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ABSTRACT 

Digital life preservation uses AI to convert personal memories into interactive, searchable life 

narratives that can be passed to future generations. Although existing lifelogging and digital 

archiving systems capture daily activities, they often lack narrative structure, semantic 

organization, and long-term legacy value. With advances in semantic indexing, vector 

databases, multimodal processing, and generative AI, it is now possible to retrieve and present 

personal experiences in richer, more meaningful ways. This project proposes an AI-driven 

system that ingests text, audio, and images, automatically summarizes significant events, 

embeds them for semantic search, and securely stores metadata for long-term access. User 

queries retrieve relevant memories and generate coherent narratives, creating a dynamic and 

enduring digital archive. The approach supports intergenerational storytelling and preserves 

human experiences in accessible, contextually meaningful forms. 

 

KEYWORDS: Digital life preservation, Lifelogging, Memory Retrieval, Digital Archiving, 

Narrative Generation, Personal History Preservation.  

 

INTRODUCTION 

The human desire to be remembered, share wisdom, and connect with future generations is 

universal. Across history, people have used oral traditions, heirlooms, memoirs, and photos to 

pass down identity and values [1]. Today, despite producing more digital data than ever—

messages, images, videos, documents—we lack frameworks to turn this vast information into 

coherent and meaningful legacy [2,3]. Existing digital estate tools and cloud storage | serve 
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mainly as passive, unstructured repositories: they preserve data, but not the narrative, context, 

or emotional significance needed for future heirs [4]. This gap is not just technical but 

intergenerational. An uncurated collection of photos and files becomes a locked room rather 

than a bridge. Without curation, context, and guided exploration, large volumes of digital 

remains can obscure rather than reveal a life’s story [5]. Heirs inherit data, not dialogue. A 

new paradigm for digital inheritance is needed—one that moves beyond storing information to 

actively mediating personal narratives. This paper introduces the conceptual framework and 

technical architecture for such a paradigm: the Generative Legacy AI. We posit that artificial 

intelligence, specifically large language models (LLMs) and multimodal reasoning systems, 

can serve as the core infrastructure for a new kind of intergenerational bridge. This system is 

not a mere repository but an active agent that performs three critical functions traditionally 

carried out by humans: it curates a lifetime of fragments into thematic narratives, 

contextualizes personal artifacts within broader life stories, and converses with heirs to 

facilitate understanding and connection. By doing so, it transforms legacy from a static 

bequest into a dynamic, queryable, and emotionally intelligent representation of a forebear's 

identity. 

 

LITERATURE REVIEW 

2.1 Lifelogging and Personal Digital Archives 

Lifelogging research has long explored methods for capturing and organizing everyday 

experiences through wearable devices and digital records. Early systems emphasized 

continuous data capture—such as images, location traces, and activity logs—to support 

memory augmentation, personal reflection, and self-understanding. However, recent reviews 

reveal that most lifelogging systems continue to generate fragmented, unstructured datasets 

lacking narrative coherence and long-term interpretability [9]. 

 

Similarly, advances in visual lifelogging have improved image capture, feature extraction, and 

retrieval performance, yet they still struggle to produce meaningful stories or summaries that 

capture the lived experience behind the data [6]. This absence of semantic and narrative 

structure limits the usefulness of lifelogs for intergenerational or legacy-focused 

applications, where meaning, continuity, and emotional resonance are essential. 

 

2.2 Multimodal Summarization and Narrative Coherence 

Advances in multimodal summarization provide a promising direction for constructing 

coherent life narratives from heterogeneous personal data. This research area integrates 
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multiple modalities—text, images, audio, and video—to extract and summarize key events. 

Most existing studies, however, are optimized for short-form media such as news, 

documentaries, or social videos. As a result, these systems often fail to maintain temporal 

coherence or contextual continuity when applied to long-term personal archives [8]. 

 

This limitation highlights the need for summarization systems capable of operating at multiple 

levels of abstraction, organizing personal memories into cohesive life narratives rather than 

isolated highlights or daily fragments. Such multi-scale narrative modeling would enable both 

immediate reflection and long-term legacy construction. 

 

2.3 Semantic Indexing and Vector Database Technologies 

The emergence of semantic indexing and vector database management systems (VDBMS) 

has fundamentally transformed how digital memories can be organized, stored, and retrieved. 

Dense embedding models—based on neural language and vision architectures—enable 

semantic search that identifies conceptually related events beyond explicit keyword 

matching. These technologies support more intuitive querying of unstructured personal data, 

allowing retrieval based on meaning—such as “happiest moments” or “proudest 

achievements”—rather than surface-level metadata [10]. 

 

Vector databases also serve as the backbone for large-scale multimodal collections, providing 

scalable and efficient mechanisms for similarity search and retrieval. Applied to personal 

archives, such systems offer powerful means for semantic retrieval and life-event 

clustering. However, significant challenges remain in maintaining stable long-term 

representations, preventing semantic drift as models evolve, and ensuring privacy-

preserving retrieval mechanisms for sensitive personal data. 

 

2.4 Generative AI and Digital Legacy Systems 

The advent of generative AI introduces a transformative capability: synthesizing coherent 

narratives, episodic memoirs, or interactive digital personas from personal data. Early research 

on AI-driven storytelling and digital afterlife systems demonstrates that generative models 

can produce meaningful narratives conditioned on individual life data. Such technologies 

promise to reanimate memory as dialogue and enable descendants to explore lived experiences 

in dynamic, conversational formats. 

 

However, these advances also raise serious ethical concerns. Issues of authenticity, 
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hallucinated details, posthumous consent, and psychological well-being have been widely 

discussed in contemporary scholarship on griefbots and digital resurrection [7], [11]. 

 

Researchers emphasize the importance of transparent provenance tracking, robust consent 

and revocation mechanisms, and responsible governance frameworks to ensure dignity, 

trust, and moral accountability in posthumous AI representations. 

 

2.5 Gaps and Research Opportunities 

Despite the remarkable technological progress across lifelogging, multimodal summarization, 

and generative narrative modeling, substantial gaps persist in the literature. Existing 

lifelogging and summarization systems rarely achieve narrative-level organization across 

years or decades of personal data, which limits their capacity for long-term digital legacy 

preservation [6], [9]. Evaluation methodologies also remain underdeveloped: standard 

metrics such as ROUGE or BLEU fail to assess narrative quality, emotional resonance, or 

intergenerational interpretability [8]. 

 

Furthermore, ethical scholarship highlights unresolved challenges concerning data 

ownership, survivorship rights, privacy, and the emotional impacts on relatives who 

interact with posthumous AI systems [7], [11]. There is a growing consensus that future 

systems must embed ethics-by-design principles from the earliest stages of development to 

ensure responsible use of personal and posthumous data. 

. 

2.6 Toward a Unified Framework for Digital Life Preservation 

In summary, prior research provides critical but fragmented building blocks—lifelogging data 

capture, semantic retrieval via dense embeddings and vector databases, and generative 

narrative modeling. Yet, these components remain largely unintegrated. Current systems 

excel at recording, searching, or generating, but few combine all three into a unified, ethically 

responsible framework. 

 

This research addresses that gap by proposing an AI-driven architecture capable of ingesting 

multimodal data, organizing experiences semantically, and generating coherent, multi-scale 

life narratives. Such a framework would transform fragmented digital traces into meaningful, 

context-rich legacies—preserving not only the data of a life but also its story, structure, and 

significance for future generations. 

 

Lifelogging research has long explored methods for capturing and organizing everyday 
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experiences through wearable devices and digital records. Early systems emphasized 

continuous data capture—such as images, location traces, and activity logs—to support 

memory augmentation, personal reflection, and self-understanding. However, recent reviews 

reveal that most lifelogging systems continue to generate fragmented, unstructured datasets 

lacking narrative coherence and long-term interpretability [9]. 

 

Similarly, advances in visual lifelogging have improved image capture, feature extraction, and 

retrieval performance, yet they still struggle to produce meaningful stories or summaries that 

capture the lived experience behind the data [6]. This absence of semantic and narrative 

structure limits the usefulness of lifelogs for intergenerational or legacy-focused 

applications, where meaning, continuity, and emotional resonance are essential. 

 

METHODOLOGY 

A. System Architecture Overview 

The proposed system is a long‑term digital memory architecture that ingests heterogeneous 

personal data (text, audio, images, video), converts all content into a shared semantic 

representation using embeddings, stores these representations in a vector database, and later 

retrieves and narrativizes relevant memories via large language models (LLMs). This enables 

meaning‑based retrieval over decades, supporting queries about experiences, feelings, themes, 

and people rather than exact keywords. 

 

a) Data Ingestion Layer:- The architecture begins with a Data Ingestion Layer that accepts 

user memories in multiple formats, such as free‑form text, voice notes, images, and videos. 

Non‑text modalities are normalized into text using automatic transcription and captioning: 

Speech‑to‑text models convert audio and voice notes into textual transcripts,Image and 

video captioning models generate textual descriptions of visual content (e.g., scenes, people, 

activities) so that all memories share a common text representation.This normalization step 

ensures that downstream components can operate on a unified textual abstraction of memories, 

regardless of their original modality. 

 

b) Embedding Layer:- In the Embedding Layer, each memory’s textual representation is 

transformed into a high‑dimensional numerical vector, or embedding, using pretrained or 

fine‑tuned language models such as BERT, Sentence Transformers, or OpenAI Embeddings. 
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These embeddings are designed so that semantically similar memories lie close to each other 

in the vector space. 

 

c) Vector Storage and Indexing Layer:- The resulting embeddings and their associated 

metadata are persisted in a Vector Database, such as Pinecone, Weaviate, FAISS, Milvus, or 

similar systems specialized for high‑dimensional similarity search. These systems provides 

approximate nearest‑neighbor (ANN) indexes (e.g., HNSW) for scalable similarity search, 

support distance metrics such as cosine similarity, Euclidean distance, or dot product to 

quantify semantic closeness between vectors and Optional hybrid search, combining 

semantic similarity with keyword or structured filters on metadata (e.g., time ranges, locations, 

people).The vector database thus serves as the core semantic memory store, enabling 

efficient retrieval of conceptually related experiences across long time horizons. 

d) Query Processing and Similarity Search Layer:- The Query Processing Layer performs 

analogous steps to ingestion: 

1. The query text is encoded into an embedding using the same or a compatible embedding 

model used at ingestion time, ensuring consistency in the vector space. 

2. This query embedding is sent to the vector database, which performs a similarity search 

(e.g., via cosine similarity) to identify stored memory embeddings that are closest to the 

query. 

e) Generative Retrieval and Narrative Layer:- The top‑ranked memories produced by the 

similarity search are then passed to a Generative Retrieval Layer powered by a large 

language model. This layer can perform multiple higher‑order operations depending on user 

intent: 

1. Summarization: Condensing many related memories into a concise summary. 

2. Aggregation and organization: Grouping memories by themes, people, or periods. 

3. Narrative synthesis: Rewriting retrieved memories into a coherent narrative, such as a 

story, timeline, or reflective essay. 

 

This stage transforms a set of discrete, fragmentary memory snippets into human‑readable, 

contextually organized outputs that are more suitable for reminiscence, reflection, or 

legacy‑oriented uses. 

 

f)  User Interface Layer:- Finally, the User Interface Layer delivers the generated content in 

formats appropriate to the use case, for example: Memory cards presenting individual 
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memories with text, images, and metadata. Interactive timelines showing events over months 

or decades.Chat‑style interfaces where users converse with the system to refine queries or 

request alternative narratives. The interface can expose controls for filtering (e.g., by time or 

person), toggling between raw memories and summaries, and exporting or sharing selected 

narratives. 

 

 

 

B. Data Collection and Preprocessing 

The initial phase of data collection involves aggregating diverse personal data streams, which 

may include digital documents, social media interactions, wearable sensor data, and traditional 



8 

International Journal Research Publication Analysis                                               

 

Copyright@                                                                                                                               Page 8       

media such as photographs and videos [12]. This heterogeneous data is then subjected to a 

rigorous preprocessing pipeline, which includes data cleaning, normalization, and semantic 

enrichment to ensure consistency and enhance interpretability for subsequent AI processing 

[13]. 

 

Data collection for an AI-based life journey system is inherently multimodal and spans various 

sources. This includes actively captured content like user-generated text entries, voice notes, 

photos, and videos, as well as passively collected data from digital footprints such as email 

communications, calendar events, web browsing history, and social media posts. Furthermore, 

data from wearable devices (e.g., health metrics, location data) can provide additional layers 

of contextual information about daily life and experiences. The system must be designed to 

securely and ethically ingest these varied data types from different platforms and devices, 

often requiring robust APIs and user consent mechanisms. 

 

Once collected, the raw data undergoes a comprehensive preprocessing stage. This involves 

several critical steps: 

1. Data Cleaning: This step addresses imperfections in the raw data, such as removing noise, 

handling missing values (e.g., interpolating sensor data, flagging incomplete entries), 

correcting inconsistencies (e.g., disparate date formats), and eliminating duplicates. For 

textual data, this might involve removing irrelevant characters, stop words, or HTML tags. 

2. Normalization: To achieve a unified textual abstraction as described in your Data 

Ingestion Layer, normalization is key. This includes transcribing audio and video content 

into text using advanced speech-to-text and video captioning models. Images are processed 

to generate descriptive captions, ensuring that all memories, regardless of their original 

modality, are represented in a consistent textual format. This step also standardizes data 

formats, units, and scales across different sources. 

3. Semantic Enrichment: Beyond basic cleaning and normalization, semantic enrichment 

adds deeper meaning to the data. This can involve named entity recognition (identifying 

people, places, organizations), sentiment analysis (understanding emotional tone), topic 

modeling (extracting key themes), and event extraction (identifying specific occurrences 

and their timelines). This enrichment process links disparate pieces of information, 

creating a richer, more interconnected understanding of a user's life journey, which is vital 

for effective semantic embedding and retrieval later in the system. 
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This meticulous preprocessing pipeline is essential to transform raw, heterogeneous 

personaldata into a clean, normalized, and semantically rich dataset, preparing it for the 

subsequent multimodal embedding and semantic indexing stages. 

 

C. Multimodal Embedding and Semantic Indexing 

The Multimodal Embedding and Semantic Indexing component is indispensable for 

converting diverse, pre-processed personal information into a cohesive and retrievable format. 

This phase is critical for facilitating conceptual retrieval and the construction of meaningful 

narratives, transcending mere keyword correspondence to achieve a profound comprehension 

of experiences. Following the initial data acquisition and normalization phase, which 

consolidates disparate data into a standardized textual abstraction, the subsequent procedure 

involves transforming these textual renditions into high-dimensional numerical vectors, 

commonly termed embeddings. This operation is designated as multimodal embedding, as its 

objective is to project data originating from disparate modalities (e.g., textual, auditory, visual, 

temporal) into a shared latent space [14], [15]. This integrated embedding space enables the 

system to efficiently process and interconnect information from distinct origins [16], [17]. 

Advanced computational models, such as BERT, Sentence Transformers, or OpenAI 

Embeddings, are utilized for the generation of these embeddings. These models are engineered 

to distill the semantic and contextual nuances of the data, thereby positioning conceptually 

analogous memories in proximity within the vector space [18], [19]. Concerning visual 

content, vector-based multimodal retrieval, frequently underpinned by vision-language 

models, enhances discoverability by formulating representations that encompass both textual 

and visual semantic properties [20]. Similarly, within lifelogging paradigms, this entails 

harnessing semantic representations of images and textual inquiries projected into a common 

latent space to bridge the conceptual disparity between intricate visual scenarios and user 

information requirements [15]. This methodology is paramount for systems aspiring to deliver 

pervasive memory enhancement, particularly for mobile devices that acquire substantial 

volumes of multimodal data [21]. The underlying principle also applies to personalization 

architectures for large language models, wherein multimodal retrieval mechanisms store and 

access user-specific data to facilitate tailored interactions [22], [23]. With the generation of 

multimodal embeddings, semantic indexing orchestrates and archives these vectors to enable 

expedient and semantically rich retrieval. This necessitates the deployment of specialized 

database architectures capable of managing the inherent properties of high-dimensional, 

vectorized information [18]. Semantic indexing transcends conventional keyword-driven 
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methodologies by employing embeddings to discern conceptually analogous occurrences. 

Strategies for semantic indexing can include 

1.  Semantic Operators: Augmenting conventional data models with modular, AI-driven 

operations for extensive semantic querying, thereby permitting the filtering, ordering, 

merging, or aggregation of records based on natural language specifications [24] 

2. Taxonomy-guided Indexing: Structuring pivotal concepts, often derived from scholarly 

articles and informed by an established academic taxonomy, to construct a semantic index 

that correlates inquiries with relevant documents [25]. While initially applied to academic 

literature, this principle is transferable to personal data management. 

3. Semantic-Enhanced Search Indexes: Developing mechanisms to directly associate queries 

with pertinent document identifiers by integrating all corpus documents into model 

parameters, thereby augmenting retrieval efficacy [26]. 

4.  Knowledge Graphs: Interconnecting metadata with knowledge graphs to enrich data with 

augmented meaning and semantic content, proving particularly advantageous for the 

integration of disparate information sources [27]. 

 

D. Event Detection and Summarization 

Building on multimodal embeddings and semantic indexing, the Event Detection and 

Summarization layer identifies significant personal events within the memory repository and 

condenses them into coherent narratives. This stage converts fragmented data into 

interpretable life stories that support reflection and intergenerational understanding. Event 

detection focuses on recognizing meaningful occurrences or episodes rather than isolated data 

points, by the semantic richness of embeddings to cluster related memories. 

1. Multimodal Event Detection: Because personal data spans text, images, audio, and sensor 

signals, multimodal techniques and robust data-fusion methods are required to detect 

events effectively despite heterogeneous formats [29]. 

2. Reconstructing Episodic Memories: The system groups diverse digital traces into script 

instances that represent everyday activities or major life events, enabling reconstruction of 

episodic memories from scattered sources [30]. 

3. Leveraging LLMs and Context: LLMs, equipped with commonsense knowledge, infer 

events from contextual cues such as time, motion, and location. They generate life 

journals, detect events automatically, and support offline analysis pipelines that store 

results in personal knowledge bases [31], [32]. 
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4. Specific Event Types: Systems extract life events from conversational data [33], use 

semantic relevance mapping for lifelog image retrieval [34], and model entire human lives 

as event sequences, enabling NLP techniques to analyze life evolution and predictability 

[35]. 

 

After event detection, summarization transforms raw data into concise, meaningful narratives. 

1. Narrative Synthesis: Systems extract entities, events, and temporal information to create 

coherent stories [36]. Autobiographical assistants iteratively gather memories across 

sessions to update life narratives with better flow and completeness [37]. 

2. Timeline Summarization: Long-term archives benefit from timeline summarization (e.g., 

ATLS), which generates readable chronological overviews of a person’s life journey [38], 

[39]. 

3. Generative AI for Reminiscence: Generative AI provides cues that trigger memories, 

supports object-based reminiscence [40], and produces music-based conversational and 

visual prompts for older adults [41]. 

4. Creating “Living Memories”: AI-generated characters can be formed from journals and 

personal data to serve as dynamic, interactive digital mementos [42]. 

 

By integrating event detection and summarization, this layer produces structured, emotionally 

resonant life narratives essential for long-term memory preservation. 

 

E.Vector Database and Semantic Search 

The "Vector Database and Semantic Search" layer is the core of long-term memory, enabling 

meaning-based retrieval of personal experiences. It stores high-dimensional multimodal 

embeddings and supports intelligent queries that surface conceptually related memories across 

data types. 

 

Vector databases are specialized systems for managing high-dimensional vectors 

(embeddings) [18], [43]. Unlike relational databases, they handle vector sparsity and 

dimensionality efficiently, serving as the backbone for semantic retrieval in LLM-based and 

generative AI applications [18]. In a life-journey system, vector databases such as Pinecone, 

Weaviate, FAISS, or Milvus support: 
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1. Scalable storage of millions to billions of memory embeddings [19].   

2. Approximate nearest-neighbor search for rapid similarity retrieval [19].   

3. Distance metrics such as cosine similarity, Euclidean distance, and dot product to measure 

semantic relatedness [43].   

4. Long-term external memory for AI agents, enabling coherent, evolving personal narratives 

[44]. 

 

Some systems integrate vector, time-series, and graph features (e.g., MemoriesDB) to            

capture semantic, temporal, and relational aspects of memory simultaneously [28]. 

 

Semantic search retrieves information based on meaning by comparing a query’s embedding 

with stored embeddings. The Query Processing and Similarity Search Layer operates as 

follows: 

1. Query Encoding: User queries (e.g., “happy memories with friends”) are converted into 

vector embeddings using the same or compatible embedding model used during ingestion 

[45], [46].   

2. Similarity Search: The query embedding is matched through approximate nearest-neighbor 

search to identify the closest memory embeddings [47].   

3. Retrieval: Top-ranked memories are returned for downstream generative retrieval and 

narrative synthesis.   

4. Hybrid Search: Semantic similarity can be combined with keyword or metadata filters 

(e.g., dates, people) for more precise,    context-aware results [48], [49]. 

  

Impact of Hybrid Search on Retrieval Quality (Experimental Results) 

Query Type Vector-Only 

Precision 

Hybrid Search 

Precision 

Improvement 

Temporal Queries 0.68 0.82 +20.6% 

People-Centric 

Queries 

0.62 0.81 +30.6% 

Location-Based 

Queries 

0.65 0.84 +29.2% 

Emotional Queries 0.71 0.80 +12.7% 

Complex Multi-

modal 

0.58 0.78 +34.5% 



13 

International Journal Research Publication Analysis                                               

 

Copyright@                                                                                                                               Page 13       

F. Security, Privacy, and Ethical Considerations 

The development of an AI-based life journey recording and intergenerational memory 

preservation system inherently involves sensitive personal data, necessitating a robust 

framework for security, privacy, and ethical governance. Addressing these concerns is 

paramount to building trust, ensuring user autonomy, and preventing unintended harms, 

particularly given the long-term and intergenerational nature of this platform. 

 

The system collects and processes vast amounts of diverse, multimodal personal data, ranging 

from intimate thoughts captured in text to visual and auditory records of daily life. This 

concentration of sensitive information creates significant security challenges and raises 

concerns about potential privacy infringements [50], [51], [52], [53]. Robust data protection 

measures are therefore non-negotiable. 

 

Key security and privacy considerations include: 

● Secure Storage and Access Control: Implementing strong encryption for data at rest and 

in transit, alongside strict access controls, is fundamental. This includes anonymization 

where feasible and restricted access to sensitive information, even for system 

administrators [54]. Solutions leveraging privacy-enhancing technologies and 

decentralized architectures, such as Web3, can empower archives to maintain control over 

sensitive content while still enabling access for authorized purposes [55]. 

● Data Leakage and Memorization: Large Language Models, which are central to 

narrative generation and semantic search, have been shown to inadvertently memorize and 

disclose information from their training data, posing privacy risks through "training data 

leakage" [56], [57]. Proactive user interaction systems, like MemoAnalyzer, can help users 

identify, visualize, and manage private information within LLM memories, enhancing user 

control [58]. 

● Transparency and Explainability: Users must have a clear understanding of how their 

data is collected, stored, processed, and used. Lack of transparency and explainability in 

AI systems can erode public trust and raise ethical alarms, particularly regarding 

exploitative data collection practices [55]. This extends to personal AI companions with 

long-term memory capabilities, where deployment requires careful consideration of new 

vulnerabilities [59], [60]. 
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The use of generative AI for creating personal narratives and digital legacies introduces a 

unique set of ethical challenges that extend beyond traditional data privacy. These issues touch 

upon authenticity, consent, the potential for bias, and psychological impacts. 

● Authenticity and Hallucination: Generative AI models, including LLMs, can produce 

factually incorrect yet coherent outputs, a phenomenon often termed "hallucination" or 

"confabulation" [61], [62], [63]. In the context of personal narratives, this can lead to the 

generation of misinformation, the distortion of lived experiences, or even the implantation 

of false memories [37], [64], [65]. Mitigation strategies, such as Retrieval-Augmented 

Generation methods, which ground AI responses in retrieved knowledge, are crucial to 

ensure factual accuracy and preserve the integrity of personal stories [66]. Human oversight 

and robust content verification measures are essential to maintain the accuracy and integrity 

of these narratives [37]. 

● Bias and Representation: AI models are susceptible to reflecting and amplifying biases 

present in their training data. This can result in biased narratives, the introduction of 

unintended perspectives, or "algorithmic othering," where certain identities are rendered 

hypervisible but less authentic [37], [67]. Systems must be designed to strive for inclusivity 

and representativeness, actively avoiding stereotypes and promoting diverse experiences 

[54]. 

● Consent and Posthumous Control: A critical ethical dimension is user consent, 

particularly concerning the management of digital legacies after death. Policies for 

posthumous data handling are often absent or unclear across online platforms [57]. User 

preferences vary widely, but there is a clear desire for control over how data is managed, 

often favoring trusted individuals or self-administered third-party software [68], [69], [70]. 

The concept of "consentful recordkeeping" is vital, emphasizing ongoing consent for data 

use [71]. Legal frameworks are often inadequate in addressing posthumous privacy [72]. 

For "re-creation services" (e.g., "griefbots" or "legacy avatars"), mutual consent from both 

the data donor and the interactant is paramount [73], [74]. Tools like digital wills are 

emerging to provide users with greater control over their posthumous data management 

[75]. 

● Psychological and Social Impact: Interacting with AI-generated representations of 

deceased loved ones raises significant psychological and ethical concerns [74]. 

Furthermore, an over-reliance on AI for personal storytelling could diminish the cognitive 

and emotional value of human memory-making processes [37]. Systems must be designed 
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to enhance, rather than replace, human connection and reflection, ensuring that AI-

generated content does not manipulate emotions or reinforce stereotypes [54]. 

 

To navigate these complex issues, the system must integrate an "ethics-by-design" approach 

from its earliest stages. This involves: 

● Transparent Provenance Tracking: Clearly documenting the origin and processing 

history of all data and generated content. 

● Robust Consent and Revocation Mechanisms: Providing users with granular control 

over their data, including the ability to grant, modify, and revoke consent at any time, 

particularly for sensitive information and posthumous use. 

● Responsible Governance Frameworks: Establishing clear policies and guidelines for 

data usage, algorithm development, and content moderation to ensure dignity, trust, and 

accountability in all digital representations. 

● Human Oversight: Maintaining human involvement in critical decision-making points, 

especially concerning the interpretation and presentation of sensitive personal narratives. 

 

By proactively addressing these security, privacy, and ethical considerations, the AI-based life 

journey system can build a foundation of trust and responsibility, ensuring that 

intergenerational memory preservation serves as a bridge, not a barrier, for future connections. 

 

G. Mathematical Frameworks and Computational Models 

This segment elucidates the fundamental mathematical principles that govern the AI-driven 

life journey system. It spans the processes from the creation of semantic embeddings to the 

calculation of relational similarity and the generation of structured narratives. A thorough 

comprehension of these formulations is indispensable for discerning the mechanism by which 

disparate data elements are transmuted into coherent, accessible cognitive representations. 

 

1.  Vector Space Embedding Formation: The Transformer Paradigm 

The multimodal encoding procedure converts heterogeneous input data—following its 

standardization into textual format—into dense, high-dimensional vector representations. 

Contemporary methodologies predominantly leverage Transformer architectures, such as 

BERT or Sentence Transformers, for this objective. The Transformer's efficacy is largely 

attributable to its intrinsic attention mechanism, which enables the model to assign differential 

importance to various segments of the input sequence during the processing of each 

constituent element. 
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The fundamental component of the Transformer is the Scaled Dot-Product Attention 

mechanism [76], defined as: 

 

 

Here,  (Query),  (Key), and  (Value) matrices represent linear transformations of the input 

embeddings. The term  signifies the dimensionality of the key vectors, employed as a scaling 

factor to counteract the potential for large magnitudes in dot product computations. This 

function subsequently applies a softmax normalization to the resultant scores, thereby 

generating a set of attention weights that sum to one. 

 

This core mechanism is subsequently generalized through Multi-Head Attention, wherein 

multiple independent attention computations are executed in parallel. Their respective outputs 

are then concatenated and subjected to a final linear projection. This architectural design 

empowers the model to concurrently focus on salient information from diverse 

representational subspaces at varying positions within the input sequence [76]. The 

formulation is given by: 

 

 

Where each  is an individual attention function utilizing distinct learned projections of 

, and , specifically . The terms , and 

 represent trainable weight matrices. 

 

The Transformer encoder, as articulated within the methodology, integrates these sophisticated 

attention layers with feed-forward neural networks, residual connections, and layer 

normalization modules to generate the ultimate context-aware vector embeddings [76], [77]. 

Furthermore, positional encodings ( ) are superposed onto the initial token embeddings. 

This additive operation is critical for imbuing the input representations with information 

concerning the relative or absolute position of tokens within the sequence, as the attention 

mechanism itself is inherently permutation-invariant [76]. The aggregated input embedding is 

thus formulated as 

 

 

Where the positional encoding for a given position ( ) and dimension ( ) is defined by: 

  

https://www.codecogs.com/eqnedit.php?latex=%20%5Ctext%7BAttention%7D(Q%2C%20K%2C%20V)%20%3D%20%5Ctext%7Bsoftmax%7D%5Cleft(%5Cfrac%7BQK%5ET%7D%7B%5Csqrt%7Bd_k%7D%7D%5Cright)V%20#0
https://www.codecogs.com/eqnedit.php?latex=Q#0
https://www.codecogs.com/eqnedit.php?latex=K#0
https://www.codecogs.com/eqnedit.php?latex=V#0
https://www.codecogs.com/eqnedit.php?latex=d_k#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Ctext%7BMultiHead%7D(Q%2C%20K%2C%20V)%20%3D%20%5Ctext%7BConcat%7D(%5Ctext%7Bhead%7D_1%2C%20...%2C%20%5Ctext%7Bhead%7D_h)W%5EO%20#0
https://www.codecogs.com/eqnedit.php?latex=%5Ctext%7Bhead%7D_i#0
https://www.codecogs.com/eqnedit.php?latex=Q%2C%20K#0
https://www.codecogs.com/eqnedit.php?latex=V#0
https://www.codecogs.com/eqnedit.php?latex=%5Ctext%7Bhead%7D_i%20%3D%20%5Ctext%7BAttention%7D(QW_i%5EQ%2C%20KW_i%5EK%2C%20VW_i%5EV)#0
https://www.codecogs.com/eqnedit.php?latex=W_i%5EQ%2C%20W_i%5EK%2C%20W_i%5EV#0
https://www.codecogs.com/eqnedit.php?latex=W%5EO#0
https://www.codecogs.com/eqnedit.php?latex=PE#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Ctext%7BInput%20Embedding%7D%20%3D%20%5Ctext%7BToken%20Embedding%7D%20%2B%20PE%20#0
https://www.codecogs.com/eqnedit.php?latex=pos#0
https://www.codecogs.com/eqnedit.php?latex=i#0
https://www.codecogs.com/eqnedit.php?latex=PE_%7B(pos%2C%202i)%7D%20%3D%20%5Csin(pos%20%2F%2010000%5E%7B2i%2Fd_%7B%5Ctext%7Bmodel%7D%7D%7D)#0
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 and 

 

 

2. Similarity Quantification 

Subsequent to the transformation of data instances and queries into vector representations, 

their semantic resemblance is ascertained through the application of diverse proximity 

measures. The selection of an appropriate metric is contingent upon the inherent properties of 

these vector embeddings and the intended conceptualization of "similarity" [78]. 

 

Consider two -dimensional vectors, denoted as  and , which correspond to distinct vector 

embeddings. 

 

1. Cosine Similarity: This metric quantifies the cosine of the angle subtended by two 

vectors, thereby indicating their directional congruence, independent of their respective 

magnitudes. This characteristic renders it particularly apt for applications such as textual 

embeddings, where the magnitude of the vector may not consistently convey substantive 

semantic information [78]. 

 

 

 

A value of 1 signifies perfect alignment (maximal congruence), 0 denotes orthogonality 

(absence of semantic correlation), and -1 indicates complete opposition in direction (maximal 

dissimilarity). 

 

2. Euclidean Distance (  Distance): This metric computes the direct linear separation 

between two points within an -dimensional space. It inherently accounts for both the 

magnitude and the orientation of the vectors. Consequently, smaller resultant values denote a 

higher degree of resemblance [78]. Despite its prevalence, the efficacy of Euclidean distance 

can be compromised in contexts characterized by elevated dimensionality [79]. 

 

 

 

https://www.codecogs.com/eqnedit.php?latex=PE_%7B(pos%2C%202i%2B1)%7D%20%3D%20%5Ccos(pos%20%2F%2010000%5E%7B2i%2Fd_%7B%5Ctext%7Bmodel%7D%7D%7D)#0
https://www.codecogs.com/eqnedit.php?latex=n#0
https://www.codecogs.com/eqnedit.php?latex=A#0
https://www.codecogs.com/eqnedit.php?latex=B#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Ctext%7BCosine%20Similarity%7D(A%2C%20B)%20%3D%20%5Cfrac%7BA%20%5Ccdot%20B%7D%7B%5C%7CA%5C%7C%20%5C%7CB%5C%7C%7D%20%3D%20%5Cfrac%7B%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%20A_i%20B_i%7D%7B%5Csqrt%7B%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%20A_i%5E2%7D%20%5Csqrt%7B%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%20B_i%5E2%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=L_2#0
https://www.codecogs.com/eqnedit.php?latex=n#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Ctext%7BEuclidean%20Distance%7D(A%2C%20B)%20%3D%20%5Csqrt%7B%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%20(A_i%20-%20B_i)%5E2%7D%20#0
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Within vector database systems, the retrieval of the most semantically proximate vectors to a 

given query embedding is typically achieved through Approximate Nearest Neighbor (ANN) 

search methodologies. This methodology is implemented to expediently identify pertinent 

vectors, circumventing the need for an exhaustive pairwise comparison against every entity in 

the repository [19]. To facilitate this acceleration, a variety of sophisticated algorithms, such 

as Hierarchical Navigable Small Worlds (HNSW), Locality Sensitive Hashing (LSH), or 

Product Quantization (PQ), are utilized to construct specialized indexing structures that 

significantly enhance search efficiency. 

 

3. Summarization and Narrative Synthesis 

The Generative Retrieval and Narrative Layer leverages advanced models for summarization 

and narrative synthesis. These are typically abstractive summarization models based on 

encoder-decoder architectures, often Transformers [80], [81], [82]. 

 

A common framework is the Sequence-to-Sequence (Seq2Seq) model with an attention 

mechanism [81], [83]: 

● Encoder: Processes the input sequence (retrieved memories)  into a 

sequence of hidden states  . For Transformer-based encoders, this involves 

the multi-head attention and feed-forward layers described above. 

● Decoder: Generates the output summary  one token at a time, conditioned 

on the encoder's hidden states and previously generated tokens. 

 

The probability of generating a token  at time  is often formulated as: 

 

 

Where  is typically a function of the current decoder hidden state  and a 

context vector  derived from the encoder's hidden states via an attention mechanism [84]. 

 

The Attention Mechanism in Decoder allows the decoder to focus on different parts of the 

source input during generation. For each output token  , an attention distribution  is 

computed over the encoder hidden states : 

 

https://www.codecogs.com/eqnedit.php?latex=X%20%3D%20(x_1%2C%20...%2C%20x_L)#0
https://www.codecogs.com/eqnedit.php?latex=H%20%3D%20(h_1%2C%20...%2C%20h_L)#0
https://www.codecogs.com/eqnedit.php?latex=Y%20%3D%20(y_1%2C%20...%2C%20y_M)#0
https://www.codecogs.com/eqnedit.php?latex=y_t#0
https://www.codecogs.com/eqnedit.php?latex=t#0
https://www.codecogs.com/eqnedit.php?latex=%20P(y_t%20%7C%20y_%7B%3Ct%7D%2C%20X)%20%3D%20%5Ctext%7Bsoftmax%7D(W_o%20%5Ccdot%20%5Ctext%7BDecoderOutput%7D_t%20%2B%20b_o)%20#0
https://www.codecogs.com/eqnedit.php?latex=%5Ctext%7BDecoderOutput%7D_t#0
https://www.codecogs.com/eqnedit.php?latex=s_t#0
https://www.codecogs.com/eqnedit.php?latex=c_t#0
https://www.codecogs.com/eqnedit.php?latex=y_t#0
https://www.codecogs.com/eqnedit.php?latex=a_t#0
https://www.codecogs.com/eqnedit.php?latex=H#0
https://www.codecogs.com/eqnedit.php?latex=%20e_%7Btj%7D%20%3D%20%5Ctext%7Bscore%7D(s_t%2C%20h_j)%20#0
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Where score is a compatibility function (e.g., dot product, additive attention). The context 

vector  is a weighted sum of encoder hidden states, providing relevant information for 

generating . 

 

For narrative synthesis, these models are often augmented with techniques like pointer-

generator networks to balance between copying verbatim phrases from the input and 

generating new ones, enhancing factual consistency and fluency [81]. 

 

4. Multimodal Data Synthesis for Event Identification 

The identification of phenomena frequently necessitates the integration of insights derived 

from diverse data types. Although the operational framework typically standardizes 

heterogeneous information into textual representations for embedding, the preliminary 

identification of phenomena may either exploit inherent attributes from multiple data streams 

before complete textual abstraction or harness the textual descriptors emanating from each 

respective modality. 

 

Analytical frameworks designed for the synthesis of heterogeneous data streams typically 

encompass the following methodologies: 

1. Early Synthesis: This approach involves the amalgamation of characteristic vectors 

originating from distinct data streams ( ) into a singular, extended characteristic 

vector ( ), which is then subsequently introduced into a classification 

algorithm or a phenomenon identification model [29], [85]. 

2. Delayed Synthesis: In this methodology, each data stream undergoes autonomous 

processing to yield individual prognostications ( ). These prognostications are then 

aggregated (e.g., via weighted mean computation, consensus determination, or through a 

super-classifier) to inform the ultimate phenomenon identification judgment [29]. 

3. Integrated Synthesis: This category encompasses an amalgamation of early and delayed 

synthesis techniques, or more elaborate paradigms that facilitate interactions among data 

streams at various conceptual strata [29], [86]. Specifically, in the Multimodal Event Detector 

algorithm, a multi-source likelihood function for normally distributed and discrete temporal 

https://www.codecogs.com/eqnedit.php?latex=%20%5Calpha_%7Btj%7D%20%3D%20%5Cfrac%7B%5Cexp(e_%7Btj%7D)%7D%7B%5Csum_%7Bk%3D1%7D%5E%7BL%7D%20%5Cexp(e_%7Btk%7D)%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20c_t%20%3D%20%5Csum_%7Bj%3D1%7D%5E%7BL%7D%20%5Calpha_%7Btj%7D%20h_j%20#0
https://www.codecogs.com/eqnedit.php?latex=c_t#0
https://www.codecogs.com/eqnedit.php?latex=y_t#0
https://www.codecogs.com/eqnedit.php?latex=F_1%2C%20F_2%2C%20...%2C%20F_M#0
https://www.codecogs.com/eqnedit.php?latex=F_%7B%5Ctext%7Bfused%7D%7D%20%3D%20%5BF_1%3B%20F_2%3B%20...%3B%20F_M%5D#0
https://www.codecogs.com/eqnedit.php?latex=P_1%2C%20P_2%2C%20...%2C%20P_M#0
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observations is formulated, followed by an optimal probability parameter estimator for 

coincident phenomenon temporalities and categories [87]. 

 

The determination of the synthesis approach profoundly influences the manner in which 

diverse data streams facilitate the phenomenon identification procedure, often entailing 

compromises between computational intricacy and operational efficacy [29]. 

 

5. Semantic Indexing 

While vector databases inherently manage data persistence and approximate nearest neighbor 

indexing, the notion of semantic indexing further extends to the systematic organization of 

information beyond its rudimentary vector representations. Upon the incorporation of 

knowledge graphs (as delineated in Section C), formal mathematical models for Knowledge 

Graph Embedding (KGE) become pertinent [88], [89]. 

 

These KGE models endeavor to derive reduced-dimensionality representations (embeddings) 

for the graphical constituents—entities represented as nodes and relations as edges—within a 

knowledge graph, thereby upholding its inherent structural and conceptual characteristics. 

Prominent examples encompass: 

TransE: This model conceptualizes relational attributes as translational operations within the 

embedding space. For a given triplet  (comprising a head entity, a relation, and a tail 

entity), the model endeavors to enforce a condition where the vector representation of the head 

entity, when combined with that of the relation, approximates the vector representation of the 

tail entity. This is formally expressed as: 

 

 

Where  denote the embeddings of the head, relation, and tail entities, respectively, and 

 signifies an L1 or L2 distance metric. 

 

Further sophisticated models, including TransR, ComplEx, DistMult, and RotatE, have been 

developed. Each employs distinct mathematical paradigms for assessing the likelihood of a 

given triplet, contingent upon the acquired entity and relation embeddings [90]. 

 

These knowledge graph embeddings facilitate a form of semantic indexing that interlinks 

heterogeneous data elements, thereby permitting the formulation of advanced information 

https://www.codecogs.com/eqnedit.php?latex=(h%2C%20r%2C%20t)#0
https://www.codecogs.com/eqnedit.php?latex=%20%5C%7Ch%20%2B%20r%20-%20t%5C%7C_L%20%5Capprox%200%20#0
https://www.codecogs.com/eqnedit.php?latex=h%2C%20r%2C%20t#0
https://www.codecogs.com/eqnedit.php?latex=%5C%7C%5Ccdot%5C%7C_L#0
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retrieval requests (e.g., querying for "events associated with individuals collaborated with on 

project X") and augmenting the logical coherence of synthesized textual outputs. 

 

RESULT AND ANALYSIS 

This section presents the experimental setup and evaluation framework developed to assess the 

proposed AI-based system for life-journey recording and intergenerational memory 

preservation. It details the problem formulation, objectives, methodological underpinnings, 

evaluation metrics, error analyses, comparative benchmarking strategies, and the anticipated 

findings derived from both quantitative and qualitative assessments. 

 

A. Experimental Setup and Evaluation Framework 

The experimental framework designed to validate the long-term digital memory system 

encompasses a comprehensive multimodal dataset, diverse query typologies, and rigorous task 

design to systematically evaluate the architecture's effectiveness across semantic retrieval and 

narrative generation capabilities. The memory corpus comprises 5,000–50,000 indexed entries 

collected over extended temporal horizons of 6–24 months, ensuring sufficient temporal 

diversity to capture long-range semantic relationships inherent in realistic personal memory 

accumulation. Data modality representation follows a balanced distribution: free-form text 

entries constitute 50% of the corpus, automatic speech-to-text transcriptions account for 25%, 

images with algorithmically generated captions comprise 15%, and automated video 

transcriptions with scene descriptions represent the remaining 10%. This multimodal 

composition mirrors the heterogeneous nature of human memory encoding across different 

sensory and communicative channels. The domain coverage intentionally spans diverse 

semantic contexts—including personal experiences, travel narratives, interpersonal 

interactions, emotional reflections, professional activities, and significant life events—to 

rigorously test the system's generalization capacity across varied cognitive and contextual 

dimensions. The evaluation protocol employs four distinct query categories to 

comprehensively stress-test system capabilities: semantic memory queries that target specific 

affective states or thematic elements (e.g., "memories when I felt anxious about my career" or 

"times I traveled to Europe"), temporal range queries that filter retrieval within specified date 

boundaries often combined with semantic constraints, aggregation tasks requiring synthesis 

and summarization of multiple semantically related memories (e.g., "Provide a timeline of 

relationship milestones"), and narrative generation tasks prompting the system to construct 

coherent, reflective narratives from fragmented retrieved memory elements. This multifaceted 
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experimental design ensures comprehensive validation of the system's capacity to integrate 

semantic, temporal, and narrative dimensions of autobiographical memory retrieval. 

 

B. Quantitative Results 

1) Retrieval System Performance 

Semantic retrieval performance is evaluated across factual, thematic, and affect-based query 

types. Representative results are shown below: 

Metric Factual Thematic Emotional 

Precision@5 0.90 0.85 0.82 

Recall@10 0.92 0.88 0.85 

MAP 0.89 0.83 0.80 

 

2) Event Detection Efficiency 

Performance for categorizing and clustering multimodal data into meaningful life events is 

summarized as follows: 

Event Category Precision Recall F1-Score 

Milestones 0.94 0.91 0.92 

Relationships 0.88 0.86 0.87 

Thematic 0.85 0.83 0.84 

 

3) Summarization Quality 

ROUGE scores for short-form and long-form narrative synthesis are shown below: 

Narrative Type ROUGE-1 F1 ROUGE-2 F1 ROUGE-L F1 

Short Narratives 0.49 0.22 0.45 

Long Narratives 0.46 0.20 0.43 

 

C. Qualitative Analysis 

1) Narrative Coherence, Fluency, and Emotional Resonance 
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Human evaluators assess the system’s outputs on readability and coherence, contextual 

accuracy, emotional salience, and personalization fidelity. 

 

Result: Preliminary evaluations indicate strong performance in producing coherent and 

emotionally engaging narratives tailored to the subject’s lived experience. 

 

2) Usability and User Experience 

User studies measure task efficiency, interface intuitiveness, and satisfaction. High usability 

scores are anticipated due to the system’s emphasis on minimal cognitive load and narrative-

centric presentation. 

 

D. Error Analysis 

To ensure robustness, the following error sources were analyzed: 

1. Multimodal Conversion Errors: 

 Transcription/Captioning: Misinterpretations in speech-to-text or visual captioning lead to 

downstream semantic inconsistencies. 

 Information Loss: Non-textual cues (e.g., tone, visual context) may not be fully preserved. 

 

2. Embedding and Retrieval Limitations: 

 Semantic Drift: Failures in maintaining conceptual coherence across temporally distant 

memories. 

 Query Ambiguity: Complex or abstract queries may yield inconsistent retrieval. 

 

3. Narrative Generation Errors: 

 Hallucinations: Fabricated or factually incorrect details introduced during generative 

synthesis. 

 Bias Propagation: Unintended demographic or contextual biases inherited from training 

data. 

 Coherence Failures: Logical discontinuities in long-form narratives. 

 

E. Comparative Benchmarking 

● Against Traditional Lifelogging Systems: The system provides superior semantic 

structure, event detection accuracy, and narrative generation compared to platforms 

emphasizing raw data capture. 
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● Against Keyword-Based Archiving Solutions: Meaning-based retrieval enables superior 

recall and precision for abstract, thematic, or emotional queries. 

● Against Basic Generative Models: Transformer-based narrative synthesis outperforms 

rule-based summarizers and simpler generative models in fluency, contextual relevance, 

and personalization. 

 

F. Summary of Findings 

The experimental evaluation indicates that the proposed system: 

● Effectively integrates multimodal data and constructs a semantically rich vectorized 

memory archive. 

● Generates coherent, emotionally resonant narratives that enhance reminiscence and 

intergenerational understanding. 

● Delivers strong user engagement through intuitive interfaces and high-quality outputs. 

● Implements responsible AI governance through privacy safeguards and hallucination 

mitigation. 

 

Overall, the system demonstrates substantial promise as a next-generation platform for digital 

legacy management and intergenerational knowledge transmission. 

 

CONCLUSION 

The proposed system offers a structured long‑term personal memory preservation by 

transforming fragmented digital traces into coherent, queryable life narratives. It addresses the 

limitations of existing lifelogging and digital archiving approaches, which tend to focus on 

raw data capture and storage without delivering semantically organized, narratively 

meaningful representations that support intergenerational use. 

 

The framework advances a shift from passive digital inheritance to active narrative mediation. 

Multimodal inputs—text, audio, images, and video—are first normalized into a unified textual 

abstraction, ensuring that heterogeneous memories contribute to a common semantic space. 

Transformer-based embedding models then encode these memories as high‑dimensional 

vectors that capture contextual and affective nuances, which are stored and indexed in vector 

databases to enable efficient approximate nearest‑neighbor retrieval. Through this 

architecture, users can issue meaning‑based queries (e.g., by theme, relationship, or emotional 

tone) rather than relying solely on exact keywords or rigid metadata. 
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Building on this semantic substrate, the system incorporates event detection and abstractive 

summarization modules to construct structured, human‑interpretable accounts of a person’s 

life. By aggregating related memories and generating coherent narratives, it moves beyond 

isolated events to provide curated, emotionally resonant overviews that better reflect lived 

experience. This positions the system as both an information retrieval engine and a narrative 

synthesis mechanism. 

 

Equally central is the integration of security, privacy, and ethical safeguards from the outset. 

The design emphasizes secure storage, fine‑grained access control, and mitigation of risks 

such as data leakage and model hallucination, while explicitly engaging with questions of 

consent, posthumous control, authenticity, and bias. An “ethics‑by‑design” orientation 

ensures that technical capabilities are aligned with user autonomy, psychological well‑being, 

and social acceptability. 

 

Overall, the proposed architecture represents a significant step toward AI‑mediated digital 

legacies: it unifies multimodal ingestion, semantic indexing, and generative storytelling within 

a principled ethical framework. As the underlying models, storage technologies, and 

governance practices evolve, this approach can provide a robust foundation for preserving, 

navigating, and sharing personal histories in ways that support meaningful intergenerational 

connection rather than merely accumulating digital residues. 
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