher satisfaction scores (mean 4.2 on 

a 5-point scale) compared to a non-adaptive baseline (mean 2.8), a difference statistically 

significant at p < 0.001. More tellingly, across the forty-five participants, the adaptive system 

required a mean calibration period of approximately three minutes to achieve stable 

recognition, after which user-specific gesture variations were accommodated without 

degradation in accuracy. This finding aligns with and extends Junokas et al. (2018), who 

demonstrated that one-shot learning approaches incorporating multimodal skeleton, 

kinematic, and internal model parameters can outperform pre-trained models in repeatability 

and recall tasks. However, the present study advances this work by embedding such 

personalization within continuous recognition scenarios and demonstrating that embodied 

cognition principles translate into operationally meaningful performance gains. Specifically, 

false positive rates (erroneous gesture classifications triggered by incidental hand 

movements) declined from an average of 12.3% for the non-adaptive system to 3.1% for the 

embodied cognition-informed system. This reduction emerged not from algorithmic 

modifications alone but from the system's capacity to learn individual users' resting hand 

postures, habitual tremors, and intentionality markers—features that embody cognition theory 

suggests are integral to how humans themselves interpret gestural communication 

(Sadeghipour et al., 2010). 



International Journal Research Publication Analysis                                                

 

Copyright@                                                                                                               Page 17 
 

The theoretical implication is significant. Embodied cognition posits that perception and 

action are deeply coupled, that understanding gestures involves simulation of those gestures' 

execution within one's own motor system, and that this coupling extends to computational 

systems capable of modeling such sensorimotor resonances (Clough et al., 2020). The present 

findings suggest that gesture recognition systems incorporating such principles— through 

adaptive learning that captures individual motor signatures, through multimodal fusion that 

integrates proprioceptive and visual information analogously to how humans combine 

exteroceptive and proprioceptive signals, and through temporal segmentation algorithms 

attuned to intentionality—achieve both improved technical performance and enhanced user 

experience. However, the theoretical advances here remain partial. The system does not yet 

implement higher-order cognitive aspects of gestural understanding, such as intentional state 

inference or cultural-contextual interpretation of gesture meanings (Randa et al., 2024). 

 

Future work must address whether embodied cognition principles scale to such semantic 

dimensions of gesture. 

 

Multimodal Fusion: Achievements and Unresolved Tensions 

The attention-based multimodal fusion architecture integrating RGB, depth, and skeletal data 

demonstrated measurable advantages over single-modality approaches. Performance of the 

RGB stream alone achieved 88.7% accuracy in the laboratory setting, depth alone yielded 

90.1%, and skeletal tracking alone reached 86.4%. In contrast, the fused system attained 

94.2%, indicating genuine complementary benefits. The early fusion stage, wherein skeleton 

attention masks guided RGB feature extraction toward limb regions while suppressing 

background noise, proved particularly effective. This finding supports the theoretical 

justification articulated by Zhu et al. (2022) and Xie et al. (2025), who argue that multi-stage 

fusion exploiting cross-modal correlations preserves key information while reducing 

computational complexity compared to naive concatenation. However, the practical trade-offs 

warrant critical examination. In the home environment, where lighting variability was most 

pronounced, the depth modality's robustness became apparent, with skeleton-depth fusion 

alone achieving 84.3% compared to RGB-depth fusion at 82.1%. Yet depth sensor availability 

remains limited in consumer devices, potentially constraining practical deployment. The 

proposed system's reliance on three data streams, while technically optimal, raises questions 

about generalizability to resource-constrained contexts such as smartphone-based or wearable 

applications where multiple synchronized sensors prove impractical (Dell et al., 2022). 
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Limitations and Their Potential Effects on Findings 

Several methodological constraints warrant explicit acknowledgment, as they potentially 

circumscribe the generalizability of these findings. First, participant demographics, although 

stratified by age and gender, were limited to three discrete age bands drawn from a single 

geographic region. Neurodevelopmental diversity, physical differences arising from 

congenital conditions or acquired disabilities, and culturally specific gesture repertoires—all 

of which may substantially influence gesture morphology and recognition difficulty—were 

not adequately represented in this study. Trujillo et al. (2022) demonstrated that autistic 

individuals, while achieving comparable accuracy to neurotypical individuals on gesture 

recognition tasks, exhibit qualitatively different cognitive processing characterized by 

increased local efficiency and reduced long-range brain network integration. The present 

study's protocols did not accommodate or evaluate such neurocognitive diversity, likely 

overestimating the system's real-world performance when deployed across heterogeneous 

populations (Özer et al., 2020). 

 

Second, the continuous gesture recognition evaluation employed a modified Levenshtein 

distance metric adapted from sign language recognition benchmarks. While appropriate for 

recognizing discrete gestures within continuous streams, this metric does not capture 

recognition failures on gestures initiated by users with incomplete or atypical kinematics—a 

frequent occurrence in naturalistic settings. Users with tremor, reduced range of motion, or 

those learning the system frequently execute partial or hesitant gestures; the current 

evaluation protocol was insufficiently sensitive to distinguish system robustness across these 

variable execution profiles. 

 

Third, the study examined gesture recognition in isolation, separate from downstream task 

execution and user feedback mechanisms. Prior literature indicates that recognition accuracy 

alone poorly predicts real-world usability (Hargrove et al., [citation in Jaramillo-Yánez et al., 

2020]). Including non-stationary signals in training data, for instance, decreased offline 

accuracy but improved performance on functional target achievement tests. The current study 

did not incorporate such real-world task ecology; consequently, claimed performance 

advantages may not translate fully to operational deployment where users adapt to system 

responses and modify gesture execution accordingly. 

 

Fourth, environmental testing, while spanning three settings, did not encompass extremal 

conditions—intense illumination, heavy occlusion from obstacles or other individuals, or 
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significant motion blur—that might characterize outdoor applications or crowded public 

spaces. The home environment, although naturalistic, retained relatively consistent 

architectural and lighting patterns. Generalization to scenarios deviating substantially from 

these contexts remains uncertain. 

 

Implications for Theory and Future Direction 

Beyond technical performance, this investigation illuminates conceptual gaps in existing 

gesture recognition frameworks. The dominant paradigm treats gesture as signal to be 

classified, a model that achieves good results but provides limited insight into how gesture 

interfaces might align with fundamentally human modes of embodied communication. The 

embodied cognition framework tested here opens different theoretical avenues. If gestures 

are indeed grounded in shared motor representations, then effective gesture interfaces should 

(1) accommodate natural variation in individual motor execution rather than imposing rigid 

gesture vocabularies, (2) adapt dynamically to individual users' sensorimotor styles, and (3) 

recognize gestures as integrated with broader communicative and cognitive contexts rather 

than isolated input tokens. The present findings provide preliminary evidence that such 

principles yield measurable improvements. However, fully operationalizing embodied 

cognition within computational systems requires several advances. First, development of 

methods to infer user intent and cognitive states from gesture kinematics remains largely 

unexplored. Second, theoretical understanding of how cultural and neurodevelopmental 

differences shape gesture morphology and recognition requirements needs substantial 

development. Third, integration of gesture with multimodal communicative channels—

speech, facial expression, gaze—offers a largely uncharted frontier. 

 

The persistent challenge of continuous gesture recognition merits particular attention. While 

the current system successfully segments and recognizes gestures within continuous streams, 

it does so by identifying movement quantity thresholds that segregate intentional gestures 

from rest or incidental motion. More sophisticated approaches, drawing on hierarchical 

temporal segmentation algorithms or attention mechanisms that dynamically model gesture 

boundaries, warrant investigation (Wang et al., 2016; Khazaei et al., 2024). 

 

Recommendations for Future Research 

Five specific research directions emerge from this investigation. First, expansion of 

evaluation protocols to encompass broader demographic and neurocognitive diversity, 

including systematic investigation of gesture recognition performance across neurodiverse 
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populations, individuals with motor impairments, and culturally diverse gesture lexicons. 

Second, longitudinal studies tracking user adaptation over weeks and months would 

illuminate whether embodied cognition-informed personalization yields sustained 

performance improvements or exhibits degradation as user gesture execution naturally 

evolves. Third, integration of higher- order cognitive modules capable of inferring 

communicative intent, emotional state, or conversational context from gesture would advance 

the field toward genuinely "understanding" gestures in human-like fashion. Fourth, 

development of theoretical frameworks and empirical methods linking gesture recognition 

performance to downstream task performance, user cognitive load, and subjective experience 

would strengthen claims regarding practical utility. Finally, exploration of lightweight 

architectures suitable for deployment on edge devices and mobile platforms, potentially 

incorporating knowledge distillation or neural architecture search methods to maintain 

accuracy while reducing computational overhead, would accelerate real-world application. 

The convergence of technical advancement and theoretical sophistication remains the 

ultimate objective. 

 

CONCLUSION 

This investigation pursued a multifaceted objective: to develop and validate a real-time 

gesture recognition system capable of accurate continuous recognition in diverse 

environmental conditions while grounding the system within embodied cognition theory. The 

study specifically aimed to develop a multimodal fusion architecture integrating RGB, depth, 

and skeletal data through attention-based graph convolutional networks and hierarchical 

LSTM modules; to empirically test whether embodied cognition-informed systems 

demonstrate superior user adaptation and reduced false positive rates compared to traditional 

gesture-as-input approaches; and to benchmark performance against state-of-the-art methods 

across controlled, semi-controlled, and naturalistic environments. The key findings revealed 

that the proposed system achieved 94.2% recognition accuracy in controlled laboratory 

conditions, with performance declining to 87.6% in semi-controlled healthcare settings and 

82.1% in naturalistic home environments. Response latency remained well below perceptual 

thresholds, ranging from 47 to 89 milliseconds across contexts. Qualitatively,the embodied 

cognition-informed approach demonstrated significant advantages, with users reporting 

substantially higher satisfaction (4.2/5 versus 2.8/5), reduced false positive rates (3.1% versus 

12.3%), and requiring only three minutes of personalized calibration. These results position 

gesture computing as a practical, theoretically grounded modality for natural human-
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computer interaction, moving beyond laboratory prototypes toward deployable systems. 

 

The significance of these findings extends beyond technical performance metrics to reshape 

theoretical understanding of how computational systems should model and interpret human 

bodily expression. Embodied cognition theory posits that gesture and action are 

fundamentally intertwined with perception and cognition; this study provides empirical 

evidence that operationalizing such principles within gesture recognition systems yields 

genuine performance and usability improvements. The theoretical implication is profound: 

computational interfaces need not treat gestures as disembodied signals but can instead model 

them as sensorimotor processes embedded within individual cognitive and affective contexts. 

This perspective invites a broader reconceptualization of human-computer interaction, 

moving from paradigms where technology imposes rigid input constraints toward systems 

that accommodate and learn the natural, embodied expressiveness of diverse users. Future 

theoretical work should extend these principles to encompass higher-order cognitive aspects 

including intention inference, cultural context sensitivity, and integration with multimodal 

communicative channels such as speech, facial expression, and gaze. 

 

The research directions emerging from these findings are both technically and theoretically 

demanding. First, demographic expansion remains critical; evaluation across neurodiverse 

populations, individuals with motor impairments, and culturally diverse gesture vocabularies 

will test whether the proposed system generalizes or whether embodied cognition principles 

themselves must be culturally and neurologically situated. Second, longitudinal studies 

tracking user adaptation over extended periods would clarify whether personalization 

mechanisms sustain performance gains or encounter degradation as users naturally evolve 

their gesture execution over time. Third, integration of higher-order cognitive modules 

capable of inferring communicative intent from gesture kinematics represents an important 

frontier that current systems do not yet address. Fourth, deployment studies in real-world 

applications such as surgical assistance, assistive technology for individuals with disabilities, 

or augmented reality environments would validate claims regarding practical utility and 

reveal implementation challenges not evident in controlled research settings. Finally, 

exploration of lightweight architectures suitable for edge deployment and mobile platforms, 

potentially incorporating knowledge distillation or neural architecture search, would 

democratize gesture- based interaction across resource-constrained devices. 
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The study's limitations warrant acknowledgment as constraints on current findings and guides 

for future investigation. Demographic homogeneity, reliance on Levenshtein distance metrics 

that may not fully capture task-relevant recognition failures, isolation of gesture recognition 

from downstream task execution, and incomplete environmental extrema all qualify the 

generalizability of results. These limitations do not invalidate the core findings but rather 

delineate the boundary conditions within which the system operates reliably and point toward 

necessary extensions. 

 

Ultimately, this study advances understanding of computation using gesture by demonstrating 

that gesture recognition need not be constrained to laboratory accuracies or commercial 

gimmickry but can instead become a principled, theoretically grounded, and practically viable 

interface modality. By marrying technical rigor with embodied cognition theory, by 

embracing user personalization as fundamental rather than incidental, and by systematically 

evaluating performance across ecologically valid contexts, this work contributes to a broader 

vision of human-computer interaction wherein technology genuinely accommodates human 

expressiveness rather than demanding conformity to its constraints. As gesture-based systems 

mature and proliferate across augmented reality, assistive technology, healthcare, and 

consumer applications, understanding the principles underlying natural, embodied interaction 

becomes increasingly vital. This research suggests that such principles exist at the intersection 

of computational science and cognitive theory, awaiting further elaboration and empirical 

validation. The frontier of gesture computing is not merely technical but profoundly 

conceptual, promising to reshape how humans engage with machines and, in doing so, to 

advance both fields of artificial intelligence and cognitive science toward more naturalistic, 

more adaptive, and ultimately more human-centric systems.] 
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