“‘temaho,”do
5 Z

ENHANCING ANDROID APPLICATION DEVELOPMENT USING
KOTLIN: ASTUDY ON MODERN MOBILE DEVELOPMENT

“1Suhani Ranka, ’Ram Babu Buri, *Dr.Vishal Shrivastava, “Dr. Akhil Pandey

!Computer Science and Engineering, Arya college of engineering and information technology,
Jaipur, India.
2Assistant Professor, Computer Science and Engineering, Arya college of engineering and
information technology, Jaipur, India.
34professor, Computer Science and Engineering, Arya college of engineering and information

technology, Jaipur, India.

. . . :
Article Received: 28 October 2025 Corresponding Author: Suhani Ranka

Article Revised: 17 November 2025
Published on: 08 December 2025

Computer Science and Engineering, Arya college of engineering and information
technology, Jaipur, India. DOI: https://doi-doi.org/101555/ijrpa.4289

ABSTRACT

Android,the most widely used mobile operating system globally, runs billions of devices and
has created a large ecosystem for mobile apps. Kotlin, a programming language released by
JetBrains in 2011 and officially supported by Google in 2017, has quickly become the
preferred choice for building Android apps. This study explores how Kaotlin solves common
developer issues such as long code, frequent Null Pointer Exceptions, app crashes, and Ul
delays. With features like safe null handling, compact code structure, coroutines, and
compatibility with Java, Kotlin improves development speed, enhances app stability, and
supports better architecture, making it a better option for future and cross-platform mobile

development.

KEYWORDS: Android, Kotlin, Mobile App Development, Null Safety, Coroutines,
Jetpack, Scalability.

INTRODUCTION
The Android operating system, developed by Google, powers more than 70% of smartphones
worldwide and has become a versatile platform used across many industries like e-commerce,

healthcare, education, gaming, and finance.

Copyright@ Page 1

2025 Volume: 01 Issue: 07 www.ijrpa.com ISSN 2456-9995 Research Article

International Journal Research Publication Analysis

Page: 01-07

https://doi-doi.org/101555/ijrpa.4289
http://www.ijrpa.com/

International Journal Research Publication Analysis

Because it is open-source, has a big user base, and is supported by many developers, Android
has become the most popular platform for mobile app development. Java was traditionally the
main language used for Android apps. However, as apps became more complex, Java's
lengthy syntax, frequent Null Pointer Exceptions, and complicated handling of multiple tasks

made development slower, maintenance costlier, and apps more error-prone.

To solve these issues, JetBrains introduced Kotlin in 2011, a newer, statically-typed language

designed for simplicity, safety, and efficiency.

In 2017, Google officially adopted Kotlin as the recommended language for Android
development, integrating it into the Android SDK tools. Kotlin provides short code, null
safety, extension functions, smart casts, and coroutines, which help with smooth,
asynchronous operations, remove much of the repetitive code, prevent crashes, and make the

app more responsive.

This paper looks at how Kotlin is relevant to Android programming, focusing on how it
improves upon Java's weaknesses, increases developer productivity, and enhances app

performance.

It also examines Kotlin's role in modern development approaches like MVVM and
microservices, its adoption by major companies, and its potential for building scalable, cross-

platform apps through Kotlin Multiplatform.

Related Works
Android programming has evolved significantly, driven by the growing need for efficient,

secure, and user-friendly apps.

Initially, Java was the only language officially supported for Android. However, its lengthy
syntax, lack of modern features, and frequent runtime issues led researchers and developers to
explore alternative options. Kaotlin, introduced by JetBrains and officially supported by

Google in 2017, has been widely studied for its effectiveness in Android development.

According to JetBrains (2018), Kotlin reduces boilerplate code by nearly 40%, allowing
developers to spend less time on writing repetitive code and more on logic, which improves

productivity, code readability, and maintainability.

Copyright@ Page 2

International Journal Research Publication Analysis

Google's internal studies have also shown that Kotlin's null safety feature significantly cuts
down on Null Pointer Exceptions. For instance, after moving key parts of the Google Home

app to Kotlin, there was a 33% reduction in crashes.

Academic research highlights that Kotlin is well-suited for modern architectures such as
MVVM and clean architecture because of its concise syntax, higher-order functions, and
coroutines that make asynchronous tasks efficient.

This is especially helpful for real-time apps like social networks and messaging platforms.

Industry adoption confirms these findings.

Companies like Pinterest, Uber, Trello, and Netflix successfully switched to Kotlin, reporting
faster development, quicker app startups, smaller app sizes, and fewer user-reported issues.
Comparative studies also show that Kotlin outperforms cross-platform tools like Flutter due to
its native compilation and deeper integration with Android SDK features.

Overall, studies show that Kotlin makes Android development more efficient, stable, and

scalable, making it a better choice than Java for modern mobile apps.

Proposed Methodology
The study of "Android with Kotlin™ adopts a systematic method of evaluating the effect of
Kotlin on Android app development, especially in terms of how it solves developer problems

and enhances efficiency, stability, and performance.

4.1 Research Objectives

The research seeks to:

Find Java limitations in Android development.

Discuss how Kotlin improves app stability, decreases development time, and makes coding
easier. Examine actual implementations developed with Kotlin to analyze performance gains.

Look at developer opinions and industry adoption rates of Kotlin.

4.2 DataCollection
Data was collected from a variety of sources, such as:
Official Documentation & Reports: Android Developer and JetBrains documentation, Google

blog articles.

Academic Papers: Studies between 2018-2024 on Kaotlin uptake and performance comparison

Copyright@ Page 3

International Journal Research Publication Analysis

to Java.

Industry Case Studies: Whitepapers by organizations such as Pinterest, Uber, Trello, and
Netflix showing migration advantages Developer Surveys: Feedback from Stack Overflow
and GitHub about satisfaction and code quality gains.

Practical Code Experiments: Demo apps developed in both Java and Kotlin to see variation in
code length, stability, and responsiveness.

4.3 Used Toolsand Technologies

The research employed:

Android Studio to develop and test applications. Kotlin Playground for testing out syntax.
Firebase Analytics for performance and crash reports. GitHub Repositories for analysis of

open-source code.

Google Performance Profiler for comparison of memory usage, app launch time, and

responsiveness in both languages.

Real-Time Problem Statement and Solution

Android app development has evolved very quickly in the last ten years, but classic
development using Java has been plagued with issues like verbose code, constant crashes,
poor threading, and lack of scalability. Kotlin came as a new alternative and resolved these

age-old issues with concise code, null safety, and better handling of asynchronous operations.

Problem 1: NullPointerExceptions (NPES)

In Java, null handling is weak, causing frequent crashes when null references are accessed.
Kotlin introduces null safety, allowing developers to define nullable variables (String?) and
use safe calls (name?.length), significantly reducing NPE-related crashes.

Problem 2: Verbose Code and Boilerplate
Java's boilerplate code for getters, setters, and constructors is slowing down development.
Kaotlin's data classes and concise syntax eliminate dozens of lines with a single line, making it

more readable and less error-prone.

Problem 3: Inefficient Thread Management
Java's AsyncTask and Handlers tend to block the main Ul thread, resulting in ANR errors.

Kotlin's coroutines make background processing easy, keeping apps responsive while doing

Copyright@ Page 4

International Journal Research Publication Analysis

heavy work.

Problem 4: Scalability Issue

Big Java applications become more difficult to work with because of intricate forms and
duplicated code. Kotlin accommodates new architectures (MVVM, dependency injection)

and extension functions, which make programs modular, maintainable, and efficient.

Industry Verification
Pinterest, Uber, and Trello state that they experience 33% fewer crashes and 20-40% reduced
code along with quicker feature releases once they switched to Kotlin, evidencing its utility in

addressing practical Android development issues.

Java vs Kotlin Comparison Chart

' i

|

Java ‘ 1
Kotlin \
|

Code Length Null Safety Interoperability ~Learning Curve

Features

RESULTSAND DISCUSSION
Studies on applying Kotlin to Android development identify significant productivity,
stability, performance, and overall developer satisfaction improvements. Findings are based

on literature reviews, experimental results, and industry adoption reporting.

Code Reduction and Readability
An example task management application written in Java and Kotlin had a 36% code
reduction due to Kotlin features such as data classes and extension functions. Briefer, cleaner

code made the code easier to read, debug, and develop.

Copyright@ Page 5

International Journal Research Publication Analysis

Null Safety and Stability
Firebase crash logs and company reports from Trello and Pinterest demonstrate 30—40% less
crashes since moving to Kotlin. NullPointerExceptions, which are prevalent in Java

applications, were abolished via Kotlin's nullable and non-nullable type system.

Performance with Coroutines
During network-heavy testing, Java applications exhibited a 2.4-second average response
time, sometimes freezing the Ul. The coroutines in Kotlin enhanced responsiveness to 1.8

seconds, preventing Ul freezes and smooth execution of background tasks.

Scalability and Maintainability

Kotlin aligns with current architectures (MVVVM, dependency injection, Jetpack), making big
projects more modular, maintainable, and quicker to build, eliminating long-term technical
debt.

Industry Validation
Businesses such as Pinterest, Uber, and Trello indicate: 20-30% accelerated feature

deployment 30% less crash Better startup performance.

DISCUSSION

Kotlin provides quantifiable advantage over Java through decreased boilerplate code,
enhanced stability, and improved performance. Gradual migration from Java is possible,
which simplifies adoption for businesses. Minor drawbacks such as learning curve and
intermittent longer compilation times are outweighed by its benefits, making Kotlin a better

option for contemporary Android development.

CONCLUSIONAND FUTUREWORK

7.1 CONCLUSION

Android is still the leading mobile operating system globally, and it powers more than
billions of devices and provides immense possibilities for developers. Nonetheless, Java-
based traditional development has proven to have limitations, such as lengthy code, random
NullPointerExceptions, and difficulties with asynchronous programming. This study

investigated how Kotlin eliminates these challenges and improves Android development.

Key findings identify Kotlin's immense benefits over Java:

Copyright@ Page 6

International Journal Research Publication Analysis

Code Simplification: Kotlin minimizes boilerplate code by as much as 40%, enhancing
readability and accelerating development.

Null Safety: Robust null handling reduces crashes due to NullPointerExceptions. Coroutines:
Easy asynchronous execution enhances responsiveness and avoids Ul freezes.

Scalability: Compliance with contemporary architectures such as MVVM supports
maintainable large- scale apps

Interoperability: Kotlin smoothly integrates with existing Java code, supporting seamless
migration.

Industry studies by Pinterest, Uber, and Trello support these advantages, evidencing lower
crashes, quicker feature deployment, and better performance. Kotlin thus proves to be a
better, future-proof programming language for Android app development, overcoming age-
old Java limitations while supporting scalable, stable, and fast applications.

7.2 Future Work

Future work can be directed toward making Kotlin compiler performance faster and large
project build times shorter. More sophisticated tooling like Al-powered code refactoring and
better coroutine debugging can also make development even easier. Kotlin Multiplatform is
promising for code sharing between Android, iOS, desktop, and web apps. Further research
into built-in security, enterprise migration success stories, and integrating Al with Kotlin can

further enhance its capabilities, making it even more capable for future mobile development.

Copyright@ Page 7

