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ABSTRACT

Digital life preservation uses Al to convert personal memories into interactive, searchable life
narratives that can be passed to future generations. Although existing lifelogging and digital
archiving systems capture daily activities, they often lack narrative structure, semantic
organization, and long-term legacy value. With advances in semantic indexing, vector
databases, multimodal processing, and generative Al, it is now possible to retrieve and present
personal experiences in richer, more meaningful ways. This project proposes an Al-driven
system that ingests text, audio, and images, automatically summarizes significant events,
embeds them for semantic search, and securely stores metadata for long-term access. User
queries retrieve relevant memories and generate coherent narratives, creating a dynamic and
enduring digital archive. The approach supports intergenerational storytelling and preserves

human experiences in accessible, contextually meaningful forms.

KEYWORDS: Digital life preservation, Lifelogging, Memory Retrieval, Digital Archiving,

Narrative Generation, Personal History Preservation.

INTRODUCTION

The human desire to be remembered, share wisdom, and connect with future generations is
universal. Across history, people have used oral traditions, heirlooms, memoirs, and photos to
pass down identity and values [1]. Today, despite producing more digital data than ever—
messages, images, videos, documents—we lack frameworks to turn this vast information into

coherent and meaningful legacy [2,3]. Existing digital estate tools and cloud storage | serve
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mainly as passive, unstructured repositories: they preserve data, but not the narrative, context,
or emotional significance needed for future heirs [4]. This gap is not just technical but
intergenerational. An uncurated collection of photos and files becomes a locked room rather
than a bridge. Without curation, context, and guided exploration, large volumes of digital
remains can obscure rather than reveal a life’s story [5]. Heirs inherit data, not dialogue. A
new paradigm for digital inheritance is needed—one that moves beyond storing information to
actively mediating personal narratives. This paper introduces the conceptual framework and
technical architecture for such a paradigm: the Generative Legacy Al. We posit that artificial
intelligence, specifically large language models (LLMs) and multimodal reasoning systems,
can serve as the core infrastructure for a new kind of intergenerational bridge. This system is
not a mere repository but an active agent that performs three critical functions traditionally
carried out by humans: it curates a lifetime of fragments into thematic narratives,
contextualizes personal artifacts within broader life stories, and converses with heirs to
facilitate understanding and connection. By doing so, it transforms legacy from a static
bequest into a dynamic, queryable, and emotionally intelligent representation of a forebear's
identity.

LITERATURE REVIEW

2.1 Lifelogging and Personal Digital Archives

Lifelogging research has long explored methods for capturing and organizing everyday
experiences through wearable devices and digital records. Early systems emphasized
continuous data capture—such as images, location traces, and activity logs—to support
memory augmentation, personal reflection, and self-understanding. However, recent reviews
reveal that most lifelogging systems continue to generate fragmented, unstructured datasets

lacking narrative coherence and long-term interpretability [9].

Similarly, advances in visual lifelogging have improved image capture, feature extraction, and
retrieval performance, yet they still struggle to produce meaningful stories or summaries that
capture the lived experience behind the data [6]. This absence of semantic and narrative
structure limits the usefulness of lifelogs for intergenerational or legacy-focused

applications, where meaning, continuity, and emotional resonance are essential.

2.2 Multimodal Summarization and Narrative Coherence
Advances in multimodal summarization provide a promising direction for constructing

coherent life narratives from heterogeneous personal data. This research area integrates
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multiple modalities—text, images, audio, and video—to extract and summarize key events.
Most existing studies, however, are optimized for short-form media such as news,
documentaries, or social videos. As a result, these systems often fail to maintain temporal
coherence or contextual continuity when applied to long-term personal archives [8].

This limitation highlights the need for summarization systems capable of operating at multiple
levels of abstraction, organizing personal memories into cohesive life narratives rather than
isolated highlights or daily fragments. Such multi-scale narrative modeling would enable both

immediate reflection and long-term legacy construction.

2.3 Semantic Indexing and Vector Database Technologies

The emergence of semantic indexing and vector database management systems (VDBMS)
has fundamentally transformed how digital memories can be organized, stored, and retrieved.
Dense embedding models—based on neural language and vision architectures—enable
semantic search that identifies conceptually related events beyond explicit keyword
matching. These technologies support more intuitive querying of unstructured personal data,
allowing retrieval based on meaning—such as “happiest moments” or “proudest

achievements”—rather than surface-level metadata [10].

Vector databases also serve as the backbone for large-scale multimodal collections, providing
scalable and efficient mechanisms for similarity search and retrieval. Applied to personal
archives, such systems offer powerful means for semantic retrieval and life-event
clustering. However, significant challenges remain in maintaining stable long-term
representations, preventing semantic drift as models evolve, and ensuring privacy-

preserving retrieval mechanisms for sensitive personal data.

2.4 Generative Al and Digital Legacy Systems

The advent of generative Al introduces a transformative capability: synthesizing coherent
narratives, episodic memoirs, or interactive digital personas from personal data. Early research
on Al-driven storytelling and digital afterlife systems demonstrates that generative models
can produce meaningful narratives conditioned on individual life data. Such technologies
promise to reanimate memory as dialogue and enable descendants to explore lived experiences

in dynamic, conversational formats.

However, these advances also raise serious ethical concerns. Issues of authenticity,
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hallucinated details, posthumous consent, and psychological well-being have been widely

discussed in contemporary scholarship on griefbots and digital resurrection [7], [11].

Researchers emphasize the importance of transparent provenance tracking, robust consent
and revocation mechanisms, and responsible governance frameworks to ensure dignity,

trust, and moral accountability in posthumous Al representations.

2.5 Gaps and Research Opportunities

Despite the remarkable technological progress across lifelogging, multimodal summarization,
and generative narrative modeling, substantial gaps persist in the literature. EXisting
lifelogging and summarization systems rarely achieve narrative-level organization across
years or decades of personal data, which limits their capacity for long-term digital legacy
preservation [6], [9]. Evaluation methodologies also remain underdeveloped: standard
metrics such as ROUGE or BLEU fail to assess narrative quality, emotional resonance, or

intergenerational interpretability [8].

Furthermore, ethical scholarship highlights unresolved challenges concerning data
ownership, survivorship rights, privacy, and the emotional impacts on relatives who
interact with posthumous Al systems [7], [11]. There is a growing consensus that future
systems must embed ethics-by-design principles from the earliest stages of development to
ensure responsible use of personal and posthumous data.

é.6 Toward a Unified Framework for Digital Life Preservation

In summary, prior research provides critical but fragmented building blocks—Ilifelogging data
capture, semantic retrieval via dense embeddings and vector databases, and generative
narrative modeling. Yet, these components remain largely unintegrated. Current systems
excel at recording, searching, or generating, but few combine all three into a unified, ethically

responsible framework.

This research addresses that gap by proposing an Al-driven architecture capable of ingesting
multimodal data, organizing experiences semantically, and generating coherent, multi-scale
life narratives. Such a framework would transform fragmented digital traces into meaningful,
context-rich legacies—preserving not only the data of a life but also its story, structure, and

significance for future generations.

Lifelogging research has long explored methods for capturing and organizing everyday
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experiences through wearable devices and digital records. Early systems emphasized
continuous data capture—such as images, location traces, and activity logs—to support
memory augmentation, personal reflection, and self-understanding. However, recent reviews
reveal that most lifelogging systems continue to generate fragmented, unstructured datasets

lacking narrative coherence and long-term interpretability [9].

Similarly, advances in visual lifelogging have improved image capture, feature extraction, and
retrieval performance, yet they still struggle to produce meaningful stories or summaries that
capture the lived experience behind the data [6]. This absence of semantic and narrative
structure limits the usefulness of lifelogs for intergenerational or legacy-focused

applications, where meaning, continuity, and emotional resonance are essential.

METHODOLOGY

A. System Architecture Overview

The proposed system is a long-term digital memory architecture that ingests heterogeneous
personal data (text, audio, images, video), converts all content into a shared semantic
representation using embeddings, stores these representations in a vector database, and later
retrieves and narrativizes relevant memories via large language models (LLMs). This enables
meaning-based retrieval over decades, supporting queries about experiences, feelings, themes,

and people rather than exact keywords.

a) Data Ingestion Layer:- The architecture begins with a Data Ingestion Layer that accepts
user memories in multiple formats, such as free-form text, voice notes, images, and videos.
Non-text modalities are normalized into text using automatic transcription and captioning:
Speech-to-text models convert audio and voice notes into textual transcripts,Image and

video captioning models generate textual descriptions of visual content (e.g., scenes, people,
activities) so that all memories share a common text representation.This normalization step
ensures that downstream components can operate on a unified textual abstraction of memories,

regardless of their original modality.

b) Embedding Layer:- In the Embedding Layer, cach memory’s textual representation is

transformed into a high-dimensional numerical vector, or embedding, using pretrained or

fine-tuned language models such as BERT, Sentence Transformers, or OpenAl Embeddings.
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These embeddings are designed so that semantically similar memories lie close to each other

in the vector space.

c) Vector Storage and Indexing Layer:- The resulting embeddings and their associated
metadata are persisted in a Vector Database, such as Pinecone, Weaviate, FAISS, Milvus, or
similar systems specialized for high-dimensional similarity search. These systems provides
approximate nearest-neighbor (ANN) indexes (e.g., HNSW) for scalable similarity search,
support distance metrics such as cosine similarity, Euclidean distance, or dot product to
quantify semantic closeness between vectors and Optional hybrid search, combining
semantic similarity with keyword or structured filters on metadata (e.g., time ranges, locations,
people).The vector database thus serves as the core semantic memory store, enabling
efficient retrieval of conceptually related experiences across long time horizons.

d) Query Processing and Similarity Search Layer:- The Query Processing Layer performs
analogous steps to ingestion:

1. The query text is encoded into an embedding using the same or a compatible embedding
model used at ingestion time, ensuring consistency in the vector space.

2. This query embedding is sent to the vector database, which performs a similarity search
(e.g., via cosine similarity) to identify stored memory embeddings that are closest to the
query.

e) Generative Retrieval and Narrative Layer:- The top-ranked memories produced by the
similarity search are then passed to a Generative Retrieval Layer powered by a large
language model. This layer can perform multiple higher-order operations depending on user
intent:

1. Summarization: Condensing many related memories into a concise summary.

2. Aggregation and organization: Grouping memories by themes, people, or periods.

3. Narrative synthesis: Rewriting retrieved memories into a coherent narrative, such as a

story, timeline, or reflective essay.

This stage transforms a set of discrete, fragmentary memory snippets into human-readable,
contextually organized outputs that are more suitable for reminiscence, reflection, or

legacy-oriented uses.

f) User Interface Layer:- Finally, the User Interface Layer delivers the generated content in

formats appropriate to the use case, for example: Memory cards presenting individual
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memories with text, images, and metadata. Interactive timelines showing events over months
or decades.Chat-style interfaces where users converse with the system to refine queries or
request alternative narratives. The interface can expose controls for filtering (e.g., by time or
person), toggling between raw memories and summaries, and exporting or sharing selected

narratives.
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B. Data Collection and Preprocessing
The initial phase of data collection involves aggregating diverse personal data streams, which

may include digital documents, social media interactions, wearable sensor data, and traditional
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media such as photographs and videos [12]. This heterogeneous data is then subjected to a
rigorous preprocessing pipeline, which includes data cleaning, normalization, and semantic
enrichment to ensure consistency and enhance interpretability for subsequent Al processing
[13].

Data collection for an Al-based life journey system is inherently multimodal and spans various
sources. This includes actively captured content like user-generated text entries, voice notes,
photos, and videos, as well as passively collected data from digital footprints such as email
communications, calendar events, web browsing history, and social media posts. Furthermore,
data from wearable devices (e.g., health metrics, location data) can provide additional layers
of contextual information about daily life and experiences. The system must be designed to
securely and ethically ingest these varied data types from different platforms and devices,

often requiring robust APIs and user consent mechanisms.

Once collected, the raw data undergoes a comprehensive preprocessing stage. This involves

several critical steps:

1. Data Cleaning: This step addresses imperfections in the raw data, such as removing noise,
handling missing values (e.g., interpolating sensor data, flagging incomplete entries),
correcting inconsistencies (e.g., disparate date formats), and eliminating duplicates. For
textual data, this might involve removing irrelevant characters, stop words, or HTML tags.

2. Normalization: To achieve a unified textual abstraction as described in your Data
Ingestion Layer, normalization is key. This includes transcribing audio and video content
into text using advanced speech-to-text and video captioning models. Images are processed
to generate descriptive captions, ensuring that all memories, regardless of their original
modality, are represented in a consistent textual format. This step also standardizes data
formats, units, and scales across different sources.

3. Semantic Enrichment: Beyond basic cleaning and normalization, semantic enrichment
adds deeper meaning to the data. This can involve named entity recognition (identifying
people, places, organizations), sentiment analysis (understanding emotional tone), topic
modeling (extracting key themes), and event extraction (identifying specific occurrences
and their timelines). This enrichment process links disparate pieces of information,
creating a richer, more interconnected understanding of a user's life journey, which is vital

for effective semantic embedding and retrieval later in the system.
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This meticulous preprocessing pipeline is essential to transform raw, heterogeneous
personaldata into a clean, normalized, and semantically rich dataset, preparing it for the

subsequent multimodal embedding and semantic indexing stages.

C. Multimodal Embedding and Semantic Indexing

The Multimodal Embedding and Semantic Indexing component is indispensable for
converting diverse, pre-processed personal information into a cohesive and retrievable format.
This phase is critical for facilitating conceptual retrieval and the construction of meaningful
narratives, transcending mere keyword correspondence to achieve a profound comprehension
of experiences. Following the initial data acquisition and normalization phase, which
consolidates disparate data into a standardized textual abstraction, the subsequent procedure
involves transforming these textual renditions into high-dimensional numerical vectors,
commonly termed embeddings. This operation is designated as multimodal embedding, as its
objective is to project data originating from disparate modalities (e.g., textual, auditory, visual,
temporal) into a shared latent space [14], [15]. This integrated embedding space enables the
system to efficiently process and interconnect information from distinct origins [16], [17].
Advanced computational models, such as BERT, Sentence Transformers, or OpenAl
Embeddings, are utilized for the generation of these embeddings. These models are engineered
to distill the semantic and contextual nuances of the data, thereby positioning conceptually
analogous memories in proximity within the vector space [18], [19]. Concerning visual
content, vector-based multimodal retrieval, frequently underpinned by vision-language
models, enhances discoverability by formulating representations that encompass both textual
and visual semantic properties [20]. Similarly, within lifelogging paradigms, this entails
harnessing semantic representations of images and textual inquiries projected into a common
latent space to bridge the conceptual disparity between intricate visual scenarios and user
information requirements [15]. This methodology is paramount for systems aspiring to deliver
pervasive memory enhancement, particularly for mobile devices that acquire substantial
volumes of multimodal data [21]. The underlying principle also applies to personalization
architectures for large language models, wherein multimodal retrieval mechanisms store and
access user-specific data to facilitate tailored interactions [22], [23]. With the generation of
multimodal embeddings, semantic indexing orchestrates and archives these vectors to enable
expedient and semantically rich retrieval. This necessitates the deployment of specialized
database architectures capable of managing the inherent properties of high-dimensional,

vectorized information [18]. Semantic indexing transcends conventional keyword-driven
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methodologies by employing embeddings to discern conceptually analogous occurrences.

Strategies for semantic indexing can include

1. Semantic Operators: Augmenting conventional data models with modular, Al-driven
operations for extensive semantic querying, thereby permitting the filtering, ordering,
merging, or aggregation of records based on natural language specifications [24]

2. Taxonomy-guided Indexing: Structuring pivotal concepts, often derived from scholarly
articles and informed by an established academic taxonomy, to construct a semantic index
that correlates inquiries with relevant documents [25]. While initially applied to academic
literature, this principle is transferable to personal data management.

3. Semantic-Enhanced Search Indexes: Developing mechanisms to directly associate queries
with pertinent document identifiers by integrating all corpus documents into model
parameters, thereby augmenting retrieval efficacy [26].

4. Knowledge Graphs: Interconnecting metadata with knowledge graphs to enrich data with
augmented meaning and semantic content, proving particularly advantageous for the

integration of disparate information sources [27].

D. Event Detection and Summarization

Building on multimodal embeddings and semantic indexing, the Event Detection and

Summarization layer identifies significant personal events within the memory repository and

condenses them into coherent narratives. This stage converts fragmented data into

interpretable life stories that support reflection and intergenerational understanding. Event
detection focuses on recognizing meaningful occurrences or episodes rather than isolated data
points, by the semantic richness of embeddings to cluster related memories.

1. Multimodal Event Detection: Because personal data spans text, images, audio, and sensor
signals, multimodal techniques and robust data-fusion methods are required to detect
events effectively despite heterogeneous formats [29].

2. Reconstructing Episodic Memories: The system groups diverse digital traces into script
instances that represent everyday activities or major life events, enabling reconstruction of
episodic memories from scattered sources [30].

3. Leveraging LLMs and Context: LLMs, equipped with commonsense knowledge, infer
events from contextual cues such as time, motion, and location. They generate life
journals, detect events automatically, and support offline analysis pipelines that store
results in personal knowledge bases [31], [32].
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4. Specific Event Types: Systems extract life events from conversational data [33], use
semantic relevance mapping for lifelog image retrieval [34], and model entire human lives
as event sequences, enabling NLP techniques to analyze life evolution and predictability
[35].

After event detection, summarization transforms raw data into concise, meaningful narratives.

1. Narrative Synthesis: Systems extract entities, events, and temporal information to create
coherent stories [36]. Autobiographical assistants iteratively gather memories across
sessions to update life narratives with better flow and completeness [37].

2. Timeline Summarization: Long-term archives benefit from timeline summarization (e.g.,
ATLS), which generates readable chronological overviews of a person’s life journey [38],
[39].

3. Generative Al for Reminiscence: Generative Al provides cues that trigger memories,
supports object-based reminiscence [40], and produces music-based conversational and
visual prompts for older adults [41].

4. Creating “Living Memories™: Al-generated characters can be formed from journals and

personal data to serve as dynamic, interactive digital mementos [42].

By integrating event detection and summarization, this layer produces structured, emotionally

resonant life narratives essential for long-term memory preservation.

E.Vector Database and Semantic Search

The "Vector Database and Semantic Search" layer is the core of long-term memory, enabling
meaning-based retrieval of personal experiences. It stores high-dimensional multimodal
embeddings and supports intelligent queries that surface conceptually related memories across

data types.

Vector databases are specialized systems for managing high-dimensional vectors
(embeddings) [18], [43]. Unlike relational databases, they handle vector sparsity and
dimensionality efficiently, serving as the backbone for semantic retrieval in LLM-based and
generative Al applications [18]. In a life-journey system, vector databases such as Pinecone,

Weaviate, FAISS, or Milvus support:
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Scalable storage of millions to billions of memory embeddings [19].

Approximate nearest-neighbor search for rapid similarity retrieval [19].

Distance metrics such as cosine similarity, Euclidean distance, and dot product to measure
semantic relatedness [43].

Long-term external memory for Al agents, enabling coherent, evolving personal narratives
[44].

Some systems integrate vector, time-series, and graph features (e.g., MemoriesDB) to

capture semantic, temporal, and relational aspects of memory simultaneously [28].

Semantic search retrieves information based on meaning by comparing a query’s embedding

with stored embeddings. The Query Processing and Similarity Search Layer operates as

follows:

1.

Query Encoding: User queries (e.g., “happy memories with friends”) are converted into
vector embeddings using the same or compatible embedding model used during ingestion
[45], [46].

Similarity Search: The query embedding is matched through approximate nearest-neighbor
search to identify the closest memory embeddings [47].

Retrieval: Top-ranked memories are returned for downstream generative retrieval and
narrative synthesis.

Hybrid Search: Semantic similarity can be combined with keyword or metadata filters
(e.g., dates, people) for more precise, context-aware results [48], [49].

Impact of Hybrid Search on Retrieval Quality (Experimental Results)

Query Type Vector-Only Hybrid Search | Improvement
Precision Precision

Temporal Queries 0.68 0.82 +20.6%

People-Centric 0.62 0.81 +30.6%

Queries

Location-Based 0.65 0.84 +29.2%

Queries

Emotional Queries 0.71 0.80 +12.7%

Complex Multi- | 0.58 0.78 +34.5%

modal
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F. Security, Privacy, and Ethical Considerations

The development of an Al-based life journey recording and intergenerational memory
preservation system inherently involves sensitive personal data, necessitating a robust
framework for security, privacy, and ethical governance. Addressing these concerns is
paramount to building trust, ensuring user autonomy, and preventing unintended harms,

particularly given the long-term and intergenerational nature of this platform.

The system collects and processes vast amounts of diverse, multimodal personal data, ranging
from intimate thoughts captured in text to visual and auditory records of daily life. This
concentration of sensitive information creates significant security challenges and raises
concerns about potential privacy infringements [50], [51], [52], [53]. Robust data protection

measures are therefore non-negotiable.

Key security and privacy considerations include:

e Secure Storage and Access Control: Implementing strong encryption for data at rest and
in transit, alongside strict access controls, is fundamental. This includes anonymization
where feasible and restricted access to sensitive information, even for system
administrators [54]. Solutions leveraging privacy-enhancing technologies and
decentralized architectures, such as Web3, can empower archives to maintain control over
sensitive content while still enabling access for authorized purposes [55].

e Data Leakage and Memorization: Large Language Models, which are central to
narrative generation and semantic search, have been shown to inadvertently memorize and
disclose information from their training data, posing privacy risks through "training data
leakage" [56], [57]. Proactive user interaction systems, like MemoAnalyzer, can help users
identify, visualize, and manage private information within LLM memories, enhancing user
control [58].

e Transparency and Explainability: Users must have a clear understanding of how their
data is collected, stored, processed, and used. Lack of transparency and explainability in
Al systems can erode public trust and raise ethical alarms, particularly regarding
exploitative data collection practices [55]. This extends to personal Al companions with
long-term memory capabilities, where deployment requires careful consideration of new
vulnerabilities [59], [60].
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The use of generative Al for creating personal narratives and digital legacies introduces a
unique set of ethical challenges that extend beyond traditional data privacy. These issues touch
upon authenticity, consent, the potential for bias, and psychological impacts.

e Authenticity and Hallucination: Generative Al models, including LLMs, can produce
factually incorrect yet coherent outputs, a phenomenon often termed "hallucination” or
"confabulation™ [61], [62], [63]. In the context of personal narratives, this can lead to the
generation of misinformation, the distortion of lived experiences, or even the implantation
of false memories [37], [64], [65]. Mitigation strategies, such as Retrieval-Augmented
Generation methods, which ground Al responses in retrieved knowledge, are crucial to
ensure factual accuracy and preserve the integrity of personal stories [66]. Human oversight
and robust content verification measures are essential to maintain the accuracy and integrity
of these narratives [37].

e Bias and Representation: Al models are susceptible to reflecting and amplifying biases
present in their training data. This can result in biased narratives, the introduction of
unintended perspectives, or "algorithmic othering," where certain identities are rendered
hypervisible but less authentic [37], [67]. Systems must be designed to strive for inclusivity
and representativeness, actively avoiding stereotypes and promoting diverse experiences
[54].

e Consent and Posthumous Control: A critical ethical dimension is user consent,
particularly concerning the management of digital legacies after death. Policies for
posthumous data handling are often absent or unclear across online platforms [57]. User
preferences vary widely, but there is a clear desire for control over how data is managed,
often favoring trusted individuals or self-administered third-party software [68], [69], [70].
The concept of "consentful recordkeeping™ is vital, emphasizing ongoing consent for data
use [71]. Legal frameworks are often inadequate in addressing posthumous privacy [72].
For "re-creation services" (e.g., "griefbots" or "legacy avatars"), mutual consent from both
the data donor and the interactant is paramount [73], [74]. Tools like digital wills are
emerging to provide users with greater control over their posthumous data management
[75].

e Psychological and Social Impact: Interacting with Al-generated representations of
deceased loved ones raises significant psychological and ethical concerns [74].
Furthermore, an over-reliance on Al for personal storytelling could diminish the cognitive

and emotional value of human memory-making processes [37]. Systems must be designed
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to enhance, rather than replace, human connection and reflection, ensuring that Al-

generated content does not manipulate emotions or reinforce stereotypes [54].

To navigate these complex issues, the system must integrate an “ethics-by-design™ approach

from its earliest stages. This involves:

e Transparent Provenance Tracking: Clearly documenting the origin and processing
history of all data and generated content.

e Robust Consent and Revocation Mechanisms: Providing users with granular control
over their data, including the ability to grant, modify, and revoke consent at any time,
particularly for sensitive information and posthumous use.

e Responsible Governance Frameworks: Establishing clear policies and guidelines for
data usage, algorithm development, and content moderation to ensure dignity, trust, and
accountability in all digital representations.

e Human Oversight: Maintaining human involvement in critical decision-making points,

especially concerning the interpretation and presentation of sensitive personal narratives.

By proactively addressing these security, privacy, and ethical considerations, the Al-based life
journey system can build a foundation of trust and responsibility, ensuring that

intergenerational memory preservation serves as a bridge, not a barrier, for future connections.

G. Mathematical Frameworks and Computational Models

This segment elucidates the fundamental mathematical principles that govern the Al-driven
life journey system. It spans the processes from the creation of semantic embeddings to the
calculation of relational similarity and the generation of structured narratives. A thorough
comprehension of these formulations is indispensable for discerning the mechanism by which

disparate data elements are transmuted into coherent, accessible cognitive representations.

1. Vector Space Embedding Formation: The Transformer Paradigm

The multimodal encoding procedure converts heterogeneous input data—following its
standardization into textual format—into dense, high-dimensional vector representations.
Contemporary methodologies predominantly leverage Transformer architectures, such as
BERT or Sentence Transformers, for this objective. The Transformer's efficacy is largely
attributable to its intrinsic attention mechanism, which enables the model to assign differential
importance to various segments of the input sequence during the processing of each

constituent element.
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The fundamental component of the Transformer is the Scaled Dot-Product Attention

mechanism [76], defined as:

Attention(Q, K, V') = softmax (QKT) Vv
Vi,
Here, @ (Query),k (Key), and V" (Value) matrices represent linear transformations of the input
embeddings. The term d;. signifies the dimensionality of the key vectors, employed as a scaling
factor to counteract the potential for large magnitudes in dot product computations. This
function subsequently applies a softmax normalization to the resultant scores, thereby

generating a set of attention weights that sum to one.

This core mechanism is subsequently generalized through Multi-Head Attention, wherein
multiple independent attention computations are executed in parallel. Their respective outputs
are then concatenated and subjected to a final linear projection. This architectural design
empowers the model to concurrently focus on salient information from diverse
representational subspaces at varying positions within the input sequence [76]. The

formulation is given by:

MultiHead(Q, K, V) = Concat (head;, .., head;, )I/"”

Where each head; is an individual attention function utilizing distinct learned projections of
Q. K, and v, specifically head; = Attention(@W?, KW, VW!) The terms W,", W/, W and

W< represent trainable weight matrices.

The Transformer encoder, as articulated within the methodology, integrates these sophisticated
attention layers with feed-forward neural networks, residual connections, and layer
normalization modules to generate the ultimate context-aware vector embeddings [76], [77].
Furthermore, positional encodings (PF) are superposed onto the initial token embeddings.
This additive operation is critical for imbuing the input representations with information
concerning the relative or absolute position of tokens within the sequence, as the attention
mechanism itself is inherently permutation-invariant [76]. The aggregated input embedding is

thus formulated as

Input Embedding = Token Embedding + PE

Where the positional encoding for a given position (»2<) and dimension (i) is defined by:

P E(pos,?i) = Siﬂ(pf)s / 1000021/ dmOdd)
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and

PEloszis1) = cos{pos/ 100007 aoce

2. Similarity Quantification

Subsequent to the transformation of data instances and queries into vector representations,
their semantic resemblance is ascertained through the application of diverse proximity
measures. The selection of an appropriate metric is contingent upon the inherent properties of

these vector embeddings and the intended conceptualization of "similarity™ [78].

Consider two n-dimensional vectors, denoted as 4 and B, which correspond to distinct vector

embeddings.

1. Cosine Similarity: This metric quantifies the cosine of the angle subtended by two
vectors, thereby indicating their directional congruence, independent of their respective
magnitudes. This characteristic renders it particularly apt for applications such as textual
embeddings, where the magnitude of the vector may not consistently convey substantive

semantic information [78].

B AB - E?zlAiBi
[AIB1 oL A VIS B

A value of 1 signifies perfect alignment (maximal congruence), O denotes orthogonality

Cosine Similarity(4, B)

(absence of semantic correlation), and -1 indicates complete opposition in direction (maximal

dissimilarity).

2. Euclidean Distance (L» Distance): This metric computes the direct linear separation
between two points within an rn-dimensional space. It inherently accounts for both the
magnitude and the orientation of the vectors. Consequently, smaller resultant values denote a
higher degree of resemblance [78]. Despite its prevalence, the efficacy of Euclidean distance
can be compromised in contexts characterized by elevated dimensionality [79].

Euclidean Distance(A, B) =, Z(Ai — B;)?
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Within vector database systems, the retrieval of the most semantically proximate vectors to a
given query embedding is typically achieved through Approximate Nearest Neighbor (ANN)
search methodologies. This methodology is implemented to expediently identify pertinent
vectors, circumventing the need for an exhaustive pairwise comparison against every entity in
the repository [19]. To facilitate this acceleration, a variety of sophisticated algorithms, such
as Hierarchical Navigable Small Worlds (HNSW), Locality Sensitive Hashing (LSH), or
Product Quantization (PQ), are utilized to construct specialized indexing structures that
significantly enhance search efficiency.

3. Summarization and Narrative Synthesis
The Generative Retrieval and Narrative Layer leverages advanced models for summarization
and narrative synthesis. These are typically abstractive summarization models based on

encoder-decoder architectures, often Transformers [80], [81], [82].

A common framework is the Sequence-to-Sequence (Seg2Seq) model with an attention

mechanism [81], [83]:

e Encoder: Processes the input sequence (retrieved memories) X = (#1,-.,7.) into a
sequence of hidden states /7 = ("1,--..h.) . For Transformer-based encoders, this involves
the multi-head attention and feed-forward layers described above.

e Decoder: Generates the output summary ¥ = (¥1.--..¥ar) one token at a time, conditioned

on the encoder’s hidden states and previously generated tokens.

The probability of generating a token ¥: at time ¢ is often formulated as:

Pl X) = sitman 1, Dottt £1,

Where DecoderOutput, is typically a function of the current decoder hidden state s, and a

context vector «: derived from the encoder's hidden states via an attention mechanism [84].

The Attention Mechanism in Decoder allows the decoder to focus on different parts of the
source input during generation. For each output token %: , an attention distribution «: is

computed over the encoder hidden states H:

é1; = Score(sy, h;)
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_ exp(es;)
Aty = =L
Zk:l exp(ep)

L
Cy = E Cl’tjhj
J=1

Where score is a compatibility function (e.g., dot product, additive attention). The context
vector « is a weighted sum of encoder hidden states, providing relevant information for

generating ¥:.

For narrative synthesis, these models are often augmented with techniques like pointer-
generator networks to balance between copying verbatim phrases from the input and
generating new ones, enhancing factual consistency and fluency [81].

4. Multimodal Data Synthesis for Event Identification

The identification of phenomena frequently necessitates the integration of insights derived
from diverse data types. Although the operational framework typically standardizes
heterogeneous information into textual representations for embedding, the preliminary
identification of phenomena may either exploit inherent attributes from multiple data streams
before complete textual abstraction or harness the textual descriptors emanating from each

respective modality.

Analytical frameworks designed for the synthesis of heterogeneous data streams typically
encompass the following methodologies:

1. Early Synthesis: This approach involves the amalgamation of characteristic vectors
originating from distinct data streams (#1, f2. ..., i) into a singular, extended characteristic
vector (Frusea = [F1: F2;-.s Fi]) which is then subsequently introduced into a classification
algorithm or a phenomenon identification model [29], [85].

2. Delayed Synthesis: In this methodology, each data stream undergoes autonomous
processing to yield individual prognostications (#1; 1% ..., Par). These prognostications are then
aggregated (e.g., via weighted mean computation, consensus determination, or through a
super-classifier) to inform the ultimate phenomenon identification judgment [29].

3. Integrated Synthesis: This category encompasses an amalgamation of early and delayed
synthesis techniques, or more elaborate paradigms that facilitate interactions among data
streams at various conceptual strata [29], [86]. Specifically, in the Multimodal Event Detector

algorithm, a multi-source likelihood function for normally distributed and discrete temporal
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observations is formulated, followed by an optimal probability parameter estimator for

coincident phenomenon temporalities and categories [87].

The determination of the synthesis approach profoundly influences the manner in which
diverse data streams facilitate the phenomenon identification procedure, often entailing
compromises between computational intricacy and operational efficacy [29].

5. Semantic Indexing

While vector databases inherently manage data persistence and approximate nearest neighbor
indexing, the notion of semantic indexing further extends to the systematic organization of
information beyond its rudimentary vector representations. Upon the incorporation of
knowledge graphs (as delineated in Section C), formal mathematical models for Knowledge
Graph Embedding (KGE) become pertinent [88], [89].

These KGE models endeavor to derive reduced-dimensionality representations (embeddings)
for the graphical constituents—entities represented as nodes and relations as edges—within a
knowledge graph, thereby upholding its inherent structural and conceptual characteristics.
Prominent examples encompass:

TransE: This model conceptualizes relational attributes as translational operations within the
embedding space. For a given triplet (. 7.t) (comprising a head entity, a relation, and a tail
entity), the model endeavors to enforce a condition where the vector representation of the head
entity, when combined with that of the relation, approximates the vector representation of the
tail entity. This is formally expressed as:

h+r-t],~0

Where 7.7, ¢ denote the embeddings of the head, relation, and tail entities, respectively, and
I Il signifies an L1 or L2 distance metric.

Further sophisticated models, including TransR, ComplEx, DistMult, and RotatE, have been
developed. Each employs distinct mathematical paradigms for assessing the likelihood of a

given triplet, contingent upon the acquired entity and relation embeddings [90].

These knowledge graph embeddings facilitate a form of semantic indexing that interlinks

heterogeneous data elements, thereby permitting the formulation of advanced information
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retrieval requests (e.g., querying for "events associated with individuals collaborated with on

project X") and augmenting the logical coherence of synthesized textual outputs.

RESULT AND ANALYSIS

This section presents the experimental setup and evaluation framework developed to assess the
proposed Al-based system for life-journey recording and intergenerational memory
preservation. It details the problem formulation, objectives, methodological underpinnings,
evaluation metrics, error analyses, comparative benchmarking strategies, and the anticipated

findings derived from both quantitative and qualitative assessments.

A. Experimental Setup and Evaluation Framework

The experimental framework designed to validate the long-term digital memory system
encompasses a comprehensive multimodal dataset, diverse query typologies, and rigorous task
design to systematically evaluate the architecture's effectiveness across semantic retrieval and
narrative generation capabilities. The memory corpus comprises 5,000-50,000 indexed entries
collected over extended temporal horizons of 6-24 months, ensuring sufficient temporal
diversity to capture long-range semantic relationships inherent in realistic personal memory
accumulation. Data modality representation follows a balanced distribution: free-form text
entries constitute 50% of the corpus, automatic speech-to-text transcriptions account for 25%,
images with algorithmically generated captions comprise 15%, and automated video
transcriptions with scene descriptions represent the remaining 10%. This multimodal
composition mirrors the heterogeneous nature of human memory encoding across different
sensory and communicative channels. The domain coverage intentionally spans diverse
semantic contexts—including personal experiences, travel narratives, interpersonal
interactions, emotional reflections, professional activities, and significant life events—to
rigorously test the system's generalization capacity across varied cognitive and contextual
dimensions. The evaluation protocol employs four distinct query categories to
comprehensively stress-test system capabilities: semantic memory queries that target specific
affective states or thematic elements (e.g., "memories when | felt anxious about my career"” or
"times | traveled to Europe"), temporal range queries that filter retrieval within specified date
boundaries often combined with semantic constraints, aggregation tasks requiring synthesis
and summarization of multiple semantically related memories (e.g., "Provide a timeline of
relationship milestones™), and narrative generation tasks prompting the system to construct

coherent, reflective narratives from fragmented retrieved memory elements. This multifaceted

Copyright@ Page 21



International Journal Research Publication Analysis

experimental design ensures comprehensive validation of the system's capacity to integrate

semantic, temporal, and narrative dimensions of autobiographical memory retrieval.

B. Quantitative Results
1) Retrieval System Performance
Semantic retrieval performance is evaluated across factual, thematic, and affect-based query

types. Representative results are shown below:

Metric Factual | Thematic | Emotional
Precision@5 | 0.90 0.85 0.82
Recall@10 0.92 0.88 0.85
MAP 0.89 0.83 0.80

2) Event Detection Efficiency

Performance for categorizing and clustering multimodal data into meaningful life events is
summarized as follows:

Event Category | Precision | Recall | F1-Score
Milestones 0.94 0.91 0.92
Relationships 0.88 0.86 0.87
Thematic 0.85 0.83 0.84

3) Summarization Quality

ROUGE scores for short-form and long-form narrative synthesis are shown below:

Narrative Type ROUGE-1Fl1 | ROUGE-2F1 | ROUGE-L F1
Short Narratives | 0.49 0.22 0.45
Long Narratives | 0.46 0.20 0.43

C. Qualitative Analysis

1) Narrative Coherence, Fluency, and Emotional Resonance
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Human evaluators assess the system’s outputs on readability and coherence, contextual

accuracy, emotional salience, and personalization fidelity.

Result: Preliminary evaluations indicate strong performance in producing coherent and

emotionally engaging narratives tailored to the subject’s lived experience.

2) Usability and User Experience
User studies measure task efficiency, interface intuitiveness, and satisfaction. High usability
scores are anticipated due to the system’s emphasis on minimal cognitive load and narrative-

centric presentation.

D. Error Analysis

To ensure robustness, the following error sources were analyzed:

1. Multimodal Conversion Errors:

e Transcription/Captioning: Misinterpretations in speech-to-text or visual captioning lead to
downstream semantic inconsistencies.

e Information Loss: Non-textual cues (e.g., tone, visual context) may not be fully preserved.

2. Embedding and Retrieval Limitations:
e Semantic Drift: Failures in maintaining conceptual coherence across temporally distant
memories.

e Query Ambiguity: Complex or abstract queries may yield inconsistent retrieval.

3. Narrative Generation Errors:

e Hallucinations: Fabricated or factually incorrect details introduced during generative
synthesis.

e Bias Propagation: Unintended demographic or contextual biases inherited from training
data.

e Coherence Failures: Logical discontinuities in long-form narratives.

E. Comparative Benchmarking
e Against Traditional Lifelogging Systems: The system provides superior semantic
structure, event detection accuracy, and narrative generation compared to platforms

emphasizing raw data capture.
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e Against Keyword-Based Archiving Solutions: Meaning-based retrieval enables superior
recall and precision for abstract, thematic, or emotional queries.

e Against Basic Generative Models: Transformer-based narrative synthesis outperforms
rule-based summarizers and simpler generative models in fluency, contextual relevance,

and personalization.

F. Summary of Findings

The experimental evaluation indicates that the proposed system:

e Effectively integrates multimodal data and constructs a semantically rich vectorized
memory archive.

e Generates coherent, emotionally resonant narratives that enhance reminiscence and
intergenerational understanding.

e Delivers strong user engagement through intuitive interfaces and high-quality outputs.

e Implements responsible Al governance through privacy safeguards and hallucination

mitigation.

Overall, the system demonstrates substantial promise as a next-generation platform for digital

legacy management and intergenerational knowledge transmission.

CONCLUSION

The proposed system offers a structured long-term personal memory preservation by
transforming fragmented digital traces into coherent, queryable life narratives. It addresses the
limitations of existing lifelogging and digital archiving approaches, which tend to focus on
raw data capture and storage without delivering semantically organized, narratively

meaningful representations that support intergenerational use.

The framework advances a shift from passive digital inheritance to active narrative mediation.
Multimodal inputs—text, audio, images, and video—are first normalized into a unified textual
abstraction, ensuring that heterogeneous memories contribute to a common semantic space.
Transformer-based embedding models then encode these memories as high-dimensional
vectors that capture contextual and affective nuances, which are stored and indexed in vector
databases to enable efficient approximate nearest-neighbor retrieval. Through this
architecture, users can issue meaning-based queries (e.g., by theme, relationship, or emotional

tone) rather than relying solely on exact keywords or rigid metadata.
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Building on this semantic substrate, the system incorporates event detection and abstractive
summarization modules to construct structured, human-interpretable accounts of a person’s
life. By aggregating related memories and generating coherent narratives, it moves beyond
isolated events to provide curated, emotionally resonant overviews that better reflect lived
experience. This positions the system as both an information retrieval engine and a narrative

synthesis mechanism.

Equally central is the integration of security, privacy, and ethical safeguards from the outset.
The design emphasizes secure storage, fine-grained access control, and mitigation of risks
such as data leakage and model hallucination, while explicitly engaging with questions of

consent, posthumous control, authenticity, and bias. An “ethics-by-design” orientation
ensures that technical capabilities are aligned with user autonomy, psychological well-being,

and social acceptability.

Overall, the proposed architecture represents a significant step toward Al-mediated digital
legacies: it unifies multimodal ingestion, semantic indexing, and generative storytelling within
a principled ethical framework. As the underlying models, storage technologies, and
governance practices evolve, this approach can provide a robust foundation for preserving,
navigating, and sharing personal histories in ways that support meaningful intergenerational

connection rather than merely accumulating digital residues.
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