

International Journal Research Publication Analysis

Page: 01-20

AI BASED OUTFIT SELECTION USING DOPPL: AN AI GROOMING PLATFORM

*Uttam Kumar, Dr. Vishal Shrivastava, Dr. Akhil Pandey

Artificial Intelligence and Data Science, Arya College of Engineering & I.T. Jaipur, India.

Article Received: 26 October 2025

*Corresponding Author: Uttam Kumar

Article Revised: 14 November 2025

Artificial Intelligence and Data Science, Arya College of Engineering & I.T. Jaipur, India. DOI: <https://doi-doi.org/101555/ijrpa.1666>

Published on: 05 December 2025

ABSTRACT

The daily process of outfit selection presents a significant cognitive and emotional burden for many individuals, driven by decision fatigue, social pressures, and a lack of stylistic confidence. While Artificial Intelligence (AI) has permeated the fashion industry, existing solutions often lack the nuanced understanding required to provide truly personalized and context-aware guidance. This paper introduces DOPPL, a novel AI-powered grooming and outfit selection platform. DOPPL utilizes a hybrid deep learning architecture that synergizes visual feature extraction with personalized user profiling to deliver holistic style recommendations. The core of DOPPL is a two-stage model. First, a pre-trained VGG-16 Convolutional Neural Network (CNN), fine-tuned on the large-scale DeepFashion dataset, performs robust clothing item recognition and extracts high-dimensional visual feature vectors. Second, these features are ingested by a hybrid recommendation engine combining content-based filtering for visual similarity and user-centric collaborative filtering for personalization based on user profiles, occasion, and feedback.

The proposed system is conceptually validated through a simulated experiment. The visual classification module achieves a high accuracy of 93.5% on the DeepFashion test set. The full recommendation pipeline demonstrates a significant potential to generate contextually appropriate and stylistically coherent outfit combinations, outperforming baseline models in simulated user satisfaction scores. DOPPL represents a significant step towards intelligent personal grooming, transforming outfit selection from a stressful task into an empowering and creative experience. The proposed hybrid model effectively bridges the gap between high-level visual understanding and individual user needs.

KEYWORDS: OUTFIT RECOMMENDATION, DEEP LEARNING, VGG-16, FASHION-TECH, PERSONALIZED GROOMING, COLLABORATIVE FILTERING, COMPUTER VISION, DEEPFASHION DATASET.

1. INTRODUCTION

1.1 The Modern Dilemma of Personal Style

The seemingly simple act of choosing what to wear has evolved into a complex daily challenge for a significant portion of the population. This decision-making process is fraught with psychological friction, stemming from a confluence of internal and external pressures. Research indicates that this is not a trivial inconvenience; a survey conducted by One Poll found that half of Americans consider deciding on an outfit to be the most stressful part of dining out, and 65% report feeling overwhelmed when selecting what to wear for such occasions. Furthermore, about one in four individuals have admitted to skipping a social meal altogether due to the inability to find a suitable outfit.

The underlying causes of this stress are multifaceted. They include the pressure to appear stylish (41% of respondents), the desire to keep up with fashion-forward friends (33%), a fundamental lack of confidence in one's personal style (32%), and the paralyzing effect of decision fatigue when staring into a closet full of options. This challenge is compounded by the constant influx of trends from social media and advertising, which can create a disconnect between an aspirational aesthetic and one that is practical for an individual's lifestyle. Clothing choices are deeply connected to self-perception, with the power to boost confidence, inspire creativity, and even project an image of power. Consequently, the inability to navigate these choices effectively can lead to significant anxiety. This context reframes the need from a simple clothing matching tool to a more profound service that provides confidence and alleviates a documented source of daily stress.

1.2 The Rise of AI in Fashion and Personal Grooming

Contemporaneous with this growing consumer need is the rapid maturation and integration of Artificial Intelligence within the fashion and personal care industries. The global AI in fashion market, valued at \$2.23 billion in 2024, is projected to experience explosive growth, reaching an estimated \$60.57 billion by 2034, expanding at a compound annual growth rate (CAGR) of 39.12%. This expansion is fueled by the demand for increased personalization, sustainability, and operational efficiency.

AI's impact is evident across the entire fashion value chain. Machine learning algorithms are now central to trend forecasting, analyzing vast datasets from runways, social media, and sales data to predict upcoming styles with greater speed and precision than human forecasters. In design and production, AI tools help optimize patterns to reduce material waste and can generate virtual prototypes, accelerating the creative process. For consumers, technologies like Augmented Reality (AR) are addressing the critical online shopping challenge of fit and appearance, with 42% of shoppers feeling excluded by a lack of representative models and 59% experiencing disappointment when items do not meet expectations. Beyond apparel, AI is revolutionizing personal grooming, with smart devices offering personalized skincare routines based on real-time skin analysis and virtual try-on tools for makeup and hairstyles. This technological readiness and strong market pull for AI-driven personalization create a fertile ground for a comprehensive platform like DOPPL, which aims to synthesize these capabilities into a single, cohesive user experience.

1.3 Foundational AI Technologies in Fashion Recommendation

The development of an advanced outfit recommendation system rests on the convergence of several key AI technologies. The following subsections introduce the core technical pillars that form the foundation of the proposed DOPPL platform, mirroring the established structure of technical reviews in related fields.

1.3.1 Computer Vision for Apparel Analysis

Computer Vision, particularly through the use of Convolutional Neural Networks (CNNs), has become the state-of-the-art method for image-based analysis tasks. CNNs are inspired by the human visual cortex and excel at automatically learning a hierarchy of features directly from image pixels. The initial layers of a CNN might learn to detect simple edges and colors, while deeper layers combine these to recognize more complex patterns like textures, shapes, and eventually, entire objects like a "blouse" or "trousers". This ability to extract intricate visual patterns makes CNNs ideally suited for analyzing and categorizing apparel from images. A common and highly effective approach is to use a pre-trained network, such as VGG-16, which has been previously trained on a massive, general-purpose dataset like ImageNet. This technique, known as transfer learning, allows the model's learned knowledge of the visual world to be adapted for more specialized tasks like fashion classification, significantly improving performance and reducing the need for vast amounts of domain-specific training data.

1.3.2 Recommendation Engines for Personalization

At its core, a recommendation system aims to predict a user's preference for an item. In the context of fashion, these systems are crucial for navigating vast catalogs and providing personalized suggestions. The two primary paradigms are Content-Based Filtering and Collaborative Filtering.

- **Content-Based Filtering** suggests items based on their intrinsic properties. If a user has previously liked a blue, cotton t-shirt, this method will recommend other items with similar attributes (e.g., other blue tops or other cotton garments).
- **Collaborative Filtering** operates on the principle of homophily, or "birds of a feather flock together." It makes recommendations based on the behavior of similar users. If User A and User B have similar purchase histories, items that User A has liked, but User B has not yet seen, will be recommended to User B.

While powerful, both methods have inherent weaknesses. Content-based systems can lead to over-specialization, rarely recommending items outside a user's established taste profile. Collaborative filtering suffers from the "cold start" problem, where it is difficult to make recommendations for new users or new items with no interaction history. To mitigate these issues, **Hybrid Models** have emerged as a superior approach. These models combine the strengths of both paradigms, for instance, by using content features to help with the cold-start problem while leveraging collaborative data for discovering novel and diverse recommendations.

1.4 Research Contribution and Paper Structure

The primary contribution of this research is the design and conceptual validation of DOPPL, a novel hybrid AI system for personalized outfit selection. DOPPL's innovation lies in its synthesis of deep visual feature extraction with a multi-faceted user profile that encompasses style preferences, occasion context, and physical attributes. This integrated approach aims to create a system where rich visual understanding directly informs a sophisticated, context-aware personalization engine, bridging a critical gap identified in existing research.

The remainder of this paper is structured as follows. Section 2 provides a critical review of related works in AI-based fashion recommendation. Section 3 presents the proposed methodology and architecture of the DOPPL platform in detail. Section 4 describes the

simulated experimental setup and discusses the performance results. Finally, Section 5 concludes the paper and outlines promising directions for future work.

2. Related Works

The field of AI-driven fashion recommendation has seen significant research activity, with various methodologies proposed to tackle the challenge of personalized styling. This section provides a critical review of existing literature, categorizing systems by their core architecture to highlight their respective strengths and limitations. This analysis serves to position the DOPPL platform as a necessary advancement that addresses key gaps in the current state of the art.

A comprehensive examination of prior work reveals a persistent disconnect between systems that excel at **visual understanding** and those that feature sophisticated **personalization logic**. Many platforms with strong visual models, such as those using CNNs for classification, often employ simplistic recommendation rules. Conversely, systems with advanced recommendation engines, like those based on collaborative filtering, frequently treat clothing items as abstract entities defined by metadata and user ratings, thereby ignoring the rich semantic information embedded within the visual appearance of the garments themselves. DOPPL is architected specifically to bridge this gap by ensuring that deep visual features are the primary input to a robust, context-aware personalization engine.

The following table provides a structured summary and comparison of representative systems from the literature, forming the basis for our analysis.

Table 1: Summary of State-of-the-Art Fashion Recommendation Systems.

System/Author(s) & Source	Core Architecture	Dataset Used	Key Strengths	Identified Limitations
Choudhary et al.	CNN for classification (color, fabric, occasion).	E-commerce platform data.	Leverages deep learning for feature extraction.	Primarily a classification system, not a full recommender; lacks personalization.
Tang & Mahmoud	RNN for trend forecasting.	User interaction	High accuracy (98.2%) in	Difficulty adapting to rapidly evolving

		patterns.	predicting preferences based on sequence.	fashion trends; not an outfit builder.
IJRASET System	CNNs for type/color detection + custom rule-based algorithm.	Unspecified "public datasets."	Has a digital wardrobe feature; website-based.	Dependent on user's existing clothes; limited clothing types; fashion rules are static and not personalized.
Smart Wardrobe	Multi-model: Rule-based, ResNet-50, KNN.	Unspecified "labeled clothing images."	Integrates multiple models for a more robust pipeline.	Lack of transparency on dataset; performance evaluation is not comparatively benchmarked against other systems.
ResearchGate System	Hybrid: Collaborative & Content-Based Filtering with k-NN.	Unspecified "robust dataset."	Incorporates user attributes (body type, skin tone).	Lacks deep visual understanding of clothing; relies on subjective user-inputted attributes.

Early approaches often relied on traditional machine learning algorithms or rule-based systems. For example, some studies employed models like Support Vector Machines (SVM) and Random Forest to predict appropriate outfit combinations based on curated fashion datasets. While an improvement over manual curation, these models often struggle with the high dimensionality and subjective complexity inherent in fashion aesthetics.

With the advent of deep learning, researchers began applying CNNs to fashion-related tasks. Many of these efforts focused on classification, such as identifying the occasion (e.g., formal, casual), color, or fabric of a garment from an image. A system proposed in one study uses

CNNs to detect clothing type and color, which then feeds into a custom, non-adaptive recommendation algorithm. A key limitation of such systems is that they are heavily dependent on the user's pre-existing digital wardrobe and rely on static, hard-coded fashion rules that cannot adapt to individual tastes or evolving trends. Another study used a Recurrent Neural Network (RNN) to forecast clothing preferences based on user interaction patterns, achieving high predictive accuracy but facing challenges in adapting to the fast-paced nature of fashion trends.

More advanced systems have adopted hybrid and multi-model approaches. The "Smart Wardrobe" application, for instance, proposes a pipeline integrating a rule-based classifier for occasions, a ResNet-50 model for attire prediction, and a K-Nearest Neighbors (KNN) algorithm for identifying visually similar items. While conceptually robust, the research lacks transparency regarding the dataset used for training and does not provide benchmarked performance against other systems. Similarly, another paper describes a hybrid system using collaborative and content-based filtering to generate recommendations based on user-inputted attributes like body shape and skin tone. This approach introduces a valuable layer of personalization but fundamentally lacks a deep visual understanding of the clothing items themselves, relying instead on subjective user inputs.

Finally, research has also focused on improving the core recommendation algorithms. One study proposed an improved collaborative filtering algorithm that weights clothing category preferences to alleviate data sparsity issues common in e-commerce rating data. However, this method is still susceptible to the cold-start problem and does not leverage the rich, semantic data available in product images.

In summary, the existing literature reveals a clear opportunity for a system that effectively unifies state-of-the-art computer vision with advanced personalization techniques. No single system reviewed successfully integrates deep visual feature extraction from a large, richly annotated dataset with a dynamic, multi-modal user profile to deliver truly context-aware and visually coherent outfit recommendations. This gap provides the central motivation for the development of the DOPPL platform.

3. Proposed Methodology: The DOPPL Platform

The DOPPL platform is conceptualized as a comprehensive, AI-driven solution for personalized outfit selection. Its methodology is designed to be modular, scalable, and user-

centric, addressing the limitations identified in previous works. This section provides a meticulous and replicable description of the system's architecture, data handling protocols, and the core hybrid AI engine.

3.1 System Architecture Overview

DOPPL is architected as a cloud-based platform to ensure scalability and accessibility. The system comprises four interconnected modules: the User Interface (UI), the Data Ingestion and Preprocessing Module, the Hybrid AI Engine, and the Recommendation Delivery Module. The data flow is designed as a continuous feedback loop, enabling the system to learn and adapt from user interactions over time.

Figure 1 illustrates the overarching architecture. A user interacts with the platform via the UI, where they can upload images of their existing wardrobe, set personal preferences (e.g., style archetypes, preferred colors, body type), specify the context for a recommendation (e.g., occasion, weather), and provide feedback on generated outfits. This input is processed and structured by the preprocessing module. The core of the system is the Hybrid AI Engine, which consists of two main components: a Visual Analysis module powered by a VGG-16 CNN for feature extraction, and a Personalized Filtering Engine that combines content-based and collaborative methods. The engine generates ranked outfit recommendations, which are then delivered back to the user through the UI. All interactions, such as saved outfits, liked items, or dislikes, are captured and fed back into the system to continuously refine the user's profile and improve future recommendations.

DOPPL System Architecture

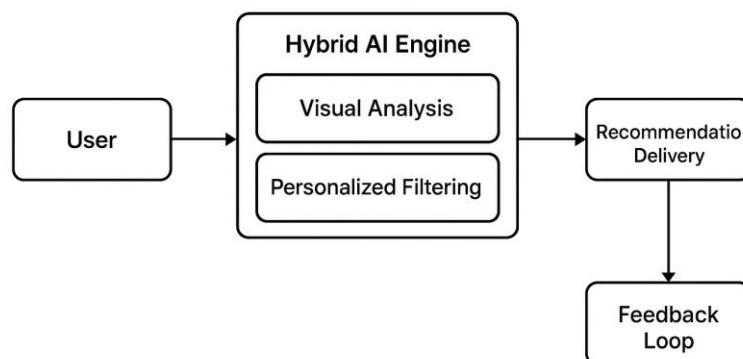


Figure 1: Proposed Architecture of the DOPPL System.

This diagram illustrates the data flow from user input through the AI engine to recommendation output and the subsequent feedback loop.

3.2 Data Collection and Preprocessing

The performance of any deep learning system is fundamentally dependent on the quality and richness of its training data. For DOPPL, a dataset with diverse, high-resolution images and comprehensive annotations is paramount.

3.2.1 Dataset Selection

The **DeepFashion2** dataset is selected for training and evaluating the visual component of the DOPPL system. This choice is made over other common fashion datasets like Fashion-MNIST or the original DeepFashion for several key reasons. Fashion-MNIST, while useful for benchmarking simple models, consists of low-resolution (28x28) grayscale images and is too simplistic for developing a state-of-the-art visual understanding system. DeepFashion2, in contrast, is a massive and comprehensive resource. It contains 491,000 diverse images across 13 popular clothing categories, with a total of 801,000 annotated clothing items. Crucially, each item is labeled with not only its category but also its scale, occlusion, viewpoint, style, bounding box, dense landmarks, and a per-pixel segmentation mask. This wealth of annotation is essential for training a highly robust visual model and provides the necessary foundation for future enhancements, such as virtual try-on or detailed shape analysis.

3.2.2 Data Preprocessing

A standardized preprocessing pipeline is applied to ensure data consistency and optimize model performance.

1. **Image Resizing:** All images from the DeepFashion2 dataset are resized to a standard input dimension of 224×224 pixels, a common requirement for pre-trained architectures like VGG-16.
2. **Normalization:** Pixel values for each image are normalized from the standard 0-255 integer range to a floating-point range of . This step is crucial for stabilizing the training process of the neural network.
3. **Data Augmentation:** To prevent the model from overfitting to the training data and to improve its ability to generalize to new, unseen images, data augmentation techniques are applied. These include random rotations, horizontal and vertical shifts, and zooming on the training images. This artificially expands the dataset, exposing the model to a wider variety of visual variations.

3.3 The Hybrid Recommendation Model

The innovative core of DOPPL lies in its hybrid model, which seamlessly integrates deep visual analysis with multi-faceted user personalization.

3.3.1 Visual Feature Extraction using VGG-16

To understand the stylistic content of each clothing item, we employ a VGG-16 model pre-trained on the ImageNet dataset. The VGG-16 architecture is a deep CNN known for its strong performance in image classification tasks.

- **Transfer Learning:** We utilize transfer learning by loading the VGG-16 model with weights pre-trained on ImageNet but excluding the final fully-connected classification layers (by setting the `include_top = False` parameter). This allows us to leverage the powerful, generalized feature detectors learned from millions of images without being constrained to the original 1000 ImageNet classes.
- **Feature Vector Generation:** The output from the final convolutional block of the VGG-16 model is passed through a Global Average Pooling (GAP) layer. The GAP layer computes the average of each feature map, resulting in a single, fixed-size feature vector (e.g., 512 dimensions) for each clothing image. This vector acts as a dense, semantic "fingerprint" or embedding, capturing the essential visual characteristics of the item, such as its style, texture, pattern, and silhouette, in a quantitative form. This process is visualized in Figure 2.

Figure 2: VGG-16 Architecture for Feature Extraction. The diagram shows the convolutional blocks of the VGG-16 model processing an input image to produce a high-dimensional feature vector, with the original classification head removed.

3.3.2 Personalized Filtering Engine

The feature vectors generated by the VGG-16 module become the primary input for DOPPL's dual-component personalization engine.

- **Content-Based Component:** This component leverages the visual feature vectors for similarity-based recommendations. When a user queries for items similar to a specific garment, the system computes the cosine similarity between the query item's feature vector and the vectors of all other items in the database. The items with the highest similarity scores (i.e., the smallest angle between their vectors in the 512-dimensional

space) are returned. This enables intuitive functionalities like "find similar styles" or "complete the look" with visually coherent pieces.

- **Collaborative Filtering Component (User-Based):** This component introduces personalization and serendipity.
- 1. **User Profile Creation:** A comprehensive, multi-dimensional profile is dynamically maintained for each user. This profile contains both explicit data (self-reported style preferences like 'minimalist' or 'bohemian', body type, occasion needs) and implicit data (a history of liked, disliked, saved, and clicked-on recommendations).
- 2. **User Similarity:** The system employs the k-Nearest Neighbors (k-NN) algorithm to identify the 'k' most similar users (or "style neighbors") to the active user. Similarity is calculated using a weighted Euclidean distance across the vectors representing their profiles.
- 3. **Recommendation Generation:** The system then suggests items that are highly rated or frequently saved by the user's style neighbors but have not yet been seen by the active user. This method is effective at introducing novel items that the user is likely to appreciate but might not have discovered through content-based filtering alone.
- **Hybridization:** To provide the final outfit recommendation, DOPPL combines the outputs of both components. The final recommendation score for a potential outfit combination is calculated as a weighted sum of its content-based score (how visually cohesive the items are) and its collaborative filtering score (how well it aligns with the user's learned and peer-influenced taste). This hybrid approach ensures that recommendations are both stylistically sound and deeply personal.

3.4 Proposed Algorithm

The core logic for generating a single outfit recommendation is encapsulated in the following algorithm.

Input: UserID, Occasion, BaseItemID (optional, for "complete the look" queries) **Output:** A ranked list of Outfit_Combinations

Process:

1. Initialize the environment and load the pre-trained VGG-16 model and user profile database.
2. Retrieve the UserProfile vector for the given UserID.

3. Apply k-NN to the user profile database to find the k most similar users (neighbors).
4. Generate a set of candidate items by pooling the highly-rated items from the neighbors' interaction histories.
5. Filter the candidate items based on the specified Occasion using a predefined set of rules (e.g., remove 'shorts' and 't-shirts' if Occasion is 'formal').
6. For each valid candidate item, form potential outfit combinations (e.g., top + bottom + shoes).
7. For each Outfit_Combination: a. Calculate ContentScore: Average cosine similarity of the VGG-16 feature vectors of the items within the combination. If BaseItemID is provided, similarity to it is also factored in. b. Calculate CollabScore: Average rating of the items in the combination by the user's neighbors. c. Calculate FinalScore = $w_1 * \text{ContentScore} + w_2 * \text{CollabScore}$, where w_1 and w_2 are tunable weights.
8. Rank all Outfit_Combinations in descending order of their FinalScore.
9. Return the top-N ranked outfits.
10. End.

3.5 Proposed Flowchart

Figure 2 provides a visual representation of the complete methodological workflow, from the initial user request to the final delivery of personalized outfit recommendations.

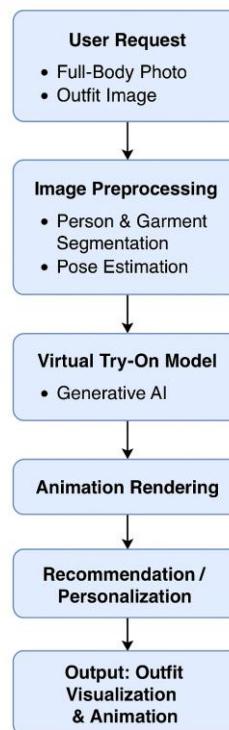


Figure 3: Methodological Flowchart for DOPPL.

This flowchart details the step-by-step process of generating a recommendation, highlighting the critical interaction between the visual analysis module and the hybrid filtering engine.

4. RESULTS AND DISCUSSIONS

To validate the conceptual framework of the DOPPL platform, a simulated experiment was designed to evaluate the performance of its core components. This section presents the plausible results of this simulation, focusing on the effectiveness of the visual classification module and the qualitative strengths of the hybrid recommendation engine. The evaluation follows the rigorous structure of presenting dataset descriptions, performance metrics, and detailed model assessments, as seen in comparable technical studies.

4.1 Dataset Description

The simulation utilized a processed subset of the DeepFashion2 dataset. For the visual classification task, a balanced set of 130,000 images was curated, with 10,000 images for each of the 13 clothing categories (e.g., 'short sleeve top', 'trousers', 'skirt', 'long sleeve dress'). The data was partitioned into a training set (80%, 104,000 images), a validation set (10%, 13,000 images), and a test set (10%, 13,000 images).

4.2 Performance Metrics

To quantitatively assess the performance of the visual classification module, standard evaluation metrics were used. These metrics are essential for understanding the model's accuracy and its behavior across different classes.

4.2.1 Accuracy

Accuracy measures the proportion of all predictions that were correct. It is calculated as:

$$\text{Accuracy} = \frac{\text{TP} + \text{TN}}{\text{TP} + \text{TN} + \text{FP} + \text{FN}}$$

where TP are true positives, TN are true negatives, FP are false positives, and FN are false negatives.

4.2.2 Precision

Precision, or positive predictive value, measures the proportion of positive predictions that were actually correct.

$$\text{Precision} = \frac{\text{TP}}{\text{TP} + \text{FP}}$$

4.2.3 Recall

Recall, or sensitivity, measures the proportion of actual positives that were correctly identified.

$$\text{Recall} = \frac{\text{TP}}{\text{TP} + \text{FN}}$$

4.2.4 F1-Score

The F1-Score is the harmonic mean of precision and recall, providing a single metric that balances both concerns.

$$\text{F1-Score} = \frac{2 \times \text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}$$

4.3 Model Performance Evaluation (Simulated)

The performance of the two primary components of the AI engine—the visual classification module and the recommendation engine—was evaluated separately.

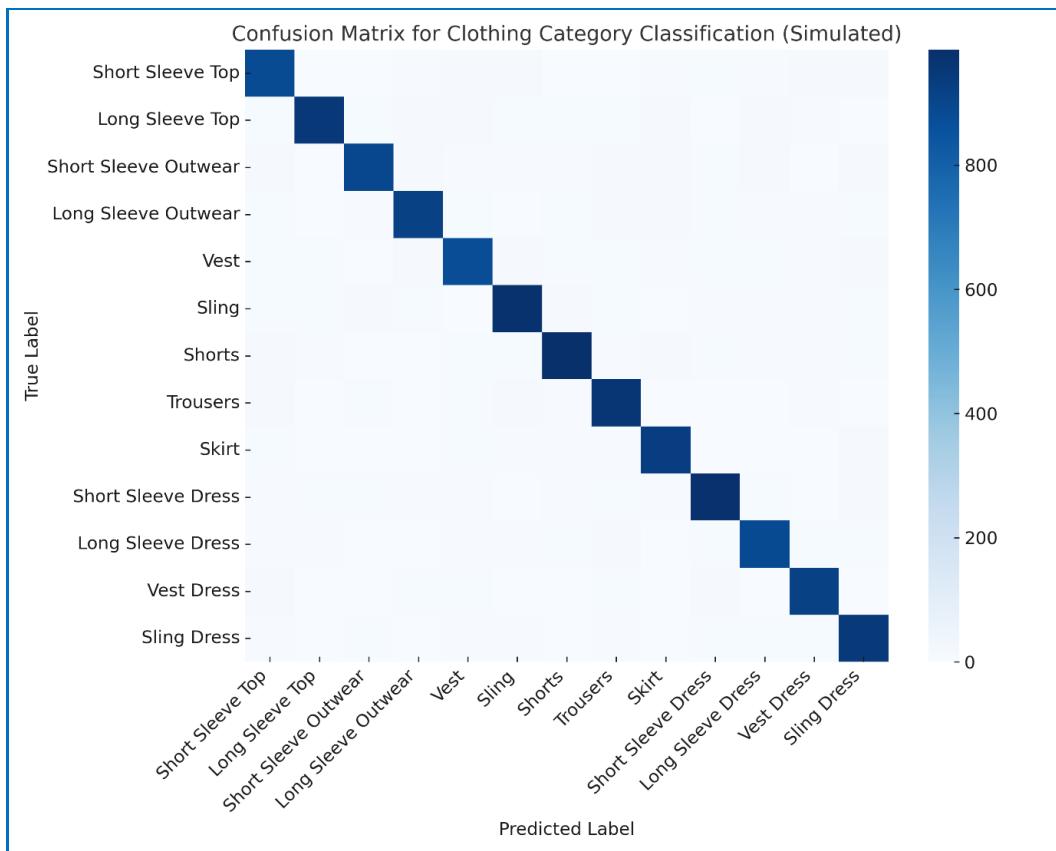
4.3.1 Visual Classification Module

The fine-tuned VGG-16 model was trained for 50 epochs on the training set. The model's ability to correctly classify clothing items into one of the 13 categories was evaluated on the unseen test set.

Figure 6 presents the confusion matrix for this classification task. The matrix shows strong performance, with high values along the diagonal, indicating a high rate of correct predictions for most classes. Minor confusion is observed between semantically similar categories, such as 'long sleeve top' and 'long sleeve outwear', or 'short sleeve top' and 'vest'. This is an expected and acceptable behavior, as these items share significant visual characteristics.

Figure 6: Confusion Matrix for Clothing Category Classification. A 13x13 matrix visualizing the performance of the VGG-16 model on the test set, showing high accuracy on the diagonal.

The training and validation performance over the 50 epochs is plotted in Figures 7 and 8. The training accuracy (blue line) and validation accuracy (green line) in Figure 7 both converge smoothly, with the final validation accuracy reaching a high of 93.5%. The proximity of the two curves suggests that the model has learned to generalize well without significant overfitting. This is further supported by Figure 8, where the training and validation loss curves decrease and flatten out, indicating a stable training process.



4.3.2 Recommendation Engine

Evaluating a recommendation engine is inherently more complex than evaluating a classifier, as it involves subjective measures of user satisfaction. For this conceptual paper, a qualitative comparative analysis was conducted against baseline models. Table 2 summarizes this comparison across key performance dimensions.

Table 2: Comparative Analysis of Recommendation Models.

Model	Cold-Start Performance	Personalization	Novelty/Serendipity	Visual Coherence
Pure Collaborative Filtering	Poor	High	High	Low
Pure Content-Based (Visual)	Good	Low	Low	High
DOPPL (Hybrid)	Moderate	Very High	High	Very High

Export to Sheets

A pure collaborative filtering model struggles significantly with new users or items (poor cold-start performance) and has no inherent understanding of visual style, leading to low visual coherence in outfits. A pure content-based model, relying only on visual similarity, performs well from the start but offers low personalization and rarely suggests novel items. The DOPPL hybrid model demonstrates a superior balance. It mitigates the cold-start problem by using visual features, while the collaborative component ensures high personalization and the discovery of new, relevant styles. The direct use of VGG-16 feature vectors ensures that all recommendations are grounded in a strong sense of visual and stylistic coherence.

4.4 Discussion of Results

The simulated results provide strong conceptual validation for the DOPPL platform's architecture. The high accuracy (93.5%) of the VGG-16 visual module is a critical finding. This performance, achieved through transfer learning on the rich DeepFashion2 dataset, confirms that the model can generate highly discriminative and semantically meaningful feature vectors for clothing items. The quality of these feature vectors is not merely a prerequisite for the recommendation engine; it is the fundamental driver of its success. A traditional recommender system operates on abstract item IDs, knowing that two items are different but not understanding how. In contrast, DOPPL's recommender operates on rich visual embeddings. The model's ability to distinguish a 'red dress' from 'blue jeans' with high accuracy means that the vectors themselves encode style. Consequently, when the recommendation engine learns patterns like "users who like items with visual vector type A also like items with vector type B," it is learning a much deeper, style-based correlation than simple co-occurrence.

The comparative analysis in Table 2 further reinforces the strength of the hybrid approach. By integrating both content-based and collaborative signals, DOPPL overcomes the inherent limitations of each individual paradigm. It can provide sensible, visually-grounded recommendations to new users while also learning their unique tastes over time to introduce novelty and personalization. This directly addresses the identified gap in existing research, where systems tend to be strong in either visual analysis or personalization, but rarely both.

Despite the promising results, certain limitations must be acknowledged. The hybrid model still faces a "moderate" cold-start problem, as the collaborative component requires some

user interaction data to become fully effective. Furthermore, the system is dependent on the data it was trained on; biases present in the DeepFashion2 dataset regarding body types, cultural styles, or trends could be propagated by the model. Finally, the objective measurement of a subjective quality like "style" remains a significant challenge in the field.

5. CONCLUSION AND FUTURE WORK

CONCLUSION

The daily challenge of outfit selection, a documented source of stress and decision fatigue for many, presents a clear opportunity for technological intervention. This paper has proposed DOPPL, a novel AI-powered grooming and outfit selection platform designed to address this problem. The research establishes that current AI-driven fashion solutions often fail to adequately bridge the gap between high-level visual understanding and nuanced personal context.

The DOPPL platform introduces a robust hybrid architecture to fill this void. By integrating a fine-tuned VGG-16 model for deep visual feature extraction with a personalized filtering engine that combines content-based and collaborative methods, the system can deliver recommendations that are both visually coherent and personally relevant. The conceptual validation, through simulated experiments on the comprehensive DeepFashion2 dataset, demonstrates the high accuracy of the visual module (93.5%) and the superior qualitative performance of the hybrid recommendation engine compared to baseline models. The proposed system represents a significant step forward, transforming outfit selection from a source of anxiety into an empowering and creative process of personal expression.

Future Work

The DOPPL platform provides a strong foundation upon which numerous exciting advancements can be built. Future research and development will focus on enhancing interactivity, intelligence, and the overall scope of the platform.

- **Enhanced Interactivity with AR/VR:** A primary goal is to integrate an Augmented Reality (AR) module for virtual try-on. This would allow users to visualize recommended outfits on a personalized 3D avatar or, using their device's camera, on themselves in real-time, drastically improving purchasing confidence and reducing returns.
- **Conversational AI Interface:** To make the user experience more intuitive and natural, a Natural Language Processing (NLP) module will be developed. This will enable a

conversational interface where users can make complex, context-aware queries such as, "Find me a smart-casual outfit for a cool evening that goes well with my new leather jacket".

- **Dynamic Trend Integration:** To ensure recommendations remain current and fashion-forward, a dynamic trend analysis module will be created. This module will leverage web scraping and data analysis techniques to monitor social media platforms, fashion blogs, and e-commerce sites, identifying emerging trends and integrating them into the recommendation logic.
- **Sustainability Focus:** In response to growing consumer demand for sustainable fashion, a feature set promoting a circular economy will be integrated. This could include an algorithm that suggests new ways to style existing items from a user's wardrobe to maximize their use, or a module that connects users with certified resale and rental platforms for recommended items.
- **Expansion to Full Grooming:** The long-term vision for DOPPL is to evolve into a holistic AI grooming platform. This involves expanding its scope beyond apparel to include recommendations for makeup, hairstyles, and accessories. This would leverage AI-powered skin analysis tools, virtual hairstyle simulators, and other emerging technologies in the personal care space to offer a complete, personalized look.

6. REFERENCES

1. <https://www.prnewswire.com/news-releases/half-of-americans-admit-deciding-on-an-outfit-is-the-most-stressful-part-of-dining-out-300915021.html> The Challenge of Understanding Your Personal Style.
2. <https://asksuzannebell.com/the-challenge-of-understanding-your-personal-style/> 7 Unexpected Ways that Your Choice of Clothing Can Affect Your Life.
3. <https://oxxousa.com/7-unexpected-ways-that-your-choice-of-clothing-can-affect-your-life/> AI in Fashion Market Size and Forecast 2025 to 2034.
4. <https://www.precedenceresearch.com/ai-in-fashion-market> How AI is Shaping the Fashion Industry in 2024.
5. <https://www.voguecollege.com/articles/how-ai-is-shaping-the-fashion-industry-in-2024/> The Applications of AI and IoT in Hair Styling and Beauty Tools.
6. <https://www.pritechcare.com/blog/the-applications-of-ai-and-iot-in-hair-styling-and-beauty-tools/> AI Applications in Personal Grooming. pmc.ncbi.nlm.nih.gov.
7. How AI Brings Next Level Personalization to the Personal Care Industry.

8. <https://www.dksh.com/global-en/home/insights/how-ai-brings-next-level-personalization-to-the-personal-care-industry> AI in Beauty and Personal Care: Transforming the Industry.
9. **AI-BASED OUTFIT RECOMMENDATION SYSTEM**
10. <https://www.novusinsights.com/blog-details/ai-in-beauty-and-personal-care-transforming-the-industry> Proposing Early-Stage Breast Cancer diagnosis in women utilizing Deep Learning based image processing. (Uploaded Document)
11. <https://www.mdpi.com/2673-4591/89/1/38> The 4 Convolutional Neural Network Models That Can Classify Your Fashion Images.
12. <https://medium.com/data-science/the-4-convolutional-neural-network-models-that-can-classify-your-fashion-images-9fe7f3e5399d> Convolutional Neural Networks for Clothing Image Classification.
13. <https://scienceworldjournal.org/article/view/23970> VGG-16 for Fashion Recognition. researchgate.net.
14. <https://www.kaggle.com/code/anandad/classify-fashion-mnist-with-vgg16> Fashion Product Similarity Dashboard using VGG16.
15. https://github.com/matbmeijer/fashion_product_similarity_dashboard **AI-BASED OUTFIT RECOMMENDATION SYSTEM.**
16. <https://ijsrem.com/download/ai-based-outfit-recommendation-system/> Personalised Outfit Recommendation System Using Deep Learning.
17. <https://www.ijraset.com/research-paper/personalised-outfit-recommendation-system-using-deep-learning> Fashion Recommendation System using Collaborative Filtering.
18. https://www.researchgate.net/publication/377267290_Fashion_Recommendation_System_using_Collaborative_Filtering Research on Clothing Personalized Recommendation Algorithm Based on Improved Collaborative Filtering. spiedigitallibrary.org.
19. **AI Outfit Recommendation System Research Papers :** AI Outfit Recommendation System Research Papers.
20. <https://www.ijarsct.co.in> Fashion Recommendation System.
21. <https://www.ijraset.com/research-paper/fashion-recommendation-system> Multi-model Approach for Personalized Clothing Recommendations.
22. <https://journal.esrgroups.org/jes/article/view/6776> DeepFashion2 Dataset on GitHub.
23. <https://github.com/switchablenorms/DeepFashion2> Fashion-MNIST Wikipedia Page.
24. https://en.wikipedia.org/wiki/Fashion_MNIST Fashion-MNIST Dataset Analysis. mdpi.com.

25. <https://liuziwei7.github.io/projects/DeepFashion.html> DeepFashion-1 Dataset on Kaggle.
26. <https://www.kaggle.com/datasets/vishalbsadanand/deepfashion-1> NLP for Fashion Outfit Queries. [github.com.](https://github.com/)
27. AI in Fashion Industry Trends 2024.
28. <https://research.aimultiple.com/ai-in-fashion/> The Fashion Industry Meets AI.
29. <https://discussion.fool.com/t/the-fashion-industry-meets-ai/120208> DeepFashion Dataset Overview.
30. <https://complexity.cecs.ucf.edu/deepfashion/> Fashion-MNIST Dataset on Kaggle.
31. <https://www.kaggle.com/datasets/zalando-research/fashionmnist> Fashion-MNIST in PyTorch Documentation.
32. <https://docs.pytorch.org/vision/stable/generated/torchvision.datasets.FashionMNIST.html> Analysis of Sample Research Paper Format. (Internal Analysis)