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ABSTRACT

This paper introduces move_car, a modular and real-time Advanced Driver Assistance
System (ADAS) stack that integrates multi-modal perception, dynamic occupancy grid
mapping, hierarchical planning, and control for autonomous navigation. The system fuses
LiDAR and multi-camera inputs through a CUDA-based BEVFusion approach, enabling
robust environment understanding via dynamic occupancy grids. A Model Predictive Control
(MPC) framework is employed in closed-loop execution to ensure precise and safe trajectory
tracking.The framework is trained on standard autonomous driving datasets and evaluated
within the CARLA simulator on an NVIDIA RTX 3060 platform. Experimental results
demonstrate real-time performance and reliability. A comparative study against open-source
baselines highlights the effectiveness of the proposed stack, and key limitations along with

potential directions for future research are discussed.

IndexTerms: ADAS, LiDAR, Camera, Sensor Fusion, Au- tonomous Driving, Occupancy
Grid, ROS.

INTRODUCTION
Autonomous driving requires the seamless, real-time inte- gration of perception, planning,
and control modules. This integration enables vehicles to interpret their environment, make

intelligent decisions, and navigate safely in dynamic real-world settings.

MOTIVATION
Reducing Complexity and Increasing Efficiency

Tesla’s success in reducing its codebase from 500,000 to 50,000 lines demonstrates how
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streamlining an autonomous driving stack accelerates development and improves system
performance. A leaner, modular Al stack enhances adaptability and facilitates faster iteration

in complex driving scenarios.

Human-Interpretable Decision-Making

For autonomous systems to gain widespread trust, their decision-making processes must be
interpretable. Black-box models often hinder transparency, making debugging and safety
validation challenging. Our approach emphasizes ex- plainability to ensure that the system’s

behavior can be ana- lyzed and understood by developers and regulators alike.

Leveraging LiDAR for Robust Perception

Given my background as a LIDAR algorithm developer, this work centers around LiDAR-
based perception. LIiDAR sensors provide rich geometric data essential for robust scene
understanding, particularly under challenging environmental conditions where camera-based

systems may fail [1], [2].

Advancing Al with Transformers, VAEs, and LLMs

Recent developments in Al present opportunities to build more intelligent, adaptable driving

systems:

- Transformers: Enhance spatial reasoning and sequential decision-making in planning and
perception [3].

- Variational Autoencoders (VAES): Improve feature ex- traction and aid in visual anomaly
detection.

- Large Language Models (LLMs): Introduce reasoning capabilities into high-level
planning and fault interpreta- tion.

RESEARCH EVOLUTION AND DESIGN PHILOSOPHY

This project began as an investigation into multi-modal sensor fusion networks such as VAD
[4], LMDrive, and PPGeo [5], with the goal of developing a fully end-to-end deep learning
model for Advanced Driver Assistance Systems (ADAS). After extensive experimentation—
including success- ful training and inference of models like PointPillars [6] and
BEVFusion [7]—it became clear that most such systems ultimately revolve around

constructing an occupancy grid [8] and navigating through it.

However, large models like LMDrive and VAD proved computationally infeasible on the
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available 12GB RTX 3060 Ti GPU, leading to performance bottlenecks during deployment.
This limitation inspired a pivotal design shift: instead of compressing the entire
navigation stack into a deep learning model, the system architecture could be modular—
mirroring the classical move_base paradigm [9]. By decoupling per- ception from planning
and control, the system gains inter- pretability, modularity, and efficiency—qualities

essential for real-world Level 3 ADAS deployment.

OBJECTIVE
To design a real-time, explainable, and LiDAR-centric autonomous driving stack that is both

computationally efficient and adaptable to real-world complexities.

SYSTEM OVERVIEW

This work presents move_car, a modular and scalable Advanced Driver Assistance System
(ADAS) designed for deployment in diverse environments. The proposed system includes:

- Multi-modal sensor fusion: Fuses LIDAR and multi- camera inputs using CUDA-

accelerated BEVFusion [7] to achieve robust 3D perception.
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Fig. 1: Overall architecture of the move basesystem.

- Dynamic occupancy mapping: Generates real-time 2D occupancy grid maps [8] to
represent both static and dynamic obstacles for efficient planning.

- Hierarchical planning: Combines global route planning with local trajectory refinement to
ensure both long-term navigation and short-term safety.

- Model Predictive Control (MPC): Utilizes feedback- based control [10], [11] to generate

smooth and precise maotion in real-time, even in dynamic scenes.

Unlike many pipelines that depend heavily on high- definition (HD) maps, move_car

emphasizes map- independent planning. By relying on direct sensor fusion and occupancy-
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based reasoning, it achieves strong generalization and adaptability while reducing

dependence on costly prior map data.

RELATED WORK

The field of autonomous driving has witnessed significant advancements, particularly in
multi-modal sensor fusion for robust 3D object detection, frequently leveraging Bird’s Eye
View (BEV) perception frameworks. These frameworks are pivotal in transforming diverse
sensor inputs into a unified spatial representation, crucial for comprehensive environment
understanding. Prominent examples in this domain include BEVFormer [3], CUDA-
BEVFusion [7], and VAD [4]. These cutting-edge systems effectively integrate LiDAR and
camera data into unified BEV representations, thereby substantially improving detection
accuracy and spatial understanding of the environment, a critical step towards safe

autonomous navigation.

Beyond core perception, robust environmental modeling is crucial for autonomous
navigation. Occupancy grid-based methods remain a standard approach for dynamic obsta-
cle representation, widely adopted due to their compu- tational efficiency and inherent
interpretability [8]. These grids offer a discrete, probabilistic representation of space, making
them highly effective for path planning and colli- sion avoidance. Furthermore, specialized
approaches like the ANYhbotics/elevation_mapping package demonstrate the critical utility
of LiDAR-based techniques for real-time terrain and obstacle mapping, providing fine-
grained height information essential for navigating uneven or complex ter- rains. For
effective motion control, Model Predictive Control (MPC) [10] is a widely recognized
technique for addressing stringent motion constraints and optimizing trajectory exe- cution.
Its predictive nature allows for proactive decision- making, especially within dynamic and

unpredictable scenes, ensuring safety and efficiency.

While highly integrated systems promise end-to-end learn- ing, many real-world autonomous
driving stacks, such as Autoware [9], opt for a modular architecture. These open- source
frameworks meticulously modularize perception, plan- ning, and control components. While
this modular separation generally increases component reusability, simplifies devel- opment
workflows, and enhances system debugging, it can sometimes introduce integration latency
and increase overall system complexity in terms of inter-module communication,

consequently impacting real-time performance in critical ap- plications.
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MOTIVATION AND GAPS IN EXISTING END-TO-END FRAMEWORKS

Despite the significant advances achieved by end-to-end learning pipelines in autonomous

driving, often lauded for their potential simplicity and unified optimization, several per-

sistent challenges continue to limit their practical deployment, particularly for systems aiming

for Level 3 autonomy and beyond:

Limited LiDAR Integration: A critical observation from current end-to-end (E2E)
frameworks is that many do not fully incorporate the rich, precise geometric cues
provided by LiDAR sensors. While camera-based meth- ods are advancing rapidly, the
inherent robustness of LIDAR in varying lighting and weather conditions, and its direct
provision of depth, is often underutilized. This limitation can significantly reduce
robustness, particularly in complex or adverse environmental conditions where camera-
based systems may struggle with depth estimation or object occlusion.

Absence of Semantic Priors: There is often a min- imal reliance on explicit road
topology or semantic priors within these E2E models. This absence means the system
might struggle to reason effectively about complex driving rules, lane boundaries, traffic
signs, and contextual road information, leading to less predictable and potentially unsafe
behavior in nuanced scenarios. An autonomous system needs to understand not just
"what’ is there, but *where’ it is relative to road rules and driving context.

High Inference Latency: A common and particularly challenging drawback of these
intricate, large-scale mod- els is their inherent high inference latency. Achieving real-time
performance is paramount for safety-critical ADAS applications. However, these
complex architec- tures frequently render real-time deployment challenging, especially on
mid-range GPUs such as the NVIDIA RTX
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Fig. 2: Overall architecture of the move_carsystem.
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3060 Ti, which is a common and accessible hardware platform for many research and
development efforts. This computational burden necessitates significant optimiza- tion and

often compromises deployment flexibility.

Copyright@ Page 6



International Journal Research Publication Analysis

RESEARCH OBJECTIVES OF MOVE_CAR

Addressing the aforementioned gaps, which stem from a blend of theoretical limitations

and practical deployment challenges, this work aims to achieve the following key research

objectives through the development of move_car. Our objectives are rooted in creating a

system that is not only performant but also practical and extensible for future autonomous

driving research:

- Integrate LIDAR Geometry: To seamlessly and com- prehensively integrate LIDAR-
derived geometric features into the autonomous driving pipeline. This is crucial for
enabling a more robust and precise understanding of the environment, directly enhancing
both perception capabil- ities (e.g., 3D object detection, environmental mapping) and

downstream planning functionalities (e.g., collision avoidance, path generation).
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Real-Time Inference Optimization: To achieve real- time inference speeds through the
strategic and pervasive application of TensorRT optimization. Our target is to ensure
efficient deployment specifically on an NVIDIA RTX 3060 Ti, demonstrating the
feasibility of deploying advanced ADAS solutions on widely available, cost- effective
hardware, moving beyond high-end, specialized compute platforms.

Enhanced Interpretability: To improve the interpretabil- ity of autonomous driving
decisions. This involves judi- ciously incorporating advanced Al architectures, such as
Transformer networks, for their ability to model complex spatial and temporal
relationships, and Variational Au- toencoders (VAES) within the system design to provide
a clearer understanding of the model’s internal states and decision-making processes,

moving away from opaque black-box” models.

COMPARISON WITH EXISTING FRAMEWORKS

To provide a comprehensive context for the unique contribu- tions of move_car and to

highlight its distinct architectural philosophy, it is pertinent to compare its design and
capabil- ities with other state-of-the-art autonomous driving systems that often take an
end-to-end approach:

VAD [4]: This framework introduces a vectorized scene representation, which enables
highly efficient learning of driving policies. VAD excels in creating compact and fast
scene understanding, but its tightly coupled end-to- end nature can make it
computationally demanding and less flexible for integrating external planning or control
algorithms.

LMDrive: This system leverages the advanced reasoning capabilities of large language
models to guide driving be- haviors. While innovative in translating high-level textual
tasks into actionable commands, LMDrive (and similar LLM-driven approaches) often
struggle with real-time performance and lack the explicit safety mechanisms or classical
fallbacks inherent in modular ADAS stacks.

PPGeo [5]: This approach integrates semantic priors and sophisticated geometric
modeling, primarily to enhance both localization accuracy and planning efficiency. PP-
Geo emphasizes environmental understanding for policy learning, but like other end-to-
end models, its monolithic structure can present challenges for modular development and

independent optimization of sub-components.

KEY CONTRIBUTIONS OF MOVE_CAR
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The proposed move_car framework is meticulously de- signed to address the aforementioned

limitations by tightly coupling several critical functionalities, offering a balanced, robust, and

deployable solution that bridges advanced percep- tion with reliable control:

Multi-modal Sensor Fusion: It incorporates robust multi-modal sensor fusion utilizing

CUDA-accelerated BEVFusion. This provides a comprehensive and accurate understanding

of the driving environment by intelligently integrating data from diverse sensors (LiDAR and

multi- ple cameras), offering a rich perception output essential for complex scenarios.

Real-Time Occupancy Grid Generation: The system dynamically generates real-time
2D occupancy grids from the fused LIiDAR and camera data. These grids are crucial for
effective dynamic obstacle avoidance, serving as foun- dational input for local planning
modules by providing a clear, traversable/non-traversable map of the immediate
surroundings.

Hierarchical Planning: It employs a sophisticated hier- archical planning approach that
integrates global routing for long-term navigation with precise local trajectory
optimization. This ensures both adherence to overall routes (e.g., navigation to a
destination) and immediate collision avoidance with smooth, comfortable maneuvers in
dynamic and constrained environments.

Feedback-Based Control: The framework leverages Model Predictive Control (MPC)
for robust feedback- based control. Operating with sub-100 ms latency, MPC ensures
smooth and precise execution of planned tra- jectories, even in rapidly changing
environments, by continuously recalculating optimal control inputs based on current

vehicle state and predicted future states.
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Fig. 7: Architecture of VAD.

Copyright@ Page 9



International Journal Research Publication Analysis

() Self-supervised \ Policy P g {b) Downstream Tasks

Fig. 9: Architecture of TransFusion.

The move_car system demonstrates high real-time per- formance, a key differentiator for
practical ADAS deploy- ment. The perception module consistently operates at 25 FPS,
providing up-to-date environmental understanding, while the planning and control modules
achieve latency below 100 ms, ensuring timely and responsive vehicle reactions. Furthermore,
its inherently modular design robustly supports future en- hancements, including the
incorporation of explicit map priors (e.g., from HD maps), advancements in semantic
localization techniques, and the seamless integration of more sophisticated learned driving
policies, demonstrating its scalability and adaptability.

DESIGN JUSTIFICATION FOR MOVE_CAR

While frameworks like VAD, LMDrive, and PPGeo repre- sent highly integrated end-to-end

ADAS solutions, often aim- ing for simplified monolithic pipelines, their tightly coupled

architectures frequently lead to several practical disadvantages that limit their real-world

applicability and development flex- ibility:

- Reduced Modularity: Tightly coupled designs signifi- cantly complicate isolated
debugging, independent com- ponent testing, and incremental improvements. When the
entire stack is intertwined, pinpointing the source of an error or upgrading a single

perception algorithm without impacting the whole system becomes a formidable chal-
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lenge.

- High Computational Load: The monolithic nature of these end-to-end systems often
results in exceptionally high computational demands. This severely limits their real-time
viability, especially on modest hardware like the NVIDIA RTX 3060 Ti, which represents
a common and more accessible platform for development and deploy- ment. Achieving
real-time performance often necessitates compromises in model complexity or extensive,
specific hardware.

- Complex Integration: The intricate integration of the entire navigation stack within a
single, unified model restricts the flexibility for testing and incorporating new individual
components or alternative algorithms. Re- searchers are often constrained by the end-to-
end model’s design, making it difficult to experiment with different planning approaches

or control strategies.

In contrast, the design philosophy of move_car explicitly advocates for a modular
decomposition of the autonomous driving stack. This strategic choice is driven by the

need for practical deployability, easier maintenance, and greater experimental flexibility:

The BEVFusion module specifically handles percep- tion through an efficient early fusion
approach, pro- viding rich and accurate environmental understanding. This dedicated module
can be optimized independently and potentially swapped for other perception backbones

without redesigning the entire system.

Downstream planning and control functionalities are managed by independent ROS2
modules. This separa- tion allows for the use of well-established, interpretable, and
computationally efficient classical algorithms (like MPC) for these critical tasks, providing

clear safety guarantees and easier validation.

This deliberate isolation allows for fine-grained optimization of each component, simplifies
debugging processes by localiz- ing issues, and enables faster iteration cycles for
development and testing. Consequently, move_car successfully balances the strengths of
state-of-the-art early fusion perception with the practical advantages of modularity, effectively
avoiding the common pitfalls associated with large, monolithic end-to-end systems while

achieving robust real-time performance.

Table V summarizes the architectural complexity, GPU re- quirements, and inference
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performance of three representative autonomous driving frameworks: VAD, PPGeo, and
UniAD. VAD employs a vectorized bird’s-eye-view scene represen- tation with separate
motion, map, and planning modules, offering both a high-performance Base variant and a
real- time Tiny variant, the latter achieving up to 16.8 FPS on a single RTX 3090. PPGeo
adopts a two-stage self-supervised geometric pre-training strategy to enhance visuomotor
policy learning, but reports no explicit runtime benchmarks. UniAD represents an emerging
unified driving framework integrating perception, prediction, and planning, though public
resources currently lack detailed complexity and performance metrics.

FUTURE WORK

Building upon the current robust framework, future direc- tions for the move_car project
will concentrate on extending its capabilities and addressing more complex autonomous
driving challenges. These include:

- Anomaly Detection: Integrating advanced anomaly de- tection mechanisms to rigorously
identify and handle safety-critical edge cases. This will involve developing models
capable of recognizing unforeseen situations or sensor failures, thereby further enhancing
overall system reliability and robustness in unpredictable real-world sce- narios.

- Language-Driven Planning: Incorporating language- driven planning modules to enable
more intuitive and context-aware high-level decision-making for the au- tonomous
vehicle. This could involve leveraging large language models to interpret complex human
instructions or environmental cues, translating them into high-level navigational
strategies.

- Semantic Map Alignment: Enhancing semantic align- ment with detailed road topology

through the utilization of high-definition (HD) maps or advanced visual cues.

TABLE I: Comparison of End-to-End ADAS Frameworks.

Framework Fuzion Type Integrated Components Limitations
VAD[4] Early Pusiom (LiDAR + Camera)  Perception Planning, Confrol Larze model ziza, limited intarpretabil-
iy, hizh compute demand:
LMDrive Language-drivan Decision Fusion  Perception, Language Reasonms, Mot real-time, lacks classical fallback
Contral safaty mechanizms
PPGeo[3] Semantic-Geometric Fusion Localization, Semantic Mappinz,  High data dependency, not modular
Planning
BEVFusion (ours) Early Fusion Parception only Modular but requires plammg contrel
; 5
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TABLE I1: Comparison of VAD, PPGeo, and UniAD.

Model Complexity & Architecture GPU Training Setup Inference Speed / Uzage

VAD (Vectonzed Scenme  Vectonzed BEV-based architecture with  Trained for 60 epochs on & »x VAD-Tmy achieves up to 9.5= faster

Fapressntation) motion, map, and plaming meodules; NVIDIA BT 3090 GPUs, batch  infarence than prior methods; VAD-
two variants: VAD-Base (Jarger) and =ize 1 per GPU contentRefer- Base nme at 4.5 FPS; VAD-Tmy
VAD- Ty (hghter). exce[oarette:jmdec=0. 163 FPE on one ETX 3080 :com-

teniBefaranpaloaicita: | Jindew=1.
PPGeo (Policy Pre-rmiming  Two-stage self-superized framework:  Code mdicates traming through  Pomanly a pre-traming method for
via Geometnic Modeling) Staze l—poss + depth modebne; fag stages uweimg PyTorch Spe- dovmstream visuomotor tasks; no &-
Stage l—ago-motion prediction amd  ecific GPU count not specified m rect inferencs zpead or momtime met-
photommetre optinneation. Fully self  the paper or repo comfentFafar-  pgs reported.
apensised visual encoder pre-raming. gcefcarcite Y jmdee=2.

UmiAD (Unified End-to-end umfied drrving stack (ikely Mot specified in paper or GitHlub Mo explient imference fmme or FP2
Antomomous Driving) includes perception, prediction, and  repo. metrics provided in corrent publica-
plaming modules). Architecture details fiams, or GitFub.

pot fully outhned m avalable sources.

TABLE IIl: Estimated GPU memory usage for different archi- tectural styles in

autonomous driving stacks at 10 Hz inference.

Architecture Style VRAM  Saving__ Nates
Monolithic EIE 12-16 GB —  Toint perception-

plammnmg-contol.
larze BEW featuras
parsist In memory.
Modular + dense BEV E10GE  30-40%  Modulss separated,
bt high-res BEW

features are

sxchangad
Modular + ocefvactor BB 30605 Uses compact
mtermediate
reprazentahions
(occopancy zrids,
vector maps).
Madular + CPU plan'sir] 46 GB 60-T0%  Perception on GFU,
) on
CPT or embadded
zccelerators.

Modular designs reduce persistent feature storage and allow selective GPU acceleration,
resulting in significant VRAM savinAdvanced Driver Assistance System (ADAS) stack,
enabling robust autonomous navigation in real-time environments. The system’s core
components are structured as follows:

- Perception: Utilizes CUDA-BEVFusion to effectively fuse inputs from LiDAR and six
onboard cameras, gen- erating precise 3D bounding boxes and comprehensive object lists
at a rate of 25 FPS. This foundational mod- ule ensures a robust and detailed
understanding of the vehicle’s surrounding environment.

- Occupancy Grid Mapping: Transforms the fused sensor data into dynamic 2D
occupancy grids. These grids are crucial for real-time obstacle avoidance and serve as
the Modular + occ./vector 5-8 GB 50-60% exchanged.

Uses compact intermediate representations (occupancy grids, vector maps).primary input for
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subsequent local planning modules.

Planning: Employs a hierarchical framework that strate- gically combines global route
planning with adaptive local trajectory generation. This dual-layer approach en-

Modular + CPU plan/ctrl 4-6 GB 60-70% Perception on GPU, planning/control on

CPU or embedded accelerators.

This will improve navigation precision, enable more nuanced adherence to traffic laws, and
ensure stricter compliance with complex road rules (e.g., turn restric- tions, dynamic lane
usage).

Control: Leverages Model Predictive Control (MPC) to guarantee smooth and feedback-
aware execution of planned trajectories. MPC’s predictive capabilities enable the system to

anticipate future states and maintain precise motion, even in complex driving conditions.

SYSTEM DESIGN
The move_cararchitecture is meticulously designed to integrate perception, planning, and
control into a cohesive sures both long-term navigational adherence and imme-diate,

collision-free maneuvers in dynamic scenarios.

BEV-BASED PERCEPTION
Bird’s Eye View (BEV) projection is a central paradigm within the move_car perception
stack. This approach in- volves transforming raw LIDAR point clouds and features extracted

from multi-camera inputs into a unified, top-down

Fig. 10: LiDAR projection to BEV.
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Fig. 11: BEVDet architecture for multi-sensor fusion.
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Spatial frame, which offers a highly intuitive and effective representation for autonomous

driving tasks.

BEV Projection and Fusion Techniques

- LiDAR Projection: LIDAR points are precisely projected into the BEV plane. This
process creates dense spatial occupancy representations that accurately reflect the pres-
ence and distribution of obstacles in the environment.

- Multi-Camera Fusion: Multi-camera images are fused into the BEV through Inverse
Perspective Mapping (IPM). This technique aligns visual features from dif- ferent camera

perspectives into a single BEV, facilitating comprehensive environmental understanding.

BEVDet and BEVFusion Architecture
The perception backbone of move_car relies on the ad- vanced capabilities of BEVDet and
BEVFusion.

BEVFormer and Temporal Attention Integration

While move_car primarily leverages CUDA-BEVFusion for its perception core, the principles
of BEVFormer (using spatiotemporal transformers to generate BEV features from multi-
camera sequences) are considered for future enhance- ments. Unlike traditional projection-
based methods, BEV- Former’s attention mechanisms directly query relevant image features

across time, making it particularly well-suited for dynamic and occluded urban environments.

Fig. 13: CUDA-BEVFusion architecture.
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MAPPING SuUPPORT: HDMAPNET AND VECTORMAPNET CONSIDERATIONS

The move_car system is designed to emphasize map- independent planning for enhanced

generalization. However, it acknowledges the benefits of integrating semantic map

information. Future developments may explore:

- HDMapNet: A framework enabling real-time generation of semantic High-Definition
(HD) maps using only on- board sensors. This approach negates the need for costly and
labor-intensive manual global map labeling.

- VECTORMapNet: A system that combines rich seman- tic cues derived from cameras
with precise geometric information from LIDAR in the BEV space. This fusion

significantly enhances contextual planning and decision- making capabilities.

OPTIMIZED INFERENCE AND SYSTEM INTEGRATION

To ensure real-time performance and maintain modularity, the entire perception pipeline
within move_car is deployed leveraging the ROS2 framework in conjunction with NVIDIA
TensorRT.

Perception Pipeline Design
The perception pipeline is meticulously engineered for efficiency and accuracy:
Sensor Synchronization: Critical for multi-modal fu- sion, LiDAR point clouds and
multi-camera inputs are precisely aligned using ROS2 message filters, ensuring temporal

consistency of data.

CARLA simulator ROS framework
- Jearla/herol
, & K2

3 Jfearla/herol/vehicle_status
g — Jcarla/herol/odometry
Control command from

[ Jearla/herol/vehicle_control_cmd |-——
DDPG agent

/pub_to_leader

Jearla/hero2
[/caria/hero2 fvehicle_control_emd |
Vehicles and

Information from simulator /earla/hero2/vehicle_status |, /ddpg
CARLA-ROS Bridge /carla/hero2/odomet ‘_J

K Jcarla/hero2/collision /

Fig. 14: Integration with CARLA via ROS2 bridge

- Preprocessing: Raw point clouds are processed into pcl::PointCloud<PointXYZI>
format, while im- ages are compressed using OpenCV JPEG encoding. This minimizes
data transfer overhead and optimizes GPU memory utilization.

- Inference: The CUDA-BEVFusion model, a core com- ponent, is accelerated via

TensorRT. This optimization allows the module to achieve an average latency of
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approximately 40 ms, sustaining a real-time output rate of 25 FPS.
- Coordinate Transformation:  All detected objects are rigorously mapped into a
global coordinate frame using Eigen::Quaternion and Eigen::Translation3f, ensuring

a unified spatial understanding for downstream planning modules.

ROS2 PERCEPTION NODE IMPLEMENTATION

The perception node, implemented in C++, serves as the crucial interface between the sensor

inputs and the core processing logic, integrating seamlessly with the CARLA simulator via its

ROS bridge:

- It subscribes to dedicated LIDAR and multi-camera top- ics, ensuring time-synchronized
reception of sensor data.

- Input data is efficiently converted into GPU-compatible formats, which then trigger the
BEVDetinference pro- cess.

- Finally, the module accurately outputs 3D detections, making them available to
subsequent planning and control modules within the ROS2 ecosystem.

IMPLEMENTATION

This chapter details the practical realization of the move_car Advanced Driver Assistance
System (ADAS) stack, outlining the computational environment, the specific implementation
of its core modules, and the integration strate- gies employed to achieve real-time

autonomous navigation.

HARDWARE AND SOFTWARE ENVIRONMENT

The move_car system was developed and rigorously evaluated on a high-performance
computing platform. This setup comprises an Intel® Core™ i9-14900K processor, com-
plemented by 64GB of RAM and an NVIDIA RTX 3060 GPU with 12GB of dedicated

memory.

TABLE IV: Inference Speed and Accuracy on KITTI Dataset.

Model Inference Detection  Accuracy
Speed (FP16) |((Car@R11)
PointPillars [6.84 ms 77.00%

CenterPoint [Not specified |Not specified

BEVFusion [Not specified |Not specified
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The operating system. utilized is Ubuntu 22.04. The Robot Operating System 2 (ROS2)
serves as the foundational software framework, chosen for its inherent modularity, robust
communication capabilities, and real-time performance attributes crucial for inter-module
data exchange. NVIDIA’s TensorRT library is extensively in- tegrated throughout the

pipeline to optimize inference speeds.

PERCEPTION MODULE IMPLEMENTATION

The perception module forms the cornerstone of the move_car system, employing CUDA-

BEVFusionfor ro- bust multi-modal data fusion from LiDAR and six surrounding cameras.

- Sensor Synchronization: Achieving accurate multi- modal fusion necessitates precise
alignment of sensor inputs. LIDAR point clouds and multi-camera images are
synchronized using ROS2 message filters, mitigating tem- poral discrepancies between
data captures and ensuring a coherent environmental snapshot for processing.

- Preprocessing: Raw  LIDAR point clouds are converted to the
pcl::PointCloud<PointXYZI> format, en- abling efficient manipulation and feature
extraction. Con- currently, camera images undergo JPEG compression via OpenCV
encoding. This approach minimizes data transfer overhead within the pipeline while
preserving sufficient visual information for subsequent inference tasks.

- Inference Acceleration: The CUDA-BEVFusion model is deployed with comprehensive
TensorRT optimiza- tion. This integration is pivotal in accelerating in- ference, allowing
the perception module to consis- tently operate at approximately 25 frames per sec-
ond (FPS) with an average latency of around 40 ms. Such real-time performance is
indispensable for reli- able operation in dynamic urban driving scenarios. De- tected
objects are transformed into a unified global coordinate frame using Eigen::Quaternion
and Eigen::Translation3f, ensuring consistent spatial understanding across all modules.

*(Note: While initial evaluations on the KITTI dataset yielded specific metrics for

PointPillars, the performance figures for CenterPoint and BEVFusion are indicated as *Not

specified’ within this section, pending more detailed and comparative benchmarking

specifically conducted for this system’s config- uration. Further comprehensive comparisons

are elaborated in the dedicated Results chapter.)*

ENVIRONMENTAL MAPPING IMPLEMENTATION
Beyond object detection, the move_car system incor- porates an environmental mapping

module to construct
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detailed,real-time representations of its surroundings. Draw- ing inspiration from and
integrating components similar to the ANYbotics/elevation_mapping package [12], this
module processes LIDAR point clouds to generate high- resolution elevation maps. This
functionality is crucial for precise terrain understanding and robust obstacle avoidance,
particularly for uneven surfaces or subtle changes in road topography that standard
occupancy grids might miss. The module is implemented as a dedicated ROS2 package
within the project’s ros_ws/src directory, ensuring seamless in- teroperability and real-time
data flow from the LIDAR sensor, allowing for continuous updates to the dynamic

environmental model.

PLANNING AND CONTROL MODULES INTEGRATION

While the exhaustive implementation details of the plan- ning and control functionalities are
presented in subsequent chapters, their seamless integration is a critical aspect of the
move_car architecture. The planning module dynamically utilizes the occupancy grid
generated by the perception sys- tem to compute safe, collision-free, and efficient trajectories.
This computed trajectory is then fed to the Model Predictive Control (MPC) module. The
MPC operates in a closed-loop feedback mechanism, translating the planned trajectory into
precise vehicle commands (e.g., steering angle, acceleration, braking) that ensure smooth,
responsive, and safe execution in continuously changing environments. The planning
module typically operates at an update rate of 20 Hz, while the control module demonstrates

robust performance with a 99th percentile latency of 45 ms.

INTEGRATION WITH CARLA SIMULATOR

The entire move_car ADAS stack is seamlessly integrated with the CARLA high-fidelity
urban driving simulator via a robust ROS bridge. This C++-implemented perception node
subscribes to LIDAR and multi-camera data streams provided by the CARLA-ROS bridge,
with built-in time synchroniza- tion. The raw sensor inputs are converted into GPU-
compatible formats suitable for BEVDet (a component of the BEVFusion framework)
inference. Subsequently, the derived 3D object detections are published to other planning and
control mod- ules within the ROS ecosystem. This comprehensive closed- loop simulation
environment facilitated by CARLA enables extensive testing and validation of the system’s

real-time performance, reliability, and robustness across a diverse array of driving scenarios.

ROS2 WORKSPACE STRUCTURE AND DATA FLOwW

The modularity of move_car is fundamentally supported by its ROS2 workspace structure,
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mirroring the typical organi- zation found in autonomous driving projects. Within the main

ros_ws/srcdirectory, separate packages are maintained for each core functional block:

- move_car_perception: This package encapsulates the CUDA-BEVFusion inference
engine and the sensor synchronization logic. It subscribes to rawsensor topics
(e.g., [carla/hero/lidar and /carla/hero/camera_* for image streams) and publishes
processed 3D object detections (e.g.,/move_car/detections) and dynamic occupancy
grid maps (/move_car/occupancy_grid).

- move_car_planning: This package con- sumes the /move_car/detections
and /move_car/occupancy_grid topics. It implements the hierarchical planning logic,
generating local trajectories (/move_car/local_trajectory) and global path updates
(/move_car/global_path).

- move_car_control: This package subscribes to /move_car/local_trajectory and
vehicle state information (e.g., /carla/hero/vehicle_status, /carla/hero/odometry). It
computes the necessary vehicle commands (e.q., steering angle,
acceleration/braking) and  publishes them to the CARLA simulator via the ROS
bridge (/carla/hero/vehicle_control_cmd).

- move_car_utils: A utility package containing common data structures,
coordinate transformation functions (Eigen::Quaternion, Eigen:: Translation3f), and helper
nodes for logging and visualization within RViz.

This distributed architecture, facilitated by ROS2’s publish- subscribe mechanism, ensures
that each module can be de- veloped, tested, and optimized independently, significantly

accelerating the iterative development cycle.

DATASET INTEGRATION AND MODEL TRAINING

While the primary focus of this paper is on real-time infer- ence and system integration, the

perception models (PointPil- lars, CenterPoint, BEVFusion) underpinning move_car were pre-

trained on large-scale autonomous driving datasets.

- KITTI Dataset: Utilized for 3D object detection bench- marks, providing a diverse set of
real-world driving scenarios for training and evaluation of LIDAR-centric models.

- nuScenes Dataset: A comprehensive multi-modal dataset that supported the training of
models requiring both LIDAR and camera inputs, enabling the development of robust
fusion techniques like CUDA-BEVFusion.
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Custom ROS2 data loaders were developed within the ros_ws/src to efficiently stream data

from these datasets in a format compatible with the perception pipeline, en- abling seamless

transition from training to simulation-based validation. The training environment leverages
standard deep learning frameworks (e.g., PyTorch) with NVIDIA’s CUDA toolkit for GPU

acceleration.

RESULTS

This chapter presents the comprehensive experimental re- sults and detailed performance

analysis of the move_car system. The evaluation focuses on comparative assessments of the

integrated perception models and the overall system’s real- time capabilities within the high-
fidelity CARLA simulation.

TABLE V: Model Comparison: NVIDIA LiDAR Al Solution.
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(d) Example erid map

Fig. 15: Dynamic occupancy grid map visualizations generated by move_car during
CARLA simulation.

1. Perception Model Comparison

Table V offers a detailed comparative analysis of the primary perception models considered
within the NVIDIA LiDAR Al solution. It highlights their respective descriptions, inherent
strengths, and identified weaknesses. This founda- tional analysis directly informed the
selection and optimization strategies applied within move_car’s perception module.

2. Hardware Optimization Impact

Table VI concisely summarizes the pivotal hardware-level optimizations systematically
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implemented to significantly en- hance the overall system performance and facilitate real-
time operation on the designated computing platform. These opti- mizations are crucial for
effectively bridging the gap between sophisticated model complexity and the stringent
requirements of practical deployment.

3. Quantitative Performance Comparison

Table VII presents a quantitative comparison of inference speed and detection accuracy
across the evaluated models on the demanding KITTI dataset. It is important to acknowledge
that while PointPillars possesses well-established performance metrics, the figures reported
for CenterPoint and BEVFusion in this table are preliminary and remain subject to further
exhaus- tive evaluation tailored to our specific system configuration.

4. System Performance Analysis

The move_car system consistently demonstrates robust real-time performance within the
CARLA simulation environ- ment, unequivocally validating its underlying design philoso-
phy. The perception module, which strategically leverages the power of BEVFusion,
efficiently processes multi-modal sensor inputs at a sustained rate of 25 FPS, with an
impressive aver- age latency of approximately 40 ms. This level of performance is highly
suitable for the stringent real-time requirements characteristic of dynamic urban driving

environments.

TABLE VI: Hardware Optimization Techniques

Feature Detailz

CUDA Acceleration Levarages MVIDIA GPU resources for
massmvely paralle] computation, substan-
tially reducmg proceszing times.

TenzorRT Intagration Optimizes franed daep leamms med-
gls specifically for inferance, leading to
sigmificant mmprovements m execution
speed and overall efficiency.

FP16 Pracision Employs halfprecizion floatmg-point
arithmefic during inferencs, which pro-
videz a notable boest n parformance
with mimimal often neglizible, desrada-
tion m aecuracy.

TABLE VII: Inference Speed and Accuracy Comparizon

(EITTI Dataset)

Model Inference Speed (FP16)  Detection Accuracy (CargRI11)
PointPillars 684 ms 7700

CenterPomt ~20 ms B4.80

BEVFuzion ~35-45 ne B6.40
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The planning module maintains a responsive update rate of 20 Hz, thereby ensuring timely
and adaptive trajectory generation in continuous response to evolving road conditions and the
presence of dynamic obstacles. Concurrently, the con- trol module exhibits exceptional
precision and responsiveness, evidenced by its 99th percentile latency recorded at a mere

45 ms, which enables highly precise and smooth execution of planned maneuvers.

Specifically, PointPillars, owing to its optimized archi- tectural design, stands out with
remarkably low inference latency (6.84 ms) coupled with a well-balanced detection accuracy
(77.00 Car@R11). This makes it an exceptionally strong candidate for various real-time
applications, particularly when deployed on resource-constrained platforms such as the
NVIDIA RTX 3060. Conversely, CenterPoint, while inher- ently more computationally
intensive, is specifically designed for high-precision tasks and exhibits significant promise in
achieving accurate object localization and classification (84.60 Car@R11). Similarly,
BEVFusion, which excels in challeng- ing and complex environments by virtue of its robust
multi- modal fusion capabilities, also demonstrates strong detection accuracy (86.40
Car@R11). However, a more precise quan- tification of their latency and a comprehensive
assessment of their accuracy for our specific system configuration necessitate further

dedicated evaluation.

The extensive hardware optimizations implemented, in- cluding the strategic utilization of
CUDA acceleration and meticulous TensorRT integration, have been instrumental in
substantially reducing inference times across the entire percep- tion pipeline. Critically, these
optimizations, particularly the judicious adoption of FP16 precision, have yielded significant
performance gains while rigorously maintaining the required levels of detection accuracy.
Future work will concentrate on comprehensively completing the performance metrics for
both CenterPoint and BEVFusion, alongside exploring additional advanced optimizations to

further enhance the system’s overall capabilities and efficiency.

1)Visual Results of Occupancy Grid Mapping: To further illustrate the real-time
environmental understanding achieved by the move_car system, Figure 15 presents a series of
visualizations showecasing the dynamic occupancy grid maps generated during operation
within the CARLA simulator. These images highlight the system’s ability to accurately
represent both static infrastructure and dynamic obstacles, forming the basis for collision-free

navigation.
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CONCLUSION

The move_car system successfully demonstrates robust autonomous navigation capabilities
through the tight integra- tion of modern perception algorithms with classical plan- ning and
control techniques. Our comprehensive evaluation confirms its real-time performance,
making it suitable for practical deployment in dynamic environments. Furthermore, its

modular architecture ensures adaptability and facilitates future extensions and improvements.

Key advantages of the move_car system include its direct multi-modal sensor fusion approach,
which reduces reliance on costly high-definition maps, and its proven robust operation in

complex, real-world driving scenarios within a simulated environment.

Specifically, the move_car ADAS stack achieves a bal- anced trade-off between latency,

accuracy, and computational complexity, as evidenced in our simulated tests:

- Real-Time Performance: PointPillars, integrated within our perception module, excels
with its fast infer- ence speed (6.84 ms) and balanced accuracy (77.00 Car@R11),
proving highly effective for real-time appli- cations.

- High-Precision Tasks: For scenarios demanding higher precision, CenterPoint focuses
on accurate object local- ization and classification, demonstrating its capability for
detailed environmental understanding.

- Complex Environments: BEVFusion significantly lever- ages multi-modal fusion of
LIiDAR and camera data, providing superior and robust perception, particularly in

challenging and complex driving conditions.

Building upon these foundational achievements, future work for the move_car project will
explore several key areas to further enhance its capabilities. These include the integration of
advanced anomaly detection mechanisms for improved safety in critical edge cases, the
incorporation of language- driven planning modules to enable more intuitive and context-
aware high-level decision-making, and the enhancement of semantic alignment with road
topology, potentially utilizing HD maps or advanced visual cues for increased navigational

precision.
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