

**ORAL DYSBIOSIS & PERIODONTITIS****\*Dr. Padmaja Deshpande**

Chhatrapati Shahu Maharaj Shikshan Sanstha's Dental College and Hospital Aurangabad  
Maharashtra.

**Article Received: 14 December 2025****\*Corresponding Author: Dr. Padmaja Deshpande****Article Revised: 2 January 2026**

Chhatrapati Shahu Maharaj Shikshan Sanstha's Dental College and Hospital Aurangabad

**Published on: 21 January 2026**

Maharashtra.

DOI: <https://doi-doi.org/101555/ijrpa.5083>**ABSTRACT**

Oral dysbiosis, defined as an imbalance in the composition and function of the oral microbiota, is a central driver in the pathogenesis of periodontitis, a chronic inflammatory disease of the tooth-supporting structures. In health, commensal microorganisms maintain host-microbe homeostasis, but ecological shifts favor pathogenic species such as *Porphyromonas gingivalis*, *Tannerella forsythia*, and *Treponema denticola*, which disrupt immune regulation and trigger persistent inflammation. This dysregulated host response leads to connective tissue breakdown and alveolar bone resorption, while microbial by-products and systemic inflammatory mediators extend the impact of periodontitis beyond the oral cavity, linking it to conditions such as cardiovascular disease and diabetes. Conventional therapies reduce microbial load but often fail to restore ecological balance, highlighting the need for emerging strategies such as probiotics, host-modulation, and microbiome-targeted interventions aimed at re-establishing symbiosis. Thus, oral dysbiosis represents both a local and systemic challenge, underscoring the importance of precision approaches that integrate microbial profiling and immune modulation for effective periodontal care.

**KEYWORDS:** Dysbiosis, homeostasis, cardiovascular disease, probiotics.**INTRODUCTION**

The human oral cavity is a dynamic ecosystem, teeming with a diverse consortium of microorganisms – bacteria, archaea, fungi, protozoa, and viruses – collectively termed the oral microbiome. Under healthy conditions, this complex community exists in a state of symbiosis, maintaining homeostasis with the host immune system and contributing positively to oral and potentially systemic health. However, a disruption in this delicate balance, termed

dysbiosis, can trigger a cascade of events leading to destructive inflammatory diseases, chief among them being periodontitis. Periodontitis is a chronic, immune inflammatory disease affecting the tooth supporting structures – the gingiva, periodontal ligament, cementum, and alveolar bone. Characterized by progressive attachment loss and bone destruction, it is a leading cause of tooth loss globally and has significant implications for systemic health. This essay delves into the intricate relationship between oral dysbiosis and periodontitis, exploring the microbial ecology, mechanisms of dysbiosis induction, host-microbe interactions driving pathogenesis, and the implications for diagnosis and novel therapeutic strategies.

### **I. The Oral Microbiome: A Foundation of Symbiosis**

The healthy oral microbiome is remarkably diverse, estimated to harbor over 700 bacterial species, though any individual typically hosts 100–200 species at a given time. This microbial consortium is not randomly distributed but forms organized, surface adherent communities known as biofilms, most prominently as dental plaque on tooth surfaces and at the gingival margin.

**Structure and Function:** Biofilms provide structural stability, facilitate nutrient sharing, enhance resistance to environmental stresses (including host defenses and antimicrobials), and enable complex microbial communication (quorum sensing). In health, the biofilm community is dominated by Gram-positive facultative anaerobes (e.g., *Streptococcus* spp., *Actinomyces* spp., *Rothia* spp.) and obligate anaerobes (e.g., *Veillonella* spp., *Fusobacterium nucleatum*). These commensals play beneficial roles:

**Colonization Resistance:** Occupying ecological niches and producing bacteriocins to inhibit the growth of exogenous pathogens.

**Metabolic Contributions:** Aiding in digestion (initial carbohydrate breakdown), nitrate reduction (potential cardiovascular benefits), and vitamin synthesis.

**Immune System Priming:** Providing constant, low-level stimulation that helps "train" the host immune response, maintaining it in a state of readiness without provoking destructive inflammation.

**Host Factors Maintaining Symbiosis:** The host contributes actively to maintaining this balance through:

**Physical Barriers:** The oral epithelium and the flow of saliva, which contains antimicrobial peptides (e.g., defensins, histatins), enzymes (lysozyme, lactoferrin), and antibodies (sIgA).

---

Gingival Crevicular Fluid (GCF): A serum transudate/inflammatory exudate that delivers immune cells, complement proteins, and antibodies to the subgingival space.

Innate and Adaptive Immunity: Constant immune surveillance by neutrophils, macrophages, dendritic cells, and lymphocytes, functioning in a tightly regulated manner under healthy conditions.

This symbiotic state represents a dynamic equilibrium where microbial activity and host defense mechanisms coexist without causing tissue damage.

### **The Genesis of Dysbiosis: Disrupting the Balance**

Oral dysbiosis refers to a significant shift in the composition and/or function of the oral microbial community, leading to a loss of beneficial microbes, an expansion of potentially harmful ones (pathobionts), or a reduction in overall diversity. This shift disrupts the homeostatic relationship with the host, predisposing to disease. Several key factors can trigger dysbiosis:

1. Poor Oral Hygiene: Inadequate mechanical removal of plaque biofilm is the primary environmental driver. Accumulated plaque provides a sheltered environment for anaerobic bacteria to thrive and alters the local redox potential, favoring pathobionts.
2. Diet: Frequent consumption of fermentable carbohydrates (sugars, refined starches) provides abundant substrate for acidogenic bacteria (e.g., *Streptococcus mutans* initially, but also periodontopathogens). Acid production lowers plaque pH, selecting for acid tolerant species and disrupting the balance. Diets low in micronutrients essential for epithelial integrity and immune function (e.g., Vitamins C, D) can also contribute.
3. Host Immune Status: Compromised immune function, whether due to genetic predispositions (e.g., polymorphisms in genes encoding cytokines like IL 1, IL 6, TNF  $\alpha$ , or pattern recognition receptors like TLRs), systemic diseases (e.g., uncontrolled diabetes mellitus, HIV/AIDS), or immunosuppressive therapies, can impair the host's ability to control the microbial challenge, allowing dysbiosis to flourish.
4. Smoking/Tobacco Use: A major risk factor for periodontitis, smoking alters the subgingival microbiome composition (increasing anaerobes like *Prevotella* and *Fusobacterium*), impairs neutrophil function and chemotaxis, reduces GCF flow, and compromises vascularity and wound healing, creating an environment conducive to dysbiosis.

5. Stress: Chronic psychological stress can dysregulate the hypothalamic pituitary adrenal (HPA) axis, leading to elevated cortisol levels, which can suppress immune function and alter the oral environment.
6. Xerostomia (Dry Mouth): Reduced saliva flow, caused by medications, autoimmune diseases (e.g., Sjögren's syndrome), or radiation therapy, diminishes the critical cleansing and antimicrobial functions of saliva, facilitating microbial overgrowth and dysbiosis.
7. Hormonal Changes: Fluctuations during puberty, pregnancy, and menopause can increase gingival inflammation and alter the subgingival environment, potentially favoring dysbiosis.

### **From Dysbiosis to Periodontitis: Pathogenic Mechanisms**

The transition from a symbiotic plaque biofilm to a dysbiotic community capable of triggering periodontitis involves complex ecological shifts and sophisticated subversion of host defenses. Key models describe this process:

1. The Ecological Plaque Hypothesis (Marsh, 1994; 2003): This model emphasizes that changes in the local environment (e.g., increased GCF flow due to inflammation, altered pH, nutrient availability from host tissues) select for a community enriched with proteolytic, asaccharolytic, and obligately anaerobic bacteria. Inflammation itself, initially a host defense, alters the habitat in ways that favor the very pathogens driving the disease – a vicious cycle. Dysbiosis is thus seen as a change in the proportion of species already present in health, driven by environmental pressures.
2. The Keystone Pathogen Hypothesis (Hajishengallis et al., 2012): This model proposes that certain low abundance pathogens, the "keystones," exert a disproportionately large effect on the community and host. *Porphyromonas gingivalis* is the archetype. It doesn't necessarily cause disease alone in large numbers but can subvert host immunity (e.g., manipulating complement signaling, disrupting leukocyte recruitment) in ways that reshape the entire microbial community (dysbiosis) and disable host protective mechanisms, allowing normally controlled commensals and other pathobionts to proliferate and cause destructive inflammation. Dysbiosis is induced by the keystone's immunomodulatory tactics.
3. The Polymicrobial Synergy and Dysbiosis (PSD) Model (Hajishengallis & Lamont, 2012; 2014): Building on the keystone concept, this model emphasizes that periodontitis is driven by synergistic interactions within a polymicrobial community. Different bacterial species (or even different strains/genes within a species) contribute distinct "virulence

properties" that collectively overcome host immunity and cause tissue damage. *P. gingivalis*, *Tannerella forsythia*, and *Treponema denticola* (the "Red Complex" proposed by Socransky et al., 1998) are classic synergistic partners. Dysbiosis is characterized by the emergence of these pathogenic consortia.

**The Dysbiotic Community in Periodontitis:** While highly complex and individualized, the dysbiotic subgingival microbiome associated with periodontitis typically shows:

**Increased Abundance and Diversity of Anaerobes:** Obligate anaerobes thrive in the inflamed, deeper periodontal pockets.

**Shift from Gram positive to Gram negative:** Gram negative bacteria, with their potent endotoxin (LPS), dominate.

**Enrichment of Recognized Pathogens:** Beyond the Red Complex, species like *Fusobacterium nucleatum* (a crucial "bridge" organism facilitating coaggregation), *Aggregatibacter actinomycetemcomitans* (strongly associated with aggressive periodontitis, producing a potent leukotoxin), *Prevotella intermedia*, *Campylobacter rectus*, *Filifactor alocis*, and various spirochetes (*Treponema* spp.) are frequently elevated.

**Reduced Commensal/HealthAssociated Species:** Beneficial early colonizers like *Streptococcus* and *Actinomyces* decrease proportionally.

**Altered Metabolic Profile:** Increased proteolytic activity (breaking down host tissues for nutrients like peptides and hemin) and reduced saccharolytic activity.

### **Host Microbe Interactions Driving Tissue Destruction**

The dysbiotic biofilm doesn't directly invade the periodontal tissues in most cases. Instead, tissue destruction is primarily a consequence of the host's inflammatory response, which becomes dysregulated and excessive in an attempt to control the persistent microbial challenge. This involves a complex interplay:

**1. Microbial Virulence Factors:** Dysbiotic bacteria produce an arsenal of factors that directly damage tissues or, more importantly, stimulate and dysregulate host immunity:

**Lipopolysaccharide (LPS):** Endotoxin from Gram negative bacteria potently activates innate immune cells (macrophages, neutrophils) via Toll like receptors (TLR2/TLR4), triggering pro inflammatory cytokine release (TNF  $\alpha$ , IL 1 $\beta$ , IL 6).

**Fimbriae/Adhesins:** Facilitate attachment to host cells and tissues.

Proteases (Gingipains from *P. gingivalis*, PrtH from *T. forsythia*): Degrade host proteins (collagen, fibrin, immunoglobulins), disrupt host defense molecules (complement, cytokines), and process nutrients. Gingipains also manipulate host cell signaling.

Leukotoxin (*A. actinomycetemcomitans*): Specifically kills human neutrophils and monocytes.

Other Enzymes: Collagenases, hyaluronidases, chondroitin sulfatases directly degrade connective tissue.

Chemotaxis Inhibitors/Modulators: Some pathogens (e.g., *P. gingivalis*) produce molecules that interfere with neutrophil recruitment or function.

Invasion: Some species (*P. gingivalis*, *F. nucleatum*) can invade host epithelial cells and even survive intracellularly, providing a reservoir and evading immune clearance.

2. Dysregulated Host Immune Response: The persistent presence of dysbiotic biofilm and its virulence factors leads to chronic inflammation:

Innate Immune Activation: Recognition of Pathogen Associated Molecular Patterns (PAMPs) by Pattern Recognition Receptors (PRRs like TLRs, NLRs) on epithelial cells, neutrophils, macrophages, and dendritic cells triggers signaling cascades (NF  $\kappa$ B, MAPK) leading to massive production of pro inflammatory cytokines (TNF  $\alpha$ , IL 1 $\beta$ , IL 6, IL 8), prostaglandins (PGE2), and matrix metalloproteinases (MMPs).

Neutrophil Dysfunction: Neutrophils are the first line of defense. In periodontitis, they are hyper recruited but often show impaired phagocytosis and killing (NETosis may contribute to tissue damage). Their excessive release of reactive oxygen species (ROS) and proteases (elastase, MMP 8) directly damages periodontal tissues.

Adaptive Immune Response: Dendritic cells present microbial antigens, activating T helper cells. A shift towards Th1 and Th17 responses (producing IFN  $\gamma$ , IL 17) drives inflammation and osteoclastogenesis. While B cells produce antibodies, their protective role is often overwhelmed, and immune complexes may contribute to inflammation. Regulatory T cells (Tregs) that normally suppress inflammation may be dysfunctional or insufficient.

Osteoclast Activation: Key cytokines (RANKL, TNF  $\alpha$ , IL 1 $\beta$ , IL 6, IL 17) stimulate osteoclast differentiation and activity, leading to alveolar bone resorption. Osteoprotegerin (OPG), a natural RANKL inhibitor, is often downregulated.

Connective Tissue Breakdown: Pro inflammatory cytokines stimulate fibroblasts and epithelial cells to produce MMPs (collagenases, gelatinases) which degrade the extracellular matrix of the periodontal ligament and gingiva. Tissue inhibitors of MMPs (TIMPs) are often overwhelmed.

**Failure of Resolution:** Normally, inflammation resolves through active processes involving specialized pro resolving mediators (SPMs). In chronic periodontitis, these resolution pathways are often impaired, perpetuating the inflammatory state.

The net result is a self perpetuating cycle: Dysbiotic biofilm > Chronic host immune inflammatory response > Tissue destruction (gingival recession, pocket formation, attachment loss, bone loss) > Altered environment (deeper anaerobic pockets, increased GCF nutrients) > Further enrichment of dysbiotic community > Exacerbated inflammation. Genetic and environmental risk factors modulate the intensity of this response.

### **Clinical Implications and Novel Therapeutic Avenues**

Understanding the centrality of dysbiosis in periodontitis has profound implications for clinical management and drives the exploration of novel therapies beyond traditional mechanical debridement:

#### **1. Diagnosis and Risk Assessment:**

**Beyond Clinical Measures:** While probing depth, clinical attachment level, bleeding on probing, and radiographic bone loss remain diagnostic cornerstones, assessing microbial composition (through targeted PCR, DNA-DNA hybridization checkerboards, or increasingly, next generation sequencing NGS) can provide insights into dysbiosis severity and specific pathogen profiles, potentially aiding in personalized risk assessment and treatment planning, especially for aggressive or refractory cases.

**Host Response Markers:** Measuring inflammatory mediators in GCF or saliva (e.g., IL-1 $\beta$ , MMP-8, PGE2) shows promise as biomarkers for disease activity, susceptibility, and treatment response monitoring.

#### **2. Therapeutic Strategies Targeting Dysbiosis:**

**Mechanical Debridement (Scaling and Root Planing SRP):** The gold standard for physically disrupting and removing the dysbiotic subgingival biofilm. Its success hinges on effectively reducing the microbial load and altering the pocket environment. However, complete elimination is impossible, and recurrence is common without excellent maintenance.

**Antimicrobial Adjuncts:** Systemic or local delivery (chips, gels, fibers) of antibiotics (e.g., amoxicillin + metronidazole, doxycycline) or antiseptics (chlorhexidine, essential oils) aims to suppress the dysbiotic community. Used judiciously (not routinely), they can improve

outcomes in specific cases (aggressive periodontitis, severe chronic periodontitis, refractory sites). Concerns include resistance and disruption of beneficial microbiota.

Modulation of the Microbiome (Microbiome Targeted Therapies):

Probiotics: Administration of live beneficial microorganisms (e.g., *Lactobacillus* spp., *Bifidobacterium* spp., *Streptococcus salivarius* strains) aims to restore symbiosis by competing with pathogens, producing antimicrobials, modulating immune responses, and enhancing barrier function. Evidence is promising but still evolving.

Prebiotics: Nutrients selectively promoting the growth of beneficial oral bacteria (e.g., arginine, nitrate). Research is in earlier stages.

Synbiotics: Combinations of probiotics and prebiotics.

Replacement Therapy/Engineered Bacteria: Introducing genetically modified commensals designed to outcompete pathogens or neutralize their virulence factors (e.g., producing specific antibodies or bacteriocins). Largely experimental.

Bacteriophages (Phage Therapy): Using viruses that specifically infect and kill bacterial pathogens. Shows potential for targeting specific dysbiotic drivers but faces challenges in complex polymicrobial environments.

Inhibition of Virulence Factors: Developing small molecules or peptides that block key virulence mechanisms (e.g., gingipain inhibitors, leukotoxin neutralizers, quorum sensing inhibitors) without necessarily killing the bacteria, potentially reducing selection pressure for resistance.

Host Modulation Therapies (HMTs): Drugs aimed at dampening the destructive host inflammatory response to the dysbiotic challenge:

Sub Antimicrobial Dose Doxycycline (SDD): Inhibits MMP activity (especially collagenases) more than microbial growth, reducing connective tissue breakdown. Well established adjunct.

NSAIDs and COX 2 Inhibitors: Suppress prostaglandin synthesis (PGE2). Limited by systemic side effects for chronic use.

Bisphosphonates: Inhibit osteoclast activity. Risk of osteonecrosis of the jaw limits use.

Biological Agents: Targeting specific cytokines (e.g., anti TNF  $\alpha$ , IL 1 receptor antagonist). Efficacy shown in animal models and small human studies, but cost and systemic immunosuppression risks limit current application. Local delivery strategies are being explored.

Resolution Pharmacology: Utilizing specialized pro-resolving mediators (SPMs like Resolvins, Lipoxins, Maresins) or their stable analogs to actively resolve inflammation without immunosuppression. A highly promising emerging field.

### **Systemic Implications and Conclusion**

The significance of oral dysbiosis and periodontitis extends far beyond the oral cavity. Chronic periodontal inflammation acts as a reservoir of pro-inflammatory mediators and dysbiotic bacteria/bacterial products (e.g., LPS) that can enter the systemic circulation (bacteremia, endotoxemia) or be aspirated. This is implicated in associations with several systemic conditions, including:

**Cardiovascular Disease (CVD):** Increased risk of atherosclerosis, myocardial infarction, and stroke, potentially mediated by systemic inflammation, endothelial dysfunction, and direct bacterial effects in atherosclerotic plaques.

**Diabetes Mellitus:** A well-established bidirectional relationship. Periodontitis exacerbates glycemic control, and diabetes increases susceptibility to and severity of periodontitis. Dysbiosis and inflammation contribute to insulin resistance.

**Adverse Pregnancy Outcomes:** Increased risk of preterm birth and low birth weight, linked to systemic inflammatory mediators and possibly direct bacterial translocation.

**Rheumatoid Arthritis (RA):** Shared dysbiotic features (e.g., *P. gingivalis* producing citrullinating enzymes) and systemic inflammation may link the diseases.

**Respiratory Diseases:** Aspiration of oral pathogens may contribute to pneumonia, particularly in hospitalized or elderly patients.

**Cognitive Decline/Alzheimer's Disease:** Emerging evidence suggests oral dysbiosis and inflammation may contribute to neuroinflammation and pathology.

## **CONCLUSION**

Oral dysbiosis is not merely a microbial imbalance; it represents a fundamental shift in the ecological dynamics of the oral microbiome and its interaction with the host immune system. This shift is the central driver in the pathogenesis of periodontitis. The transition from symbiosis to dysbiosis, fueled by environmental and host factors, establishes pathogenic polymicrobial communities adept at subverting host defenses. The resulting chronic, dysregulated inflammatory response, intended to clear the microbial challenge, becomes the primary engine of tissue destruction – attachment loss and bone resorption. Understanding

this intricate relationship, moving beyond simplistic notions of specific pathogens to embrace the complexity of community ecology and host-microbe dialogue, is paramount.

This knowledge revolutionizes our approach to periodontitis. It shifts the therapeutic paradigm from solely targeting the microbial biomass (debridement, antibiotics) towards strategies that actively restore symbiosis (probiotics, prebiotics, virulence inhibitors) and modulate the host response (host modulation therapies, resolution pharmacology) to break the vicious cycle of dysbiosis and inflammation. Furthermore, recognizing periodontitis as a chronic inflammatory disease fueled by dysbiosis underscores its significance as a potential modifier of systemic health. Future research, leveraging advanced sequencing, metabolomics, and systems biology, will further unravel the individual nuances of dysbiosis and host susceptibility, paving the way for truly personalized prevention and treatment strategies. The war within the oral cavity, unseen but profoundly impactful, demands strategies focused on restoring peace – the restoration of a healthy, symbiotic oral microbiome.

## REFERENCES

1. Hajishengallis, G. (2015). Periodontitis: from microbial immune subversion to systemic inflammation. *Nature Reviews Immunology*, 15 (1), 30–44.
2. Lamont, R. J., Koo, H., & Hajishengallis, G. (2018). The oral microbiota: dynamic communities and host interactions. *Nature Reviews Microbiology*, 16 (12), 745–759.
3. Marsh, P. D. (2003). Are dental diseases examples of ecological catastrophes? *Microbiology (Reading, England)*, 149 (Pt 2), 279–294.
4. Hajishengallis, G., & Lamont, R. J. (2012). Beyond the red complex and into more complexity: the polymicrobial synergy and dysbiosis (PSD) model of periodontal disease etiology. *Molecular Oral Microbiology*, 27 (6), 409–419.
5. Socransky, S. S., Haffajee, A. D., Cugini, M. A., Smith, C., & Kent Jr, R. L. (1998). Microbial complexes in subgingival plaque. *Journal of Clinical Periodontology*, 25 (2), 134–144.
6. Darveau, R. P. (2010). Periodontitis: a polymicrobial disruption of host homeostasis. *Nature Reviews Microbiology*, 8 (7), 481–490.
7. Curtis, M. A., Diaz, P. I., & Van Dyke, T. E. (2020). The role of the microbiota in periodontal disease. *Periodontology 2000*, 83 (1), 14–25.

8. Bartold, P. M., & Van Dyke, T. E. (2013). Periodontitis: a host mediated disruption of microbial homeostasis. Unlearning learned concepts. *Periodontology 2000* , 62 (1), 203–217.
9. Genco, R. J., & Borgnakke, W. S. (2013). Risk factors for periodontal disease. *Periodontology 2000* , 62 (1), 59–94.
10. Van Dyke, T. E., & Sheilesh, D. (2005). Risk factors for periodontitis. *Journal of the International Academy of Periodontology* , 7 (1), 3–7.
11. Eke, P. I., Dye, B. A., Wei, L., Thornton Evans, G. O., & Genco, R. J. (2012). Prevalence of periodontitis in adults in the United States: 2009 and 2010. *Journal of Dental Research* , 91 (10), 914–920.
12. Könönen, E., Gursoy, M., & Gursoy, U. K. (2019). Periodontitis: A Multifaceted Disease of Tooth Supporting Tissues. *Journal of Clinical Medicine* , 8 (8), 1135.
13. Sanz, M., Beighton, D., Curtis, M. A., Cury, J. A., Dige, I., Dommisch, H., ... & Zaura, E. (2017). Role of microbial biofilms in the maintenance of oral health and in the development of dental caries and periodontal diseases. Consensus report of group 1 of the Joint EFP/ORCA workshop on the boundaries between caries and periodontal disease. *Journal of Clinical Periodontology*, 44 (S18), S5–S11.
14. Meyle, J., & Chapple, I. (2015). Molecular aspects of the pathogenesis of periodontitis. *Periodontology 2000* , 69 (1), 7–17.
15. Graves, D. T., Corrêa, J. D., & Silva, T. A. (2019). The oral microbiota is modified by systemic diseases. *Journal of Dental Research*, 98 (2), 148–156.
16. Teughels, W., Feres, M., Oud, V., Martín, C., Matesanz, P., & Herrera, D. (2020). Adjunctive effect of systemic antimicrobials in periodontitis therapy: A systematic review and meta analysis. *Journal of Clinical Periodontology*, 47 (S22), 257–281.
17. Slots, J. (2017). Periodontitis: facts, fallacies and the future. *Periodontology 2000*, 75 (1), 7–23.
18. Chapple, I. L. C., Van der Weijden, F., Doerfer, C., Herrera, D., Shapira, L., Polak, D., ... & Graziani, F. (2015). Primary prevention of periodontitis: managing gingivitis. *Journal of Clinical Periodontology*, 42 (S16), S71–S76.
19. Preshaw, P. M., & Taylor, J. J. (2011). How has research into cytokine interactions and their role in driving immune responses impacted our understanding of periodontitis? *Journal of Clinical Periodontology*, 38 (s11), 60–84.
20. Page, R. C., & Kornman, K. S. (1997). The pathogenesis of human periodontitis: an introduction. *Periodontology 2000*, 14 (1), 9–11.

21. Tonetti, M. S., Greenwell, H., & Kornman, K. S. (2018). Staging and grading of periodontitis: Framework and proposal of a new classification and case definition. *Journal of Periodontology*, 89 (S1), S159–S172.
22. Hajishengallis, G. (2014). Immunomicrobial pathogenesis of periodontitis: keystones, pathobionts, and host response. *Trends in Immunology*, 35 (1), 3–11.
23. Olsen, I., & Yamazaki, K. (2019). Can oral bacteria affect the microbiome of the gut? *Journal of Oral Microbiology*, 11 (1), 1586422.
24. Van Dyke, T. E. (2017). Proresolving lipid mediators: potential for prevention and treatment of periodontitis. *Journal of Clinical Periodontology*, 44 (2), 163–172.
25. Teughels, W., Loozen, G., & Quirynen, M. (2011). Do probiotics offer opportunities to manipulate the periodontal oral microbiota? *Journal of Clinical Periodontology*, 38 (s11), 159–177.