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ABSTRACT 

In this work, we present a novel analytical approach that does not rely on predetermined 

neuroanatomical references for analysing and comparing brain MRI data from non-standard 

animal models, like sheep. The created pipeline overcomes the drawbacks of conventional 

neuroimaging approaches by combining automated MRI segmentation techniques with graph 

neural networks (GNNs). Traditional methods typically rely on set anatomical atlases, which 

frequently don't adjust to rare species or developing brains. The suggested approach reduces 

template-related bias and enhances generalisation by directly identifying regions of interest 

from MRI scans and modelling the brain as a graph structure. In experiments, the GNN-based 

model performs better than a traditional convolutional neural network (CNN) model in age 

prediction tasks, with an accuracy of 63.22% versus 59.77%. Additionally, the application of 

GNNs facilitates efficient learning of intricate interregional brain interactions and improves 

model transparency. Additionally, improved biological understanding of developmental 

patterns and structural connectivity is supported by the suggested method. Overall, these 

findings show that the framework provides a reliable, flexible, and understandable alternative 

for brain MRI analysis in studies using non-traditional animal models and developmental 

research. 
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1. INTRODUCTION 

 

 

Figure 1:- pipeline for medical imaging based on graphs. An ROI network is created, 

fMRI volumes are transformed into BOLD time series for each ROI, relational dynamics 

are extracted by spatial graph operations and temporal modelling, node features are 

projected and combined, and a readout head produces subject-level predictions. 

 

Brain MRI analysis has been greatly improved by automated methods, especially in research 

involving people and frequently used lab animals (Kaur and Gaba, 2021; Park and Friston, 

2013). Comparable analytical methods are still scarce, though, for studies that concentrate on 

developing brains or less commonly used animal models, such sheep. Because of this, brain 

structure segmentation in these environments frequently relies on manual labelling or 

automatic techniques that are guided by existing anatomical templates and signal intensity, 

when such references are accessible (Nitzsche et al., 2015; Ella et al., 2017). These methods 

may miss individual variability, developmental changes, or pathological differences since 

they rely heavily on past anatomical knowledge and the calibre of current atlases. Accurate 

segmentation is made more difficult in developing brains due to low tissue contrast, uneven 

maturation rates, and insufficient structural construction (Li et al., 2019). Furthermore, 

exploratory research and the identification of new structural patterns associated with 

neurological illnesses may be constrained by the use of predetermined anatomical regions. In 

this study, we propose a unique processing framework to overcome the intrinsic limitations of 

traditional convolutional neural networks and reduce segmentation-related bias in Figure 1. 

The suggested approach does not use predetermined neuroanatomical information; instead, it 

creates regions of interest (ROIs) immediately from imaging data. In particular, two 

complementary segmentation algorithms are used to generate segmented images utilising 
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voxel intensity-based features, guaranteeing resilience across different image qualities. 

Additionally, by representing the brain as a network of interconnected patches, graph neural 

networks (GNNs) are used to analyse anatomical patterns and effectively understand 

complicated inter-regional correlations (Cui et al., 2021; Li et al., 2021; Ravinder et al., 

2023). The framework is able to capture both local and global structural features thanks to 

this graph-based representation. A more flexible, scalable, and data-driven investigation of 

brain organization is made possible by the suggested method, which eliminates reliance on 

set anatomical atlases. The framework's applicability in neuroscience research is further 

expanded by its support for cross-species analysis and its potential to be expanded to other 

developmental and pathological imaging studies.  

 

2. LITERATURE REVIEW 

Image segmentation and brain classification are the two main goals of previous research on 

brain MRI analysis (Coupeau et al., 2022; Srinivasan et al., 2024; Kaur and Gaba, 2021; 

Poriya, 2023). In both areas, machine learning techniques, particularly convolutional neural 

networks (CNNs) and graph convolutional networks (GCNs), have demonstrated strong 

capabilities in automatically extracting meaningful features and identifying complex patterns 

within neuroimaging data. To guarantee consistent voxel resolution, a number of crucial 

preprocessing techniques are regularly used, regardless of the learning architecture chosen. 

These include noise reduction, bias field correction, intensity normalisation, and spatial 

resampling. While skull-stripping and cropping techniques are used to exclude non-brain 

tissues and identify pertinent brain regions, spatial registration is frequently used to align 

individual scans within a shared anatomical space, frequently utilising standardised reference 

templates. In order to define regions of interest (ROIs), which are the foundation for creating 

graph-based representations, segmentation is essential. Traditionally, manual annotation or 

atlas-based techniques based on individual brain pictures or standardised templates have been 

used for this process (Van Essen and Drury, 1997; Yang et al., 2020; Fil et al., 2021). These 

methods rely mostly on prior anatomical knowledge and the quality of the atlas, which limits 

their capacity to account for developmental changes, inter-individual variability, and 

pathological abnormalities, even while they allow for consistent anatomical labelling and 

cross-subject comparisons. Advances in CNN architectures, including AlexNet, ResNet, 

VGG, and DenseNet, have significantly improved performance in MRI-based classification, 

clustering, and age estimation tasks (Krizhevsky et al., 2012; He et al., 2016; Cole et al., 

2017; Jiang et al., 2020). More recent models incorporate attention mechanisms to enhance 
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feature representation and further improve predictive accuracy (Lam et al., 2020; Cheng et 

al., 2021). Simultaneously, graph-based methods—in which nodes represent anatomical 

regions, voxels, or tissue types and edges encode structural, functional, or effective 

connections—have drawn more attention for modelling brain connectivity and regional 

interactions (Fedorov et al., 2012; Bullmore and Bassett, 2011; Sporns, 2018). While edge 

attributes might indicate distances, tract lengths, or connection strengths, node attributes 

frequently consist of spatial coordinates, morphological characteristics, and intensity-based 

measurements. However, defining meaningful edges and determining appropriate 

thresholding strategies remain challenging, as fully connected graphs are computationally 

expensive and difficult to interpret. In order to better simulate complicated inter-regional 

relationships and learn from these graph representations, graph neural networks (GNNs) have 

been created (Li et al., 2021; Ravinder et al., 2023; Srinivasan et al., 2024; Coupeau et al., 

2022). By incorporating both local and global network features, GNN-based frameworks 

have shown increased performance in brain age estimation and developmental studies. 

However, a lot of current GNN techniques depend on clearly defined graph topologies that 

come from tractography or multi-modal data that are aligned to standard templates (Lim et 

al., 2024; Cai et al., 2023), which limits their use in non-traditional contexts. Additional 

difficulties include significant anatomical diversity, a lack of standardised atlases, a restricted 

supply of automated techniques, and tiny sample sizes for analysing developing brains and 

unconventional animal models. In these situations, segmentation is frequently still done by 

hand, requiring specialised knowledge and being vulnerable to operator-dependent bias and 

inter-observer variability (Fedorov et al., 2012). By creating representative templates using 

affine transformations and label propagation techniques, atlas-based registration methods 

provide partial solutions (De Vico Fallani et al., 2017). However, these methods often 

necessitate extensive post-processing to guarantee precise anatomical alignment. Recent 

efforts have introduced automatic and incremental segmentation methods incorporating 

biological priors as complementary strategies (Galisot et al., 2022); however, their 

generalizability remains limited. The need for more adaptable, data-driven, and atlas-

independent analytical frameworks is thus highlighted by the fact that, despite notable 

advancements in deep learning and graph-based neuroimaging analysis, current approaches 

still have significant limitations in terms of adaptability, interpretability, and robustness, 

especially in developmental studies and research involving unconventional animal models. 
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3. THE PIPELINE THAT IS PROPOSED 

3.1 From 3D MR Pictures to Graphs 

In this work, we provide a general-purpose framework for creating graph-based 

representations from three-dimensional brain MRI data from developing brains and non-

traditional animal models. This method's main goal is to maintain important structural and 

intensity-related information from the source images while facilitating effective and 

significant graph building. The suggested approach turns volumetric MRI data into graphs, 

which enables graph neural networks to automatically learn, recognise, and take advantage of 

the most instructive features while training. The modelling of both global anatomical links 

and local tissue qualities is made easier by this transition, which is frequently challenging to 

capture with traditional voxel-based or patch-based learning methods. Furthermore, the 

graph-based representation supports scalable analysis across varying brain sizes and 

developmental stages, enhancing the adaptability of the framework. By doing this, the 

suggested methodology seeks to eliminate the need for predetermined anatomical priors and 

offer a flexible, data-driven basis for upcoming learning and prediction tasks. 

3.2 Preprocessing 

To improve picture quality and guarantee consistency among MRI scans, the preprocessing 

step includes skull stripping and z-score intensity normalisation. In order to isolate brain 

areas for further examination, non-brain tissues like the scalp and skull are removed using a 

technique called skull stripping. This stage lessens background noise and keeps unrelated 

information from interfering with learning. Because Z-score intensity normalisation 

maintains the relative alignment of white matter, grey matter, and cerebrospinal fluid tissues 

while standardising voxel intensity distributions, it is frequently used in brain MRI 

investigations, especially in machine learning applications (Schmid, 2023). Robust feature 

learning is made possible by this normalisation procedure, which enhances comparability 

between people and imaging sessions. The two primary steps of the graph construction 

process are node definition and edge establishment, which come after preprocessing. The 

volumetric MRI data can be represented as structured graphs that are appropriate for graph-

based learning and analysis by following these procedures. 
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3.3 Creation of Nodes and Edges 

 

 

Figure 2:- Diagram showing the creation of a brain network using neuroimaging data. 

 

As shown in Figure 2, node creation is carried out based on the segmentation of areas of 

interest (ROIs). The suggested framework uses a segmentation strategy that is independent of 

predetermined biological priors in order to analyse developing brains and unconventional 

animal models. A totally data-driven segmentation approach is made possible by treating 

MRI data as traditional intensity-based pictures rather than pre-labeled anatomical features. 

This approach enhances adaptability across different species and developmental stages. Two 

segmentation methods—a split-and-merge algorithm and a histogram-based clustering 

algorithm—are assessed in this study for ROI formation. Voxels with identical intensity 

levels are grouped into appropriate segments by the histogram-based technique, which 

divides the global intensity range into N equal intervals. A key challenge associated with this 

approach lies in selecting appropriate parameter values, as the optimal number of segments 

depends on the study objectives and the desired granularity of regional representation. Image 

1 provides an illustration of this technique. The split-and-merge algorithm (Gonzalez and 

Woods, 2017), the second method, functions in two consecutive stages. In the split phase, a 

user-defined homogeneity criterion and a minimum region size are used to recursively divide 

the image into smaller, more homogeneous parts known as "cubes." The intensity range 

within each zone is usually used to evaluate homogeneity. In order to improve regional 

coherence and lessen over-segmentation, spatially nearby regions are merged in the 

succeeding merge phase if their union meets predetermined homogeneity criteria. Each ROI 

that is produced after segmentation is represented as a graph node with morphological, 
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spatial, and intensity-based characteristics. The creation of organised brain graphs is therefore 

made possible by establishing edges between nodes based on spatial adjacency, similarity 

metrics, or distance requirements. This node-edge formulation offers a strong basis for further 

graph neural network analysis by making it easier to characterise both local tissue 

characteristics and distant anatomical relationships. 

 

3.4 Classification and Analysis of Graphs 

As was previously mentioned, because graph neural networks (GNNs) can capture intricate 

interactions between many areas of interest (ROIs), they are especially well suited for 

analysing brain MRI data. GNNs function at a higher structural level, with nodes representing 

different brain areas or subregions and edges encoding the interconnections between them, in 

contrast to convolutional neural networks, which are mainly concerned with extracting 

features from local voxel neighbourhoods. The network can learn both local and global 

dependencies within brain networks thanks to its relational modelling paradigm, producing 

predictions that are frequently more correct and biologically significant. The suggested 

framework formulates the task as a multi-class graph classification issue and uses a 

specialised GNN architecture to process the created brain graphs in order to accomplish age 

estimation. Each graph is associated with one of K distinct age groups and represents a 

unique brain scan. The model is able to capture developmental trends and changes in 

connectivity related to various age groups because node representations are updated through 

iterative message-passing procedures that aggregate data from nearby nodes. Furthermore, 

compact global representations are created using graph-level pooling techniques and then 

delivered to fully connected layers for final classification. By emphasising key areas and 

linkages involved in the prediction process, our design supports better interpretability while 

strengthening resistance to noise and anatomical variability.  

 

3.4.1 Layers of Graph Convolution 

The suggested approach uses a series of three graph convolutional layers to provide efficient 

information propagation throughout the graph structure. These layers allow the model to 

capture both local and global patterns in brain organization by iteratively aggregating and 

transforming features from nearby nodes. The available dataset in this study is relatively 

small, with just about 200 graph samples, despite the fact that many different graph 

convolutional designs have been described in the literature. Because such designs could result 

in overfitting and poor generalisation performance, the use of extremely deep or complicated 
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networks with many parameters was avoided. The effect of feature dimensionality on 

learning performance was examined using two distinct parameter settings. In the first setup, 

the model starts by employing the first GCNConv layer to project the seven initial node 

features into an eight-dimensional feature space. The second layer then expands this 

representation to sixteen dimensions, while the third layer expands it even further to thirty-

two dimensions. The network is able to gradually capture increasingly complicated structural 

and intensity-related patterns because each convolutional layer applies a learnt linear 

transformation followed by a non-linear activation function, namely the Rectified Linear Unit 

(ReLU). A more aggressive approach to feature extension is used in the second configuration. 

The dimensionality is extended from the initial seven input features to sixteen in the first 

layer, thirty-two in the second, and sixty-four in the third. The purpose of this exponential 

increase in feature dimensions is to assess the model's capacity to acquire more complex and 

expressive representations. The study examines the trade-off between model complexity and 

generalisation performance in the case of sparse training data by contrasting these two 

configurations. 

 

3.4.2 Fully Connected Layers and Pooling 

Following the graph convolutional layers, global pooling procedures are used to create a 

compact graph-level representation appropriate for classification. Both global mean pooling 

and global max pooling algorithms are assessed in this study to efficiently summarise node-

level attributes while taking the dataset's small size into account. While global max pooling 

chooses the maximum feature values, highlighting the most noticeable and discriminative 

patterns, global mean pooling calculates the average feature values across all nodes, 

reflecting the overall structural properties of the neural graph. The framework seeks to 

determine the best approach for maintaining pertinent information in situations where data is 

scarce by contrasting these two pooling processes. 

 

 

Figure 3: Fully Connected layers. 
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Graph-level classification is then carried out by passing the resulting pooled feature vectors 

through a series of three fully connected (FC) layers, fc1, fc2, and fc3 in Figure 3. In order to 

effectively discriminate between various age groups, these layers gradually convert the high-

dimensional pooled representations into lower-dimensional feature spaces. The network may 

model complex decision boundaries by using a non-linear activation function after each fully 

connected layer applies a learnt linear transformation. Class probability scores for the 

predetermined age groups are generated by the last completely linked layer. Global pooling 

and fully linked layers work together to improve the overall predictive performance of the 

suggested GNN-based classification architecture and enable robust feature integration. 

 

4. TESTS AND FINDINGS 

 

Figure 4: Feature extraction of ND diagnosis. 

 

 

Figure 5: The accuracy of the ND diagnosis. 
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The effectiveness of several convolutional neural network (CNN) and graph neural network 

(GNN) designs in estimating brain age using unconventional animal models—specifically, 

sheep—was assessed through a series of tests in Figure 4. Finding the best modelling 

techniques to capture developmental trends in brain MRI data was the main goal of these 

experiments in Figure 5. A computing platform with an Intel Core i7-11850H processor 

running at 2.50 GHz, 32 GB of system memory, and an NVIDIA GeForce RTX A3000 

laptop GPU was used for all experiments, guaranteeing adequate computational resources for 

training and assessment. The Python programming language and pertinent deep learning 

libraries were used to create the entire analysis pipeline, which included data preprocessing, 

model training, validation, and performance evaluation. This experimental design made it 

possible to evaluate the suggested framework consistently and reproducibly across various 

model configurations and parameter settings. 

 

5. CONCLUSION  

In order to minimise potential bias in the analysis, we introduced an innovative and adaptable 

pipeline in this study for predicting brain age in unconventional animal models without 

depending on predetermined neuroanatomical priors. A completely data-driven study of brain 

development is made possible by the suggested architecture, which combines automated MRI 

segmentation, graph creation, and learning based on graph neural networks (GNNs). 

According to experimental data, the suggested GNN-based pipeline continuously performs 

better in terms of age prediction accuracy than conventional convolutional neural network 

(CNN) techniques. Automatic MRI segmentation is the first step in the procedure. Segmented 

volumes are then transformed into graph representations and analysed using GNN models. 

Additionally, two segmentation methods with various GNN topologies and parameter 

configurations were thoroughly examined to determine how they affected robustness and 

performance. According to experimental data, the suggested GNN-based pipeline 

continuously performs better in terms of age prediction accuracy than conventional 

convolutional neural network (CNN) techniques. Automatic MRI segmentation is the first 

step in the procedure. Segmented volumes are then transformed into graph representations 

and analysed using GNN models. Additionally, two segmentation methods with various GNN 

topologies and parameter configurations were thoroughly examined to determine how they 

affected robustness and performance. The results demonstrate the benefits of using graph-

based models to capture intricate interregional interactions and patterns of brain development. 

The suggested method improves interpretability and adaptability in addition to predicting 
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accuracy, which makes it appropriate for a variety of cross-species and developmental 

neuroimaging investigations. In order to further enhance performance and generalisation, 

future work will concentrate on expanding the framework to larger and more varied datasets, 

including multimodal imaging data, and investigating sophisticated GNN structures. Further 

understanding of the biological processes behind brain development and ageing may also be 

possible with the incorporation of explainable artificial intelligence approaches. 
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