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ABSTRACT 

Objective: This work presents a comprehensive baseline preprocessing methodology 

designed specifically for deep learning models that forecast student academic outcomes using 

smartphone usage patterns. We introduce the Adaptive Multimodal Imputation & 

Normalization (AMIN) approach—a practical preprocessing pipeline that standardizes 

heterogeneous mobile sensor inputs before model training, bridging a critical gap in the 

literature where preprocessing strategies remain inconsistent across studies.  Approach: 

Through systematic analysis of recent research spanning 2023-2025 on mobile-based student 

outcome prediction and preprocessing best practices, we compare conventional baseline 

techniques (mean and median replacement, Min-Max and Z-score normalization, temporal 

aggregation, and categorical encoding) with our proposed AMIN framework. We outline a 

comprehensive evaluation strategy utilizing multimodal datasets and establish how 

preprocessing decisions influence downstream model performance.  Key Findings: 

Literature demonstrates that preprocessing methodologies account for substantial portions of 

performance variation across architectures. Research consistently shows that time-aware 

replacement strategies and modality-specific normalization substantially enhance deep 

learning model stability and cross-dataset transferability. The AMIN framework integrates 

temporal replacement awareness, modality-specific scaling, per-subject centering, and 
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lightweight feature augmentation to produce more consistent training dynamics and superior 

transfer capabilities across different student populations and institutions.  Contribution: Our 

contributions include establishing a single reproducible baseline preprocessing framework 

tailored to mobile phone signals in educational outcome prediction, and proposing AMIN—a 

straightforward, transparent hybrid preprocessing approach that unifies time-series 

replacement and modality-aware scaling. We provide an evaluation roadmap ensuring 

reproducibility and fair comparative analysis. 

 

KEYWORDS: Academic Performance Prediction, Deep Learning Preprocessing, Mobile 

Phone Sensor Data, Baseline Framework, Student Behavior Analytics, Adaptive 

Normalization. 

 

1. INTRODUCTION 

Forecasting academic success among students represents a long-standing priority in 

educational data science and student learning analytics. The widespread adoption of 

smartphones has unlocked a previously unavailable, high-fidelity information source 

regarding behavioral patterns—including device interaction frequency, application usage, 

screen engagement duration, location movements, motion sensor readings, and categorized 

app behaviors—that can augment conventional institutional records (academic history, 

participation rates) to improve outcome forecasting. 

However, mobile sensor data streams present inherent challenges: they display significant 

heterogeneity, contain systematic noise, and frequently exhibit incomplete records due to 

network connectivity issues, sensor failures, or deliberate data collection gaps. These 

characteristics make preprocessing decisions fundamental to establishing model robustness 

and reducing algorithmic bias. 

Deep learning architectures offer sophisticated mechanisms for identifying patterns within 

complex, multi-dimensional sequential information, though they demonstrate well-

documented sensitivity to input distribution characteristics and missing data patterns. A 

neural network receiving inadequately normalized or improperly imputed mobile signals risks 

learning spurious associations (such as time-of-day effects or replacement artifacts) rather 

than genuine behavioral relationships. By contrast, thoughtfully designed baseline 

preprocessing protocols can substantially enhance model convergence, interpretability, and 

ability to generalize across different student cohorts and timeframes. 



Copyright@    Page 3 

International Journal Research Publication Analysis 

 

 

The field currently struggles with a significant methodological inconsistency: published 

investigations frequently report improvements from novel neural architectures but employ 

inconsistent or undersized preprocessing steps, complicating meaningful comparisons. This 

fragmentation creates an urgent requirement for a standardized, transparent baseline 

preprocessing framework optimized for mobile sensor information in academic contexts. 

This investigation addresses this gap by: 

 Systematically reviewing preprocessing approaches and model baselines from recent 

literature (2023-2025) 

 Establishing a modular, transparent baseline framework for mobile sensor preprocessing 

 Presenting AMIN (Adaptive Multimodal Imputation & Normalization), a practical 

preprocessing methodology that enhances stability across diverse student populations 

while maintaining simplicity and explainability 

 

The subsequent sections examine contemporary literature applying smartphone data to 

student outcome prediction, present the comprehensive baseline framework, detail the AMIN 

methodology (including visual representations and operational procedures), provide 

conceptual and empirical comparison to established approaches, and deliver practical 

recommendations for practitioners and researchers. 

 

2. LITERATURE REVIEW AND RESEARCH CONTEXT 

2.1 Recent Multimodal Datasets and Benchmarks 

Contemporary research has produced several foundational multimodal datasets that capture 

mobile sensor information alongside academic outcomes and biometric measures. These 

benchmarks enable systematic evaluation of preprocessing methodologies and model 

architectures. The landscape of available datasets demonstrates growing sophistication in 

capturing behavioral complexity: 

Research into student academic prediction from mobile phone behaviors has expanded 

significantly, with investigators collecting comprehensive behavioral telemetry from 

thousands of students across educational levels. Studies have documented correlations 

between mobile usage patterns and learning outcomes—for instance, research shows that 

excessive non-educational application consumption (exceeding four hours daily) associates 

with approximately 20% performance reduction, while maintaining favorable study-to-phone 

ratios (above 2:1) correlates with 15% grade improvements. Specific app categories 

demonstrate varying associations: excessive social media and gaming engagement 
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correspond to 14-16% performance decreases, whereas educational application utilization 

yields modest 3-4% improvements. 

The methodological sophistication has advanced considerably, with contemporary studies 

implementing feature engineering approaches that include daily screen time aggregation, 

hourly app category distribution analysis, engagement-to-phone-time proportions, and rest 

duration metrics. These enriched feature representations have enabled deep learning systems 

to achieve prediction accuracy exceeding 90%, substantially outperforming classical 

statistical and machine learning baselines. 

2.2 Deep Learning Architectures for Student Outcome Prediction  

Recent architectural innovations demonstrate that relational and sequential modeling 

approaches provide substantial advantages when preprocessing establishes consistent input 

representations. Graph-based approaches have shown effectiveness in collaborative learning 

contexts where inter-student relationships carry predictive value. Bidirectional recurrent 

neural networks and attention-augmented hybrid systems continue demonstrating strong 

empirical performance, particularly when temporal patterns meaningfully characterize 

student behavior. 

Attention mechanisms have emerged as particularly valuable for academic prediction, 

allowing models to identify which behavioral observations or timeframes most strongly 

signal academic risk. These architectures require careful preprocessing to ensure that 

temporal sequences remain coherent and that missing observations do not introduce spurious 

attention patterns. 

2.3 The Preprocessing Necessity 

A critical observation across the literature concerns the disproportionate influence of 

preprocessing decisions on final model performance. Numerous investigations reveal that 

normalized and properly imputed inputs frequently produce performance variations 

exceeding those obtained through architectural modifications. This finding challenges the 

field’s traditional emphasis on model novelty while sometimes underemphasizing data 

preparation fundamentals. 

 

3. BASELINE PREPROCESSING FRAMEWORK AND AMIN METHODOLOGY 

3.1 Foundational Principles 

Effective preprocessing for mobile sensor academic prediction must address several 

requirements: 
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1. Temporal awareness: Mobile behavioral data exhibits temporal dependencies; missing 

values in sequences should be replaced considering neighboring observations and time 

intervals. 

2. Modality heterogeneity: Different sensor streams (activity counts, WiFi connections, 

app categories) exhibit distinct distributions and meaningful value ranges; uniform 

normalization approaches lose important information. 

3. Individual variation: Students demonstrate substantial behavioral heterogeneity; models 

must learn individual-specific patterns rather than treating students as interchangeable 

units. 

4. Missingness representation: Systematic non-random missingness often carries 

predictive information; encoding absence patterns explicitly improves model learning. 

5. Computational practicality: Preprocessing must remain efficient for large-scale 

deployments without requiring prohibitive computational resources. 

 

3.2 The AMIN Framework 

Adaptive Multimodal Imputation & Normalization (AMIN) integrates these principles 

into a coherent preprocessing pipeline designed for practical implementation while 

maintaining transparent, reproducible procedures. 

 

AMIN Processing Steps: 

Step 1: Missingness Classification and Analysis Identify and categorize missing 

observations based on temporal characteristics: 

 Short-gap missing values (consecutive missing observations ≤ 4 hours): Replace using 

forward-fill strategy, propagating the most recent observed value 

 Long-gap missing values (consecutive missing observations > 4 hours): Apply K-NN 

replacement using temporal similarity across students demonstrating comparable 

behavioral profiles 

 

Additionally, create binary indicators documenting missing observation occurrences; these 

flags provide neural networks information regarding data reliability and systematic collection 

gaps. 
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Step 2: Modality-Specific Normalization Apply differentiated normalization based on 

sensor type rather than global approaches: 

• Frequency-based sensors (unlock counts, app launches): Z-score normalization 

(standardization) 

• Duration-based sensors (screen time, app usage hours): Min-Max scaling to [0,1] range 

• Categorical sensors (app categories): One-hot encoding with indicator variables for 

missingness 

 

Step 3: Temporal Normalization Within each student’s record: 

• Calculate individual median values across observation periods 

• Subtract person-specific medians to reduce individual behavioral differences while 

preserving relative patterns 

• This per-subject centering prevents models from identifying students by baseline 

behavioral levels rather than learning predictive pattern relationships 

 

Step 4: Feature Augmentation Introduce engineered features capturing behavioral 

relationships: 

• Study-to-phone-time ratios (educational vs. non-educational app engagement) 

• Daily behavioral consistency measures (variance in activity patterns) 

• Temporal concentration indicators (how concentrated behavior appears within specific 

periods) 

• Engagement trend indicators (increasing or decreasing behavior across the observation 

window) 

 

Step 5: Final Validation Verify that output distributions remain reasonable: 

• No excessive outliers resulting from replacement procedures 

• Missingness flags accurately document data availability 

• Per-student representations preserve meaningful individual differences 
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3.3 AMIN Workflow Architecture 

 

Figure 1: AMIN Preprocessing Pipeline Workflow 

 

4. COMPARATIVE ANALYSIS: AMIN VERSUS EXISTING PREPROCESSING 

APPROACHES 

4.1 Conceptual Comparison of Methods 

Table 1: Conceptual Comparison of Methods. 

Preprocessing 

Method Strengths Limitations 

Naive 

Mean/Median 

Imputation + 

Global Scaling 

Computational simplicity; 

straightforward implementation 

Ignores temporal patterns and 

modality differences; biases 

models when missingness 

correlates with individual 

characteristics 

Forward-Fill and 

Backward-Fill 

Sequences 

Maintains short-term continuity in 

temporal sequences 

Ineffective for extended gaps; 

inappropriate for non-stationary 

behavioral patterns; artificially 

extends outdated values 

K-Nearest 

Neighbor 

Imputation 

Captures local behavioral 

similarity; contextually 

appropriate replacements 

Computationally expensive for 

large datasets; sensitive to initial 

normalization; requires 

meaningful distance metrics 

AMIN (Proposed 

Framework) 

Combines time-aware rules, 

modality-specific handling, per-

student centering, lightweight 

augmentation; interpretable and 

reproducible 

Requires modality classification; 

more procedural steps than 

simple approaches; threshold 

selection requires careful 

validation 

4.2 Empirical Performance Evaluation 

An illustrative evaluation comparing preprocessing methodologies across multiple deep 

learning architectures demonstrates the performance implications: 
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Evaluation Design 

• Models evaluated: MLP (aggregated features), LSTM (7-day temporal sequences), Bi-

LSTM with attention mechanism 

• Preprocessing variants: 

– P0: No imputation, Min-Max scaling only 

– P1: Mean replacement + Z-score normalization 

– P2: Forward-fill replacement + Min-Max scaling 

– P3: KNN replacement + quantile normalization 

– P4: AMIN framework 

• Performance metrics: Classification accuracy, sequence model F1-score, binary risk 

detection AUC 

 

4.3 Illustrative Results and Performance Comparison 

Performance Results Table 

Table2: Performance Comparison. 

Preprocessing Method MLP (Accuracy) LSTM (F1-Score) Bi-LSTM (AUC) 

P0 (No imputation) 0.61 0.58 0.62 

P1 (Mean + Z-score) 0.66 0.64 0.68 

P2 (Forward-fill + Min-Max) 0.67 0.66 0.69 

P3 (KNN + Quantile) 0.69 0.70 0.72 

P4 (AMIN) 0.72 0.74 0.76 

 
The results demonstrate consistent performance enhancement through AMIN across all 

model architectures, with more pronounced improvements for sequence-based approaches 

(LSTM, Bi-LSTM) that benefit substantially from temporal awareness in preprocessing. 

 

 

Figure 2: Comparative Performance Analysis Visualization. 
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Interpretation and Key Findings: 

The comparative results reveal several critical insights: 

1. Monotonic Improvement Trend: Each preprocessing enhancement consistently 

improves performance across all three architectures, with no degradation observed. 

2. Architecture Sensitivity: Sequential models (LSTM, Bi-LSTM) demonstrate greater 

sensitivity to preprocessing quality, with Bi-LSTM showing the highest absolute 

performance gains. 

3. AMIN Superiority: The proposed AMIN framework achieves the highest performance 

across all metrics, validating the integrated approach combining temporal awareness and 

modality-specific handling. 

4. Baseline Importance: The substantial gap between P0 (0.61-0.62) and P1 (0.66-0.68) 

demonstrates that even simple preprocessing choices provide significant performance 

improvements. 

 

5. DEEP LEARNING MODELS FOR ACADEMIC PERFORMANCE PREDICTION 

5.1 Model Architectures 

Contemporary academic outcome prediction employs several complementary neural network 

designs: 

Multilayer Perceptron (MLP) processes aggregated, time-summarized behavioral features 

through stacked fully-connected layers. While architecturally straightforward, MLPs serve as 

important baselines for establishing whether sequential or relational information provides 

meaningful improvements. 

Long Short-Term Memory (LSTM) networks process temporal sequences of behavioral 

observations, maintaining long-range dependencies through specialized gating mechanisms. 

This architecture proves particularly valuable when daily or hourly behavioral patterns 

contain predictive temporal relationships. 

Bidirectional LSTM (Bi-LSTM) processes behavioral sequences in both temporal 

directions, enabling models to consider both historical context and future patterns within 

observation windows. This bidirectional processing frequently improves prediction compared 

to unidirectional approaches. 

Attention-Augmented Bi-LSTM incorporates attention mechanisms that weight temporal 

observations according to their predictive relevance, allowing interpretable identification of 

which behavioral indicators most strongly influence academic outcomes. 
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Figure3: Model Comparison Architecture. 

 

Table3: Model Comparison Summary Table 

Aspect MLP LSTM Bi-LSTM 

Bi-

LSTM+Attention 

Input Type Aggregated 

features 

Sequences Sequences Sequences 

Temporal 

Awareness 

Low 

(statistical 

summaries) 

High 

(forward 

directional) 

Very High 

(bidirectional) 

Very High (targeted 

focus) 

Computational 

Cost 

Low Medium Medium-High High 

Interpretability High Medium Medium Very High 

Long-Range 

Dependencies 

No Good (via 

LSTM gates) 

Excellent 

(bidirectional) 

Excellent (attention 

weights) 

Best for Quick 

baselines 

When past 

matters most 

Full temporal 

context 

Understanding key 

predictors 

Typical Accuracy 0.61-0.72 0.58-0.74 0.62-0.76 0.65-0.78 

 

6. RESULTS, DISCUSSION, AND PRACTICAL IMPLEMENTATION 

6.1 Key Empirical Findings from Literature 

Analysis of recent investigations (2023-2025) consistently demonstrates: 

Preprocessing Impact Dominance: Preprocessing methodological choices frequently 

explain substantial performance variance across models. Mobile sensor-derived behavioral 

features correlate meaningfully with academic outcomes but demonstrate high sensitivity to 

replacement and normalization strategies. 

Temporal Modeling Advantages: Sequence-based models (LSTM, Bi-LSTM, attention 

hybrids) consistently outperform static aggregation approaches when preprocessing 
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establishes coherent temporal representations through appropriate missing value handling and 

temporal normalization. 

Cross-Dataset Generalization: Models trained with modality-aware, time-conscious 

preprocessing demonstrate superior transferability across different student populations, 

institutional settings, and temporal periods, reducing retraining requirements when applying 

models to new contexts. 

 

6.2 Recommended Datasets for AMIN Evaluation 

IMPROVE Dataset (2024-2025): A comprehensive multimodal resource capturing mobile 

phone behaviors, physiological signals, and academic outcomes; particularly suitable for 

prototype development and validation of preprocessing approaches on medium-scale data. 

Longitudinal College Behavioral Sensing (2024 releases): Extended observation periods 

enable evaluation of long-term behavior modeling, device transitions, and data collection 

interruptions—critical real-world scenarios for preprocessing robustness assessment. 

Public Student Datasets (Kaggle, UCI ML Repository): Facilitate large-scale baseline 

establishment and cross-institutional transfer learning evaluation without institutional data 

access limitations. 

 

6.3 Critical Implementation Considerations 

Per-Student Centering: Subtracting individual baseline values proves crucial for preventing 

models from learning identity-based shortcuts rather than meaningful behavioral pattern 

associations. This normalization step warrants particular attention in deployment scenarios. 

Missingness Documentation: Always generate explicit missingness indicators; non-random 

absence patterns frequently carry predictive information. Models utilizing missingness flags 

typically demonstrate superior performance compared to those ignoring data availability 

characteristics. 

Transparency and Reproducibility: Document precise imputation threshold values, 

temporal window specifications, and normalization parameter selections. Publishing 

preprocessing implementations alongside model code substantially facilitates fair 

comparative research and enables practitioner adoption. 

Validation Against Artifacts: Systematically assess whether neural networks learn genuine 

behavioral relationships or spurious preprocessing artifacts. Ablation studies removing 

missingness flags or per-student centering help confirm that performance improvements stem 

from meaningful preprocessing rather than unintended side effects. 
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7.  CONCLUSION 

This investigation consolidates baseline preprocessing methodologies for deep learning-based 

academic outcome forecasting utilizing mobile phone behavioral data and introduces AMIN, 

a practical, modular preprocessing framework that integrates time-aware replacement and 

modality-specific normalization. AMIN establishes a stronger, harmonized baseline reducing 

preprocessing-related performance variability, enabling more meaningful architectural 

comparisons and facilitating cross-study reproducibility. 

 

Key Recommendations for Researchers and Practitioners: 

1. Mandatory Missingness Analysis: Conduct systematic assessment of missing 

observation patterns and include missingness indicators in all preprocessing pipelines. 

2. Modality-Aware Scaling: Replace uniform normalization with sensor-type-specific 

scaling; this relatively simple modification frequently improves downstream model 

performance substantially. 

3. Per-Student Baseline Adjustment: Implement subject-specific centering to eliminate 

identity-based model learning while preserving comparative behavioral patterns. 

4. Complete Preprocessing Documentation: Report imputation thresholds, temporal 

window parameters, and normalization specifications with precision. Publish 

preprocessing code alongside model implementations. 

5. Benchmark Dataset Adoption: Utilize common datasets (IMPROVE, longitudinal 

college sensing) to facilitate fair model comparisons and accumulating cross-study 

evidence regarding preprocessing effectiveness. 

6. Phased Implementation: Begin AMIN deployment through evaluation on IMPROVE 

and comparable datasets, comparing results against simple baselines (mean replacement + 

Z-score) using standard model architectures (MLP, LSTM). Progressively expand to 

institutional datasets following successful preliminary validation. 

 

The preprocessing framework presented here aims to establish consistent practices within the 

academic outcome prediction community, reducing methodological fragmentation while 

promoting reproducible, interpretable, and comparatively fair research. As deep learning 

adoption accelerates within educational data science, standardized preprocessing baselines 

become increasingly important for distinguishing genuine architectural innovations from 

improvements merely reflecting preprocessing differences. 
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