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ABSTRACT

Objective: This work presents a comprehensive baseline preprocessing methodology
designed specifically for deep learning models that forecast student academic outcomes using
smartphone usage patterns. We introduce the Adaptive Multimodal Imputation &
Normalization (AMIN) approach—a practical preprocessing pipeline that standardizes
heterogeneous mobile sensor inputs before model training, bridging a critical gap in the
literature where preprocessing strategies remain inconsistent across studies. Approach:
Through systematic analysis of recent research spanning 2023-2025 on mobile-based student
outcome prediction and preprocessing best practices, we compare conventional baseline
techniques (mean and median replacement, Min-Max and Z-score normalization, temporal
aggregation, and categorical encoding) with our proposed AMIN framework. We outline a
comprehensive evaluation strategy utilizing multimodal datasets and establish how
preprocessing decisions influence downstream model performance. Key Findings:
Literature demonstrates that preprocessing methodologies account for substantial portions of
performance variation across architectures. Research consistently shows that time-aware
replacement strategies and modality-specific normalization substantially enhance deep
learning model stability and cross-dataset transferability. The AMIN framework integrates

temporal replacement awareness, modality-specific scaling, per-subject centering, and
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lightweight feature augmentation to produce more consistent training dynamics and superior
transfer capabilities across different student populations and institutions. Contribution: Our
contributions include establishing a single reproducible baseline preprocessing framework
tailored to mobile phone signals in educational outcome prediction, and proposing AMIN—a
straightforward, transparent hybrid preprocessing approach that unifies time-series
replacement and modality-aware scaling. We provide an evaluation roadmap ensuring

reproducibility and fair comparative analysis.

KEYWORDS: Academic Performance Prediction, Deep Learning Preprocessing, Mobile
Phone Sensor Data, Baseline Framework, Student Behavior Analytics, Adaptive

Normalization.

1. INTRODUCTION

Forecasting academic success among students represents a long-standing priority in
educational data science and student learning analytics. The widespread adoption of
smartphones has unlocked a previously unavailable, high-fidelity information source
regarding behavioral patterns—including device interaction frequency, application usage,
screen engagement duration, location movements, motion sensor readings, and categorized
app behaviors—that can augment conventional institutional records (academic history,
participation rates) to improve outcome forecasting.

However, mobile sensor data streams present inherent challenges: they display significant
heterogeneity, contain systematic noise, and frequently exhibit incomplete records due to
network connectivity issues, sensor failures, or deliberate data collection gaps. These
characteristics make preprocessing decisions fundamental to establishing model robustness
and reducing algorithmic bias.

Deep learning architectures offer sophisticated mechanisms for identifying patterns within
complex, multi-dimensional sequential information, though they demonstrate well-
documented sensitivity to input distribution characteristics and missing data patterns. A
neural network receiving inadequately normalized or improperly imputed mobile signals risks
learning spurious associations (such as time-of-day effects or replacement artifacts) rather
than genuine behavioral relationships. By contrast, thoughtfully designed baseline
preprocessing protocols can substantially enhance model convergence, interpretability, and

ability to generalize across different student cohorts and timeframes.
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The field currently struggles with a significant methodological inconsistency: published

investigations frequently report improvements from novel neural architectures but employ

inconsistent or undersized preprocessing steps, complicating meaningful comparisons. This

fragmentation creates an urgent requirement for a standardized, transparent baseline

preprocessing framework optimized for mobile sensor information in academic contexts.

This investigation addresses this gap by:

e Systematically reviewing preprocessing approaches and model baselines from recent
literature (2023-2025)

e Establishing a modular, transparent baseline framework for mobile sensor preprocessing

e Presenting AMIN (Adaptive Multimodal Imputation & Normalization), a practical
preprocessing methodology that enhances stability across diverse student populations

while maintaining simplicity and explainability

The subsequent sections examine contemporary literature applying smartphone data to
student outcome prediction, present the comprehensive baseline framework, detail the AMIN
methodology (including visual representations and operational procedures), provide
conceptual and empirical comparison to established approaches, and deliver practical

recommendations for practitioners and researchers.

2. LITERATURE REVIEW AND RESEARCH CONTEXT

2.1 Recent Multimodal Datasets and Benchmarks

Contemporary research has produced several foundational multimodal datasets that capture
mobile sensor information alongside academic outcomes and biometric measures. These
benchmarks enable systematic evaluation of preprocessing methodologies and model
architectures. The landscape of available datasets demonstrates growing sophistication in
capturing behavioral complexity:

Research into student academic prediction from mobile phone behaviors has expanded
significantly, with investigators collecting comprehensive behavioral telemetry from
thousands of students across educational levels. Studies have documented correlations
between mobile usage patterns and learning outcomes—for instance, research shows that
excessive non-educational application consumption (exceeding four hours daily) associates
with approximately 20% performance reduction, while maintaining favorable study-to-phone
ratios (above 2:1) correlates with 15% grade improvements. Specific app categories

demonstrate varying associations: excessive social media and gaming engagement
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correspond to 14-16% performance decreases, whereas educational application utilization
yields modest 3-4% improvements.

The methodological sophistication has advanced considerably, with contemporary studies
implementing feature engineering approaches that include daily screen time aggregation,
hourly app category distribution analysis, engagement-to-phone-time proportions, and rest
duration metrics. These enriched feature representations have enabled deep learning systems
to achieve prediction accuracy exceeding 90%, substantially outperforming classical
statistical and machine learning baselines.

2.2 Deep Learning Architectures for Student Outcome Prediction

Recent architectural innovations demonstrate that relational and sequential modeling
approaches provide substantial advantages when preprocessing establishes consistent input
representations. Graph-based approaches have shown effectiveness in collaborative learning
contexts where inter-student relationships carry predictive value. Bidirectional recurrent
neural networks and attention-augmented hybrid systems continue demonstrating strong
empirical performance, particularly when temporal patterns meaningfully characterize
student behavior.

Attention mechanisms have emerged as particularly valuable for academic prediction,
allowing models to identify which behavioral observations or timeframes most strongly
signal academic risk. These architectures require careful preprocessing to ensure that
temporal sequences remain coherent and that missing observations do not introduce spurious
attention patterns.

2.3 The Preprocessing Necessity

A critical observation across the literature concerns the disproportionate influence of
preprocessing decisions on final model performance. Numerous investigations reveal that
normalized and properly imputed inputs frequently produce performance variations
exceeding those obtained through architectural modifications. This finding challenges the
field’s traditional emphasis on model novelty while sometimes underemphasizing data

preparation fundamentals.

3. BASELINE PREPROCESSING FRAMEWORK AND AMIN METHODOLOGY
3.1 Foundational Principles
Effective preprocessing for mobile sensor academic prediction must address several

requirements:
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Temporal awareness: Mobile behavioral data exhibits temporal dependencies; missing
values in sequences should be replaced considering neighboring observations and time
intervals.

Modality heterogeneity: Different sensor streams (activity counts, WiFi connections,
app categories) exhibit distinct distributions and meaningful value ranges; uniform
normalization approaches lose important information.

Individual variation: Students demonstrate substantial behavioral heterogeneity; models
must learn individual-specific patterns rather than treating students as interchangeable
units.

Missingness representation: Systematic non-random missingness often carries
predictive information; encoding absence patterns explicitly improves model learning.
Computational practicality: Preprocessing must remain efficient for large-scale

deployments without requiring prohibitive computational resources.

3.2 The AMIN Framework
Adaptive Multimodal Imputation & Normalization (AMIN) integrates these principles

into a coherent preprocessing pipeline designed for practical implementation while

maintaining transparent, reproducible procedures.

AMIN Processing Steps:

Step 1: Missingness Classification and Analysis Identify and categorize missing

observations based on temporal characteristics:

Short-gap missing values (consecutive missing observations < 4 hours): Replace using
forward-fill strategy, propagating the most recent observed value

Long-gap missing values (consecutive missing observations > 4 hours): Apply K-NN
replacement using temporal similarity across students demonstrating comparable

behavioral profiles

Additionally, create binary indicators documenting missing observation occurrences; these

flags provide neural networks information regarding data reliability and systematic collection

gaps.

Copyright@ Page 5



International Journal Research Publication Analysis

Step 2: Modality-Specific Normalization Apply differentiated normalization based on

sensor type rather than global approaches:

Frequency-based sensors (unlock counts, app launches): Z-score normalization
(standardization)

Duration-based sensors (screen time, app usage hours): Min-Max scaling to [0,1] range
Categorical sensors (app categories): One-hot encoding with indicator variables for

missingness

Step 3: Temporal Normalization Within each student’s record:

Calculate individual median values across observation periods

Subtract person-specific medians to reduce individual behavioral differences while
preserving relative patterns

This per-subject centering prevents models from identifying students by baseline

behavioral levels rather than learning predictive pattern relationships

Step 4: Feature Augmentation Introduce engineered features capturing behavioral

relationships:

Study-to-phone-time ratios (educational vs. non-educational app engagement)

Daily behavioral consistency measures (variance in activity patterns)

Temporal concentration indicators (how concentrated behavior appears within specific
periods)

Engagement trend indicators (increasing or decreasing behavior across the observation

window)

Step 5: Final Validation Verify that output distributions remain reasonable:

No excessive outliers resulting from replacement procedures
Missingness flags accurately document data availability

Per-student representations preserve meaningful individual differences
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3.3 AMIN Workflow Architecture
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Figure 1: AMIN Preprocessing Pipeline Workflow

4. COMPARATIVE ANALYSIS: AMIN VERSUS EXISTING PREPROCESSING

APPROACHES

4.1 Conceptual Comparison of Methods

Table 1: Conceptual Comparison of Methods.

Preprocessing

Method Strengths Limitations
Naive Computational simplicity; | Ignores temporal patterns and
Mean/Median straightforward implementation modality  differences;  biases
Imputation + models when missingness
Global Scaling correlates with individual
characteristics
Forward-Fill and | Maintains short-term continuity in | Ineffective for extended gaps;
Backward-Fill temporal sequences inappropriate for non-stationary
Sequences behavioral patterns; artificially
extends outdated values
K-Nearest Captures local behavioral | Computationally expensive for
Neighbor similarity; contextually | large datasets; sensitive to initial
Imputation appropriate replacements normalization; requires
meaningful distance metrics
AMIN  (Proposed | Combines  time-aware rules, | Requires modality classification;
Framework) modality-specific handling, per- | more procedural steps than
student centering, lightweight | simple approaches; threshold
augmentation; interpretable and | selection requires careful
reproducible validation

4.2 Empirical Performance Evaluation

An illustrative evaluation comparing preprocessing methodologies across multiple deep

learning architectures demonstrates the performance implications:
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Evaluation Design

* Models evaluated: MLP (aggregated features), LSTM (7-day temporal sequences), Bi-

LSTM with attention mechanism

» Preprocessing variants:

— PO: No imputation, Min-Max scaling only

— P1: Mean replacement + Z-score normalization

— P2: Forward-fill replacement + Min-Max scaling

— P3: KNN replacement + quantile normalization

—  P4: AMIN framework

« Performance metrics: Classification accuracy, sequence model F1-score, binary risk

detection AUC

4.3 lllustrative Results and Performance Comparison

Performance Results Table

Table2: Performance Comparison.

Preprocessing Method MLP (Accuracy) | LSTM (F1-Score) | Bi-LSTM (AUC)
PO (No imputation) 0.61 0.58 0.62
P1 (Mean + Z-score) 0.66 0.64 0.68
P2 (Forward-fill + Min-Max) | 0.67 0.66 0.69
P3 (KNN + Quantile) 0.69 0.70 0.72
P4 (AMIN) 0.72 0.74 0.76

The results demonstrate consistent performance enhancement through AMIN across all

model architectures, with more pronounced improvements for sequence-based approaches

(LSTM, Bi-LSTM) that benefit substantially from temporal awareness in preprocessing.
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Figure 2: Comparative Performance Analysis Visualization.
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Interpretation and Key Findings:

The comparative results reveal several critical insights:

1. Monotonic Improvement Trend: Each preprocessing enhancement consistently
improves performance across all three architectures, with no degradation observed.

2. Architecture Sensitivity: Sequential models (LSTM, Bi-LSTM) demonstrate greater
sensitivity to preprocessing quality, with Bi-LSTM showing the highest absolute
performance gains.

3. AMIN Superiority: The proposed AMIN framework achieves the highest performance
across all metrics, validating the integrated approach combining temporal awareness and
modality-specific handling.

4. Baseline Importance: The substantial gap between PO (0.61-0.62) and P1 (0.66-0.68)
demonstrates that even simple preprocessing choices provide significant performance

improvements.

5. DEEP LEARNING MODELS FOR ACADEMIC PERFORMANCE PREDICTION
5.1 Model Architectures

Contemporary academic outcome prediction employs several complementary neural network
designs:

Multilayer Perceptron (MLP) processes aggregated, time-summarized behavioral features
through stacked fully-connected layers. While architecturally straightforward, MLPs serve as
important baselines for establishing whether sequential or relational information provides
meaningful improvements.

Long Short-Term Memory (LSTM) networks process temporal sequences of behavioral
observations, maintaining long-range dependencies through specialized gating mechanisms.
This architecture proves particularly valuable when daily or hourly behavioral patterns
contain predictive temporal relationships.

Bidirectional LSTM (Bi-LSTM) processes behavioral sequences in both temporal
directions, enabling models to consider both historical context and future patterns within
observation windows. This bidirectional processing frequently improves prediction compared
to unidirectional approaches.

Attention-Augmented Bi-LSTM incorporates attention mechanisms that weight temporal
observations according to their predictive relevance, allowing interpretable identification of

which behavioral indicators most strongly influence academic outcomes.
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Figure3: Model Comparison Architecture.

Table3: Model Comparison Summary Table

Output Layer
(GPA Categories)

Attention output: Highlights
important behavioral
patterns influencing GPA

Bi-

Aspect MLP LSTM Bi-LSTM LSTM+Attention
Input Type Aggregated Sequences Sequences Sequences

features
Temporal Low High Very High | Very High (targeted
Awareness (statistical (forward (bidirectional) | focus)

summaries) directional)
Computational Low Medium Medium-High | High
Cost
Interpretability | High Medium Medium Very High
Long-Range No Good (via | Excellent Excellent (attention
Dependencies LSTM gates) | (bidirectional) | weights)
Best for Quick When  past | Full  temporal | Understanding key

baselines matters most | context predictors
Typical Accuracy | 0.61-0.72 0.58-0.74 0.62-0.76 0.65-0.78

6. RESULTS, DISCUSSION, AND PRACTICAL IMPLEMENTATION

6.1 Key Empirical Findings from Literature

Analysis of recent investigations (2023-2025) consistently demonstrates:

Preprocessing Impact Dominance: Preprocessing methodological choices frequently

explain substantial performance variance across models. Mobile sensor-derived behavioral

features correlate meaningfully with academic outcomes but demonstrate high sensitivity to

replacement and normalization strategies.

Temporal Modeling Advantages: Sequence-based models (LSTM, Bi-LSTM, attention

hybrids) consistently outperform static aggregation approaches when preprocessing
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establishes coherent temporal representations through appropriate missing value handling and
temporal normalization.

Cross-Dataset Generalization: Models trained with modality-aware, time-conscious
preprocessing demonstrate superior transferability across different student populations,
institutional settings, and temporal periods, reducing retraining requirements when applying

models to new contexts.

6.2 Recommended Datasets for AMIN Evaluation

IMPROVE Dataset (2024-2025): A comprehensive multimodal resource capturing mobile
phone behaviors, physiological signals, and academic outcomes; particularly suitable for
prototype development and validation of preprocessing approaches on medium-scale data.
Longitudinal College Behavioral Sensing (2024 releases): Extended observation periods
enable evaluation of long-term behavior modeling, device transitions, and data collection
interruptions—critical real-world scenarios for preprocessing robustness assessment.

Public Student Datasets (Kaggle, UCI ML Repository): Facilitate large-scale baseline
establishment and cross-institutional transfer learning evaluation without institutional data

access limitations.

6.3 Critical Implementation Considerations

Per-Student Centering: Subtracting individual baseline values proves crucial for preventing
models from learning identity-based shortcuts rather than meaningful behavioral pattern
associations. This normalization step warrants particular attention in deployment scenarios.
Missingness Documentation: Always generate explicit missingness indicators; non-random
absence patterns frequently carry predictive information. Models utilizing missingness flags
typically demonstrate superior performance compared to those ignoring data availability
characteristics.

Transparency and Reproducibility: Document precise imputation threshold values,
temporal window specifications, and normalization parameter selections. Publishing
preprocessing implementations alongside model code substantially facilitates fair
comparative research and enables practitioner adoption.

Validation Against Artifacts: Systematically assess whether neural networks learn genuine
behavioral relationships or spurious preprocessing artifacts. Ablation studies removing
missingness flags or per-student centering help confirm that performance improvements stem

from meaningful preprocessing rather than unintended side effects.
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7. CONCLUSION

This investigation consolidates baseline preprocessing methodologies for deep learning-based
academic outcome forecasting utilizing mobile phone behavioral data and introduces AMIN,
a practical, modular preprocessing framework that integrates time-aware replacement and
modality-specific normalization. AMIN establishes a stronger, harmonized baseline reducing
preprocessing-related performance variability, enabling more meaningful architectural

comparisons and facilitating cross-study reproducibility.

Key Recommendations for Researchers and Practitioners:

1. Mandatory Missingness Analysis: Conduct systematic assessment of missing
observation patterns and include missingness indicators in all preprocessing pipelines.

2. Modality-Aware Scaling: Replace uniform normalization with sensor-type-specific
scaling; this relatively simple modification frequently improves downstream model
performance substantially.

3. Per-Student Baseline Adjustment: Implement subject-specific centering to eliminate
identity-based model learning while preserving comparative behavioral patterns.

4. Complete Preprocessing Documentation: Report imputation thresholds, temporal
window parameters, and normalization specifications with precision. Publish
preprocessing code alongside model implementations.

5. Benchmark Dataset Adoption: Utilize common datasets (IMPROVE, longitudinal
college sensing) to facilitate fair model comparisons and accumulating cross-study
evidence regarding preprocessing effectiveness.

6. Phased Implementation: Begin AMIN deployment through evaluation on IMPROVE
and comparable datasets, comparing results against simple baselines (mean replacement +
Z-score) using standard model architectures (MLP, LSTM). Progressively expand to

institutional datasets following successful preliminary validation.

The preprocessing framework presented here aims to establish consistent practices within the
academic outcome prediction community, reducing methodological fragmentation while
promoting reproducible, interpretable, and comparatively fair research. As deep learning
adoption accelerates within educational data science, standardized preprocessing baselines
become increasingly important for distinguishing genuine architectural innovations from

improvements merely reflecting preprocessing differences.
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