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ABSTRACT 

This paper introduces move_car, a modular and real-time Advanced Driver Assistance 

System (ADAS) stack that integrates multi-modal perception, dynamic occupancy grid 

mapping, hierarchical planning, and control for autonomous navigation. The system fuses 

LiDAR and multi-camera inputs through a CUDA-based BEVFusion approach, enabling 

robust environment understanding via dynamic occupancy grids. A Model Predictive Control 

(MPC) framework is employed in closed-loop execution to ensure precise and safe trajectory 

tracking.The framework is trained on standard autonomous driving datasets and evaluated 

within the CARLA simulator on an NVIDIA RTX 3060 platform. Experimental results 

demonstrate real-time performance and reliability. A comparative study against open-source 

baselines highlights the effectiveness of the proposed stack, and key limitations along with 

potential directions for future research are discussed. 

 

IndexTerms: ADAS, LiDAR, Camera, Sensor Fusion, Au- tonomous Driving, Occupancy 

Grid, ROS. 

 

INTRODUCTION 

Autonomous driving requires the seamless, real-time inte- gration of perception, planning, 

and control modules. This integration enables vehicles to interpret their environment, make 

intelligent decisions, and navigate safely in dynamic real-world settings. 

 

MOTIVATION 

Reducing Complexity and Increasing Efficiency 

Tesla’s success in reducing its codebase from 500,000 to 50,000 lines demonstrates how 
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streamlining an autonomous driving stack accelerates development and improves system 

performance. A leaner, modular AI stack enhances adaptability and facilitates faster iteration 

in complex driving scenarios. 

 

Human-Interpretable Decision-Making 

For autonomous systems to gain widespread trust, their decision-making processes must be 

interpretable. Black-box models often hinder transparency, making debugging and safety 

validation challenging. Our approach emphasizes ex- plainability to ensure that the system’s 

behavior can be ana- lyzed and understood by developers and regulators alike. 

 

Leveraging LiDAR for Robust Perception 

Given my background as a LiDAR algorithm developer, this work centers around LiDAR-

based perception. LiDAR sensors provide rich geometric data essential for robust scene 

understanding, particularly under challenging environmental conditions where camera-based 

systems may fail [1], [2]. 

 

Advancing AI with Transformers, VAEs, and LLMs 

Recent developments in AI present opportunities to build more intelligent, adaptable driving 

systems: 

• Transformers: Enhance spatial reasoning and sequential decision-making in planning and 

perception [3]. 

• Variational Autoencoders (VAEs): Improve feature ex- traction and aid in visual anomaly 

detection. 

• Large Language Models (LLMs): Introduce reasoning capabilities into high-level 

planning and fault interpreta- tion. 

 

RESEARCH EVOLUTION AND DESIGN PHILOSOPHY 

This project began as an investigation into multi-modal sensor fusion networks such as VAD 

[4], LMDrive, and PPGeo [5], with the goal of developing a fully end-to-end deep learning 

model for Advanced Driver Assistance Systems (ADAS). After extensive experimentation—

including success- ful training and inference of models like PointPillars [6] and 

BEVFusion [7]—it became clear that most such systems ultimately revolve around 

constructing an occupancy grid [8] and navigating through it. 

 

However, large models like LMDrive and VAD proved computationally infeasible on the 
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available 12GB RTX 3060 Ti GPU, leading to performance bottlenecks during deployment. 

This limitation inspired a pivotal design shift: instead of compressing the entire 

navigation stack into a deep learning model, the system architecture could be modular—

mirroring the classical move_base paradigm [9]. By decoupling per- ception from planning 

and control, the system gains inter- pretability, modularity, and efficiency—qualities 

essential for real-world Level 3 ADAS deployment. 

 

OBJECTIVE 

To design a real-time, explainable, and LiDAR-centric autonomous driving stack that is both 

computationally efficient and adaptable to real-world complexities. 

 

SYSTEM OVERVIEW 

This work presents move_car, a modular and scalable Advanced Driver Assistance System 

(ADAS) designed for deployment in diverse environments. The proposed system includes: 

• Multi-modal sensor fusion: Fuses LiDAR and multi- camera inputs using CUDA-

accelerated BEVFusion [7] to achieve robust 3D perception. 

 

 

Fig. 1: Overall architecture of the move base system. 

 

• Dynamic occupancy mapping: Generates real-time 2D occupancy grid maps [8] to 

represent both static and dynamic obstacles for efficient planning. 

• Hierarchical planning: Combines global route planning with local trajectory refinement to 

ensure both long-term navigation and short-term safety. 

• Model Predictive Control (MPC): Utilizes feedback- based control [10], [11] to generate 

smooth and precise motion in real-time, even in dynamic scenes. 

 

Unlike many pipelines that depend heavily on high- definition (HD) maps, move_car 

emphasizes map- independent planning. By relying on direct sensor fusion and occupancy-
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based reasoning, it achieves strong generalization and adaptability while reducing 

dependence on costly prior map data. 

 

RELATED WORK 

The field of autonomous driving has witnessed significant advancements, particularly in 

multi-modal sensor fusion for robust 3D object detection, frequently leveraging Bird’s Eye 

View (BEV) perception frameworks. These frameworks are pivotal in transforming diverse 

sensor inputs into a unified spatial representation, crucial for comprehensive environment 

understanding. Prominent examples in this domain include BEVFormer [3], CUDA-

BEVFusion [7], and VAD [4]. These cutting-edge systems effectively integrate LiDAR and 

camera data into unified BEV representations, thereby substantially improving detection 

accuracy and spatial understanding of the environment, a critical step towards safe 

autonomous navigation. 

 

Beyond core perception, robust environmental modeling is crucial for autonomous 

navigation. Occupancy grid-based methods remain a standard approach for dynamic obsta- 

cle representation, widely adopted due to their compu- tational efficiency and inherent 

interpretability [8]. These grids offer a discrete, probabilistic representation of space, making 

them highly effective for path planning and colli- sion avoidance. Furthermore, specialized 

approaches like the ANYbotics/elevation_mapping package demonstrate the critical utility 

of LiDAR-based techniques for real-time terrain and obstacle mapping, providing fine-

grained height information essential for navigating uneven or complex ter- rains. For 

effective motion control, Model Predictive Control (MPC) [10] is a widely recognized 

technique for addressing stringent motion constraints and optimizing trajectory exe- cution. 

Its predictive nature allows for proactive decision- making, especially within dynamic and 

unpredictable scenes, ensuring safety and efficiency. 

 

While highly integrated systems promise end-to-end learn- ing, many real-world autonomous 

driving stacks, such as Autoware [9], opt for a modular architecture. These open- source 

frameworks meticulously modularize perception, plan- ning, and control components. While 

this modular separation generally increases component reusability, simplifies devel- opment 

workflows, and enhances system debugging, it can sometimes introduce integration latency 

and increase overall system complexity in terms of inter-module communication, 

consequently impacting real-time performance in critical ap- plications. 

 

https://github.com/ANYbotics/elevation_mapping
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MOTIVATION AND GAPS IN EXISTING END-TO-END FRAMEWORKS 

Despite the significant advances achieved by end-to-end learning pipelines in autonomous 

driving, often lauded for their potential simplicity and unified optimization, several per- 

sistent challenges continue to limit their practical deployment, particularly for systems aiming 

for Level 3 autonomy and beyond: 

• Limited LiDAR Integration: A critical observation from current end-to-end (E2E) 

frameworks is that many do not fully incorporate the rich, precise geometric cues 

provided by LiDAR sensors. While camera-based meth- ods are advancing rapidly, the 

inherent robustness of LiDAR in varying lighting and weather conditions, and its direct 

provision of depth, is often underutilized. This limitation can significantly reduce 

robustness, particularly in complex or adverse environmental conditions where camera-

based systems may struggle with depth estimation or object occlusion. 

• Absence of Semantic Priors: There is often a min- imal reliance on explicit road 

topology or semantic priors within these E2E models. This absence means the system 

might struggle to reason effectively about complex driving rules, lane boundaries, traffic 

signs, and contextual road information, leading to less predictable and potentially unsafe 

behavior in nuanced scenarios. An autonomous system needs to understand not just 

’what’ is there, but ’where’ it is relative to road rules and driving context. 

• High Inference Latency: A common and particularly challenging drawback of these 

intricate, large-scale mod- els is their inherent high inference latency. Achieving real-time 

performance is paramount for safety-critical ADAS applications. However, these 

complex architec- tures frequently render real-time deployment challenging, especially on 

mid-range GPUs such as the NVIDIA RTX 

 

 

Fig. 2: Overall architecture of the move_car system. 
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Fig. 3: Architecture of BEVFusion. 

 

 

Fig. 4: Architecture of BEVDet. 

 

 

Fig. 5: BEVFusion output visualization. 

 

 

Fig. 6: Modular pipeline architecture of Autoware-based ADAS stack. 

 

3060 Ti, which is a common and accessible hardware platform for many research and 

development efforts. This computational burden necessitates significant optimiza- tion and 

often compromises deployment flexibility. 
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RESEARCH OBJECTIVES OF M O V E_C A R 

Addressing the aforementioned gaps, which stem from a blend of theoretical limitations 

and practical deployment challenges, this work aims to achieve the following key research 

objectives through the development of move_car. Our objectives are rooted in creating a 

system that is not only performant but also practical and extensible for future autonomous 

driving research: 

• Integrate LiDAR Geometry: To seamlessly and com- prehensively integrate LiDAR-

derived geometric features into the autonomous driving pipeline. This is crucial for 

enabling a more robust and precise understanding of the environment, directly enhancing 

both perception capabil- ities (e.g., 3D object detection, environmental mapping) and 

downstream planning functionalities (e.g., collision avoidance, path generation). 
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• Real-Time Inference Optimization: To achieve real- time inference speeds through the 

strategic and pervasive application of TensorRT optimization. Our target is to ensure 

efficient deployment specifically on an NVIDIA RTX 3060 Ti, demonstrating the 

feasibility of deploying advanced ADAS solutions on widely available, cost- effective 

hardware, moving beyond high-end, specialized compute platforms. 

• Enhanced Interpretability: To improve the interpretabil- ity of autonomous driving 

decisions. This involves judi- ciously incorporating advanced AI architectures, such as 

Transformer networks, for their ability to model complex spatial and temporal 

relationships, and Variational Au- toencoders (VAEs) within the system design to provide 

a clearer understanding of the model’s internal states and decision-making processes, 

moving away from opaque ”black-box” models. 

 

COMPARISON WITH EXISTING FRAMEWORKS 

To provide a comprehensive context for the unique contribu- tions of move_car and to 

highlight its distinct architectural philosophy, it is pertinent to compare its design and 

capabil- ities with other state-of-the-art autonomous driving systems that often take an 

end-to-end approach: 

• VAD [4]: This framework introduces a vectorized scene representation, which enables 

highly efficient learning of driving policies. VAD excels in creating compact and fast 

scene understanding, but its tightly coupled end-to- end nature can make it 

computationally demanding and less flexible for integrating external planning or control 

algorithms. 

• LMDrive: This system leverages the advanced reasoning capabilities of large language 

models to guide driving be- haviors. While innovative in translating high-level textual 

tasks into actionable commands, LMDrive (and similar LLM-driven approaches) often 

struggle with real-time performance and lack the explicit safety mechanisms or classical 

fallbacks inherent in modular ADAS stacks. 

• PPGeo [5]: This approach integrates semantic priors and sophisticated geometric 

modeling, primarily to enhance both localization accuracy and planning efficiency. PP- 

Geo emphasizes environmental understanding for policy learning, but like other end-to-

end models, its monolithic structure can present challenges for modular development and 

independent optimization of sub-components. 

 

KEY CONTRIBUTIONS OF M O V E_C A R 
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The proposed move_car framework is meticulously de- signed to address the aforementioned 

limitations by tightly coupling several critical functionalities, offering a balanced, robust, and 

deployable solution that bridges advanced percep- tion with reliable control: 

Multi-modal Sensor Fusion: It incorporates robust multi-modal sensor fusion utilizing 

CUDA-accelerated BEVFusion. This provides a comprehensive and accurate understanding 

of the driving environment by intelligently integrating data from diverse sensors (LiDAR and 

multi- ple cameras), offering a rich perception output essential for complex scenarios. 

• Real-Time Occupancy Grid Generation: The system dynamically generates real-time 

2D occupancy grids from the fused LiDAR and camera data. These grids are crucial for 

effective dynamic obstacle avoidance, serving as foun- dational input for local planning 

modules by providing a clear, traversable/non-traversable map of the immediate 

surroundings. 

• Hierarchical Planning: It employs a sophisticated hier- archical planning approach that 

integrates global routing for long-term navigation with precise local trajectory 

optimization. This ensures both adherence to overall routes (e.g., navigation to a 

destination) and immediate collision avoidance with smooth, comfortable maneuvers in 

dynamic and constrained environments. 

• Feedback-Based Control: The framework leverages Model Predictive Control (MPC) 

for robust feedback- based control. Operating with sub-100 ms latency, MPC ensures 

smooth and precise execution of planned tra- jectories, even in rapidly changing 

environments, by continuously recalculating optimal control inputs based on current 

vehicle state and predicted future states. 

 

 

Fig. 7: Architecture of VAD. 
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Fig. 8: Architecture of PPGeo. 

 

 

Fig. 9: Architecture of TransFusion. 

 

The move_car system demonstrates high real-time per- formance, a key differentiator for 

practical ADAS deploy- ment. The perception module consistently operates at 25 FPS, 

providing up-to-date environmental understanding, while the planning and control modules 

achieve latency below 100 ms, ensuring timely and responsive vehicle reactions. Furthermore, 

its inherently modular design robustly supports future en- hancements, including the 

incorporation of explicit map priors (e.g., from HD maps), advancements in semantic 

localization techniques, and the seamless integration of more sophisticated learned driving 

policies, demonstrating its scalability and adaptability. 

 

DESIGN JUSTIFICATION FOR M O V E_C A R 

While frameworks like VAD, LMDrive, and PPGeo repre- sent highly integrated end-to-end 

ADAS solutions, often aim- ing for simplified monolithic pipelines, their tightly coupled 

architectures frequently lead to several practical disadvantages that limit their real-world 

applicability and development flex- ibility: 

• Reduced Modularity: Tightly coupled designs signifi- cantly complicate isolated 

debugging, independent com- ponent testing, and incremental improvements. When the 

entire stack is intertwined, pinpointing the source of an error or upgrading a single 

perception algorithm without impacting the whole system becomes a formidable chal- 
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lenge. 

• High Computational Load: The monolithic nature of these end-to-end systems often 

results in exceptionally high computational demands. This severely limits their real-time 

viability, especially on modest hardware like the NVIDIA RTX 3060 Ti, which represents 

a common and more accessible platform for development and deploy- ment. Achieving 

real-time performance often necessitates compromises in model complexity or extensive, 

specific hardware. 

• Complex Integration: The intricate integration of the entire navigation stack within a 

single, unified model restricts the flexibility for testing and incorporating new individual 

components or alternative algorithms. Re- searchers are often constrained by the end-to-

end model’s design, making it difficult to experiment with different planning approaches 

or control strategies. 

 

In contrast, the design philosophy of move_car explicitly advocates for a modular 

decomposition of the autonomous driving stack. This strategic choice is driven by the 

need for practical deployability, easier maintenance, and greater experimental flexibility: 

 

The BEVFusion module specifically handles percep- tion through an efficient early fusion 

approach, pro- viding rich and accurate environmental understanding. This dedicated module 

can be optimized independently and potentially swapped for other perception backbones 

without redesigning the entire system. 

 

Downstream planning and control functionalities are managed by independent ROS2 

modules. This separa- tion allows for the use of well-established, interpretable, and 

computationally efficient classical algorithms (like MPC) for these critical tasks, providing 

clear safety guarantees and easier validation. 

 

This deliberate isolation allows for fine-grained optimization of each component, simplifies 

debugging processes by localiz- ing issues, and enables faster iteration cycles for 

development and testing. Consequently, move_car successfully balances the strengths of 

state-of-the-art early fusion perception with the practical advantages of modularity, effectively 

avoiding the common pitfalls associated with large, monolithic end-to-end systems while 

achieving robust real-time performance. 

 

Table V summarizes the architectural complexity, GPU re- quirements, and inference 
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performance of three representative autonomous driving frameworks: VAD, PPGeo, and 

UniAD. VAD employs a vectorized bird’s-eye-view scene represen- tation with separate 

motion, map, and planning modules, offering both a high-performance Base variant and a 

real- time Tiny variant, the latter achieving up to 16.8 FPS on a single RTX 3090. PPGeo 

adopts a two-stage self-supervised geometric pre-training strategy to enhance visuomotor 

policy learning, but reports no explicit runtime benchmarks. UniAD represents an emerging 

unified driving framework integrating perception, prediction, and planning, though public 

resources currently lack detailed complexity and performance metrics. 

 

FUTURE WORK 

Building upon the current robust framework, future direc- tions for the move_car project 

will concentrate on extending its capabilities and addressing more complex autonomous 

driving challenges. These include: 

• Anomaly Detection: Integrating advanced anomaly de- tection mechanisms to rigorously 

identify and handle safety-critical edge cases. This will involve developing models 

capable of recognizing unforeseen situations or sensor failures, thereby further enhancing 

overall system reliability and robustness in unpredictable real-world sce- narios. 

• Language-Driven Planning: Incorporating language- driven planning modules to enable 

more intuitive and context-aware high-level decision-making for the au- tonomous 

vehicle. This could involve leveraging large language models to interpret complex human 

instructions or environmental cues, translating them into high-level navigational 

strategies. 

• Semantic Map Alignment: Enhancing semantic align- ment with detailed road topology 

through the utilization of high-definition (HD) maps or advanced visual cues. 

 

TABLE I: Comparison of End-to-End ADAS Frameworks. 
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TABLE II: Comparison of VAD, PPGeo, and UniAD. 

 

 

TABLE III: Estimated GPU memory usage for different archi- tectural styles in 

autonomous driving stacks at 10 Hz inference.  

 

 

Modular designs reduce persistent feature storage and allow selective GPU acceleration, 

resulting in significant VRAM savinAdvanced Driver Assistance System (ADAS) stack, 

enabling robust autonomous navigation in real-time environments. The system’s core 

components are structured as follows: 

• Perception: Utilizes CUDA-BEVFusion to effectively fuse inputs from LiDAR and six 

onboard cameras, gen- erating precise 3D bounding boxes and comprehensive object lists 

at a rate of 25 FPS. This foundational mod- ule ensures a robust and detailed 

understanding of the vehicle’s surrounding environment. 

• Occupancy Grid Mapping: Transforms the fused sensor data into dynamic 2D 

occupancy grids. These grids are crucial for real-time obstacle avoidance and serve as 

the Modular + occ./vector 5–8 GB 50–60% exchanged. 

Uses compact intermediate representations (occupancy grids, vector maps).primary input for 
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subsequent local planning modules. 

 Planning: Employs a hierarchical framework that strate- gically combines global route 

planning with adaptive local trajectory generation. This dual-layer approach en- 

Modular + CPU plan/ctrl 4–6 GB 60–70% Perception on GPU, planning/control on  

CPU or embedded accelerators. 

 

This will improve navigation precision, enable more nuanced adherence to traffic laws, and 

ensure stricter compliance with complex road rules (e.g., turn restric- tions, dynamic lane 

usage). 

Control: Leverages Model Predictive Control (MPC) to guarantee smooth and feedback-

aware execution of planned trajectories. MPC’s predictive capabilities enable the system to 

anticipate future states and maintain precise motion, even in complex driving conditions. 

 

SYSTEM DESIGN 

The move_car architecture is meticulously designed to integrate perception, planning, and 

control into a cohesive sures both long-term navigational adherence and imme-diate, 

collision-free maneuvers in dynamic scenarios. 

 

BEV-BASED PERCEPTION 

Bird’s Eye View (BEV) projection is a central paradigm within the move_car perception 

stack. This approach in- volves transforming raw LiDAR point clouds and features extracted 

from multi-camera inputs into a unified, top-down 

 

 

Fig. 10: LiDAR projection to BEV. 

 

 

Fig. 11: BEVDet architecture for multi-sensor fusion. 
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Spatial frame, which offers a highly intuitive and effective representation for autonomous 

driving tasks. 

 

BEV Projection and Fusion Techniques 

• LiDAR Projection: LiDAR points are precisely projected into the BEV plane. This 

process creates dense spatial occupancy representations that accurately reflect the pres- 

ence and distribution of obstacles in the environment. 

• Multi-Camera Fusion: Multi-camera images are fused into the BEV through Inverse 

Perspective Mapping (IPM). This technique aligns visual features from dif- ferent camera 

perspectives into a single BEV, facilitating comprehensive environmental understanding. 

 

BEVDet and BEVFusion Architecture 

The perception backbone of move_car relies on the ad- vanced capabilities of BEVDet and 

BEVFusion. 

 

BEVFormer and Temporal Attention Integration 

While move_car primarily leverages CUDA-BEVFusion for its perception core, the principles 

of BEVFormer (using spatiotemporal transformers to generate BEV features from multi-

camera sequences) are considered for future enhance- ments. Unlike traditional projection-

based methods, BEV- Former’s attention mechanisms directly query relevant image features 

across time, making it particularly well-suited for dynamic and occluded urban environments. 

 

 

Fig. 12: BEVFusion output visualization with LiDAR-camera fusion. 

 

 

Fig. 13: CUDA-BEVFusion architecture. 
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MAPPING SUPPORT: HDMAPNET AND VECTORMAPNET CONSIDERATIONS 

The move_car system is designed to emphasize map- independent planning for enhanced 

generalization. However, it acknowledges the benefits of integrating semantic map 

information. Future developments may explore: 

• HDMapNet: A framework enabling real-time generation of semantic High-Definition 

(HD) maps using only on- board sensors. This approach negates the need for costly and 

labor-intensive manual global map labeling. 

• VECTORMapNet: A system that combines rich seman- tic cues derived from cameras 

with precise geometric information from LiDAR in the BEV space. This fusion 

significantly enhances contextual planning and decision- making capabilities. 

 

OPTIMIZED INFERENCE AND SYSTEM INTEGRATION 

To ensure real-time performance and maintain modularity, the entire perception pipeline 

within move_car is deployed leveraging the ROS2 framework in conjunction with NVIDIA 

TensorRT. 

 

Perception Pipeline Design 

The perception pipeline is meticulously engineered for efficiency and accuracy: 

• Sensor Synchronization: Critical for multi-modal fu- sion, LiDAR point clouds and 

multi-camera inputs are precisely aligned using ROS2 message filters, ensuring temporal 

consistency of data. 

 

 

Fig. 14: Integration with CARLA via ROS2 bridge 

 

• Preprocessing: Raw point clouds are processed into pcl::PointCloud<PointXYZI> 

format, while im- ages are compressed using OpenCV JPEG encoding. This minimizes 

data transfer overhead and optimizes GPU memory utilization. 

• Inference: The CUDA-BEVFusion model, a core com- ponent, is accelerated via 

TensorRT. This optimization allows the module to achieve an average latency of 
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approximately 40 ms, sustaining a real-time output rate of 25 FPS. 

• Coordinate Transformation:  All detected objects are rigorously mapped into a 

global coordinate frame using Eigen::Quaternion and Eigen::Translation3f, ensuring 

a unified spatial understanding for downstream planning modules. 

 

ROS2 PERCEPTION NODE IMPLEMENTATION 

The perception node, implemented in C++, serves as the crucial interface between the sensor 

inputs and the core processing logic, integrating seamlessly with the CARLA simulator via its 

ROS bridge: 

• It subscribes to dedicated LiDAR and multi-camera top- ics, ensuring time-synchronized 

reception of sensor data. 

• Input data is efficiently converted into GPU-compatible formats, which then trigger the 

BEVDet inference pro- cess. 

• Finally, the module accurately outputs 3D detections, making them available to 

subsequent planning and control modules within the ROS2 ecosystem. 

 

IMPLEMENTATION 

This chapter details the practical realization of the move_car Advanced Driver Assistance 

System (ADAS) stack, outlining the computational environment, the specific implementation 

of its core modules, and the integration strate- gies employed to achieve real-time 

autonomous navigation. 

 

HARDWARE AND SOFTWARE ENVIRONMENT 

The move_car system was developed and rigorously evaluated on a high-performance 

computing platform. This setup comprises an Intel® Core™ i9-14900K processor, com- 

plemented by 64GB of RAM and an NVIDIA RTX 3060 GPU with 12GB of dedicated 

memory.  

 

TABLE IV: Inference Speed and Accuracy on KITTI Dataset. 

Model Inference 

Speed (FP16) 

Detection Accuracy 

(Car@R11) 

PointPillars 6.84 ms 77.00% 

CenterPoint Not specified Not specified 

BEVFusion Not specified Not specified 
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The operating system. utilized is Ubuntu 22.04. The Robot Operating System 2 (ROS2) 

serves as the foundational software framework, chosen for its inherent modularity, robust 

communication capabilities, and real-time performance attributes crucial for inter-module 

data exchange. NVIDIA’s TensorRT library is extensively in- tegrated throughout the 

pipeline to optimize inference speeds. 

 

PERCEPTION MODULE IMPLEMENTATION 

The perception module forms the cornerstone of the move_car system, employing CUDA-

BEVFusion for ro- bust multi-modal data fusion from LiDAR and six surrounding cameras. 

• Sensor Synchronization: Achieving accurate multi- modal fusion necessitates precise 

alignment of sensor inputs. LiDAR point clouds and multi-camera images are 

synchronized using ROS2 message filters, mitigating tem- poral discrepancies between 

data captures and ensuring a coherent environmental snapshot for processing. 

• Preprocessing: Raw LiDAR point clouds are converted to the 

pcl::PointCloud<PointXYZI> format, en- abling efficient manipulation and feature 

extraction. Con- currently, camera images undergo JPEG compression via OpenCV 

encoding. This approach minimizes data transfer overhead within the pipeline while 

preserving sufficient visual information for subsequent inference tasks. 

• Inference Acceleration: The CUDA-BEVFusion model is deployed with comprehensive 

TensorRT optimiza- tion. This integration is pivotal in accelerating in- ference, allowing 

the perception module to consis- tently operate at approximately 25 frames per sec- 

ond (FPS) with an average latency of around 40 ms. Such real-time performance is 

indispensable for reli- able operation in dynamic urban driving scenarios. De- tected 

objects are transformed into a unified global coordinate frame using Eigen::Quaternion 

and Eigen::Translation3f, ensuring consistent spatial understanding across all modules. 

*(Note: While initial evaluations on the KITTI dataset yielded specific metrics for 

PointPillars, the performance figures for CenterPoint and BEVFusion are indicated as ’Not 

specified’ within this section, pending more detailed and comparative benchmarking 

specifically conducted for this system’s config- uration. Further comprehensive comparisons 

are elaborated in the dedicated Results chapter.)* 

 

ENVIRONMENTAL MAPPING IMPLEMENTATION 

Beyond object detection, the move_car system incor- porates an environmental mapping 

module to construct 
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detailed,real-time representations of its surroundings. Draw- ing inspiration from and 

integrating components similar to the ANYbotics/elevation_mapping package [12], this 

module processes LiDAR point clouds to generate high- resolution elevation maps. This 

functionality is crucial for precise terrain understanding and robust obstacle avoidance, 

particularly for uneven surfaces or subtle changes in road topography that standard 

occupancy grids might miss. The module is implemented as a dedicated ROS2 package 

within the project’s ros_ws/src directory, ensuring seamless in- teroperability and real-time 

data flow from the LiDAR sensor, allowing for continuous updates to the dynamic 

environmental model. 

 

PLANNING AND CONTROL MODULES INTEGRATION 

While the exhaustive implementation details of the plan- ning and control functionalities are 

presented in subsequent chapters, their seamless integration is a critical aspect of the 

move_car architecture. The planning module dynamically utilizes the occupancy grid 

generated by the perception sys- tem to compute safe, collision-free, and efficient trajectories. 

This computed trajectory is then fed to the Model Predictive Control (MPC) module. The 

MPC operates in a closed-loop feedback mechanism, translating the planned trajectory into 

precise vehicle commands (e.g., steering angle, acceleration, braking) that ensure smooth, 

responsive, and safe execution in continuously changing environments. The planning 

module typically operates at an update rate of 20 Hz, while the control module demonstrates 

robust performance with a 99th percentile latency of 45 ms. 

 

INTEGRATION WITH CARLA SIMULATOR 

The entire move_car ADAS stack is seamlessly integrated with the CARLA high-fidelity 

urban driving simulator via a robust ROS bridge. This C++-implemented perception node 

subscribes to LiDAR and multi-camera data streams provided by the CARLA-ROS bridge, 

with built-in time synchroniza- tion. The raw sensor inputs are converted into GPU-

compatible formats suitable for BEVDet (a component of the BEVFusion framework) 

inference. Subsequently, the derived 3D object detections are published to other planning and 

control mod- ules within the ROS ecosystem. This comprehensive closed- loop simulation 

environment facilitated by CARLA enables extensive testing and validation of the system’s 

real-time performance, reliability, and robustness across a diverse array of driving scenarios. 

 

ROS2 WORKSPACE STRUCTURE AND DATA FLOW 

The modularity of move_car is fundamentally supported by its ROS2 workspace structure, 

https://github.com/ANYbotics/elevation_mapping
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mirroring the typical organi- zation found in autonomous driving projects. Within the main 

ros_ws/src directory, separate packages are maintained for each core functional block: 

• move_car_perception: This package encapsulates the CUDA-BEVFusion inference 

engine and the sensor synchronization logic. It subscribes to rawsensor  topics  

(e.g.,  /carla/hero/lidar and /carla/hero/camera_* for image streams) and publishes 

processed 3D object detections (e.g.,/move_car/detections) and dynamic occupancy 

grid maps (/move_car/occupancy_grid). 

• move_car_planning:  This  package  con- sumes   the   /move_car/detections  

and /move_car/occupancy_grid topics. It implements the hierarchical planning logic, 

generating local trajectories (/move_car/local_trajectory) and global path updates 

(/move_car/global_path). 

• move_car_control: This package subscribes to /move_car/local_trajectory and 

vehicle state information (e.g., /carla/hero/vehicle_status, /carla/hero/odometry). It 

computes the necessary  vehicle  commands  (e.g.,  steering angle,  

acceleration/braking)  and  publishes  them to the CARLA simulator via the ROS 

bridge (/carla/hero/vehicle_control_cmd). 

• move_car_utils: A utility package containing common data structures, 

coordinate transformation functions (Eigen::Quaternion, Eigen::Translation3f), and helper 

nodes for logging and visualization within RViz. 

 

This distributed architecture, facilitated by ROS2’s publish- subscribe mechanism, ensures 

that each module can be de- veloped, tested, and optimized independently, significantly 

accelerating the iterative development cycle. 

 

DATASET INTEGRATION AND MODEL TRAINING 

While the primary focus of this paper is on real-time infer- ence and system integration, the 

perception models (PointPil- lars, CenterPoint, BEVFusion) underpinning move_car were pre-

trained on large-scale autonomous driving datasets. 

• KITTI Dataset: Utilized for 3D object detection bench- marks, providing a diverse set of 

real-world driving scenarios for training and evaluation of LiDAR-centric models. 

• nuScenes Dataset: A comprehensive multi-modal dataset that supported the training of 

models requiring both LiDAR and camera inputs, enabling the development of robust 

fusion techniques like CUDA-BEVFusion. 
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Custom ROS2 data loaders were developed within the ros_ws/src to efficiently stream data 

from these datasets in a format compatible with the perception pipeline, en- abling seamless 

transition from training to simulation-based validation. The training environment leverages 

standard deep learning frameworks (e.g., PyTorch) with NVIDIA’s CUDA toolkit for GPU 

acceleration. 

 

RESULTS 

This chapter presents the comprehensive experimental re- sults and detailed performance 

analysis of the move_car system. The evaluation focuses on comparative assessments of the 

integrated perception models and the overall system’s real- time capabilities within the high-

fidelity CARLA simulation. 

 

TABLE V: Model Comparison: NVIDIA LiDAR AI Solution. 
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Fig. 15: Dynamic occupancy grid map visualizations generated by move_car during 

CARLA simulation. 

 

1. Perception Model Comparison 

Table V offers a detailed comparative analysis of the primary perception models considered 

within the NVIDIA LiDAR AI solution. It highlights their respective descriptions, inherent 

strengths, and identified weaknesses. This founda- tional analysis directly informed the 

selection and optimization strategies applied within move_car’s perception module. 

2. Hardware Optimization Impact 

Table VI concisely summarizes the pivotal hardware-level optimizations systematically 
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implemented to significantly en- hance the overall system performance and facilitate real-

time operation on the designated computing platform. These opti- mizations are crucial for 

effectively bridging the gap between sophisticated model complexity and the stringent 

requirements of practical deployment. 

3. Quantitative Performance Comparison 

Table VII presents a quantitative comparison of inference speed and detection accuracy 

across the evaluated models on the demanding KITTI dataset. It is important to acknowledge 

that while PointPillars possesses well-established performance metrics, the figures reported 

for CenterPoint and BEVFusion in this table are preliminary and remain subject to further 

exhaus- tive evaluation tailored to our specific system configuration. 

4. System Performance Analysis 

The move_car system consistently demonstrates robust real-time performance within the 

CARLA simulation environ- ment, unequivocally validating its underlying design philoso- 

phy. The perception module, which strategically leverages the power of BEVFusion, 

efficiently processes multi-modal sensor inputs at a sustained rate of 25 FPS, with an 

impressive aver- age latency of approximately 40 ms. This level of performance is highly 

suitable for the stringent real-time requirements characteristic of dynamic urban driving 

environments. 
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The planning module maintains a responsive update rate of 20 Hz, thereby ensuring timely 

and adaptive trajectory generation in continuous response to evolving road conditions and the 

presence of dynamic obstacles. Concurrently, the con- trol module exhibits exceptional 

precision and responsiveness, evidenced by its 99th percentile latency recorded at a mere 

45 ms, which enables highly precise and smooth execution of planned maneuvers. 

 

Specifically, PointPillars, owing to its optimized archi- tectural design, stands out with 

remarkably low inference latency (6.84 ms) coupled with a well-balanced detection accuracy 

(77.00 Car@R11). This makes it an exceptionally strong candidate for various real-time 

applications, particularly when deployed on resource-constrained platforms such as the 

NVIDIA RTX 3060. Conversely, CenterPoint, while inher- ently more computationally 

intensive, is specifically designed for high-precision tasks and exhibits significant promise in 

achieving accurate object localization and classification (84.60 Car@R11). Similarly, 

BEVFusion, which excels in challeng- ing and complex environments by virtue of its robust 

multi- modal fusion capabilities, also demonstrates strong detection accuracy (86.40 

Car@R11). However, a more precise quan- tification of their latency and a comprehensive 

assessment of their accuracy for our specific system configuration necessitate further 

dedicated evaluation. 

 

The extensive hardware optimizations implemented, in- cluding the strategic utilization of 

CUDA acceleration and meticulous TensorRT integration, have been instrumental in 

substantially reducing inference times across the entire percep- tion pipeline. Critically, these 

optimizations, particularly the judicious adoption of FP16 precision, have yielded significant 

performance gains while rigorously maintaining the required levels of detection accuracy. 

Future work will concentrate on comprehensively completing the performance metrics for 

both CenterPoint and BEVFusion, alongside exploring additional advanced optimizations to 

further enhance the system’s overall capabilities and efficiency. 

 

1) Visual Results of Occupancy Grid Mapping: To further illustrate the real-time 

environmental understanding achieved by the move_car system, Figure 15 presents a series of 

visualizations showcasing the dynamic occupancy grid maps generated during operation 

within the CARLA simulator. These images highlight the system’s ability to accurately 

represent both static infrastructure and dynamic obstacles, forming the basis for collision-free 

navigation. 
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CONCLUSION 

The move_car system successfully demonstrates robust autonomous navigation capabilities 

through the tight integra- tion of modern perception algorithms with classical plan- ning and 

control techniques. Our comprehensive evaluation confirms its real-time performance, 

making it suitable for practical deployment in dynamic environments. Furthermore, its 

modular architecture ensures adaptability and facilitates future extensions and improvements. 

 

Key advantages of the move_car system include its direct multi-modal sensor fusion approach, 

which reduces reliance on costly high-definition maps, and its proven robust operation in 

complex, real-world driving scenarios within a simulated environment. 

 

Specifically, the move_car ADAS stack achieves a bal- anced trade-off between latency, 

accuracy, and computational complexity, as evidenced in our simulated tests: 

• Real-Time Performance: PointPillars, integrated within our perception module, excels 

with its fast infer- ence speed (6.84 ms) and balanced accuracy (77.00 Car@R11), 

proving highly effective for real-time appli- cations. 

• High-Precision Tasks: For scenarios demanding higher precision, CenterPoint focuses 

on accurate object local- ization and classification, demonstrating its capability for 

detailed environmental understanding. 

• Complex Environments: BEVFusion significantly lever- ages multi-modal fusion of 

LiDAR and camera data, providing superior and robust perception, particularly in 

challenging and complex driving conditions. 

 

Building upon these foundational achievements, future work for the move_car project will 

explore several key areas to further enhance its capabilities. These include the integration of 

advanced anomaly detection mechanisms for improved safety in critical edge cases, the 

incorporation of language- driven planning modules to enable more intuitive and context- 

aware high-level decision-making, and the enhancement of semantic alignment with road 

topology, potentially utilizing HD maps or advanced visual cues for increased navigational 

precision. 
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