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ABSTRACT
In this work, we present a novel analytical approach that does not rely on predetermined

neuroanatomical references for analysing and comparing brain MRI data from non-standard

animal models, like sheep. The created pipeline overcomes the drawbacks of conventional

neuroimaging approaches by combining automated MRI segmentation techniques with graph

neural networks (GNNs). Traditional methods typically rely on set anatomical atlases, which

frequently don't adjust to rare species or developing brains. The suggested approach reduces

template-related bias and enhances generalisation by directly identifying regions of interest

from MRI scans and modelling the brain as a graph structure. In experiments, the GNN-based

model performs better than a traditional convolutional neural network (CNN) model in age

prediction tasks, with an accuracy of 63.22% versus 59.77%. Additionally, the application of

GNNs facilitates efficient learning of intricate interregional brain interactions and improves

model transparency. Additionally, improved biological understanding of developmental

patterns and structural connectivity is supported by the suggested method. Overall, these

findings show that the framework provides a reliable, flexible, and understandable alternative

for brain MRI analysis in studies using non-traditional animal models and developmental

research.
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1. INTRODUCTION
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Figure 1:- pipeline for medical imaging based on graphs. An ROI network is created,
fMRI volumes are transformed into BOLD time series for each ROI, relational dynamics
are extracted by spatial graph operations and temporal modelling, node features are

projected and combined, and a readout head produces subject-level predictions.

Brain MRI analysis has been greatly improved by automated methods, especially in research
involving people and frequently used lab animals (Kaur and Gaba, 2021; Park and Friston,
2013). Comparable analytical methods are still scarce, though, for studies that concentrate on
developing brains or less commonly used animal models, such sheep. Because of this, brain
structure segmentation in these environments frequently relies on manual labelling or
automatic techniques that are guided by existing anatomical templates and signal intensity,
when such references are accessible (Nitzsche et al., 2015; Ella et al., 2017). These methods
may miss individual variability, developmental changes, or pathological differences since
they rely heavily on past anatomical knowledge and the calibre of current atlases. Accurate
segmentation is made more difficult in developing brains due to low tissue contrast, uneven
maturation rates, and insufficient structural construction (Li et al., 2019). Furthermore,
exploratory research and the identification of new structural patterns associated with
neurological illnesses may be constrained by the use of predetermined anatomical regions. In
this study, we propose a unique processing framework to overcome the intrinsic limitations of
traditional convolutional neural networks and reduce segmentation-related bias in Figure 1.
The suggested approach does not use predetermined neuroanatomical information; instead, it
creates regions of interest (ROIs) immediately from imaging data. In particular, two

complementary segmentation algorithms are used to generate segmented images utilising
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voxel intensity-based features, guaranteeing resilience across different image qualities.
Additionally, by representing the brain as a network of interconnected patches, graph neural
networks (GNNs) are used to analyse anatomical patterns and effectively understand
complicated inter-regional correlations (Cui et al., 2021; Li et al., 2021; Ravinder et al.,
2023). The framework is able to capture both local and global structural features thanks to
this graph-based representation. A more flexible, scalable, and data-driven investigation of
brain organization is made possible by the suggested method, which eliminates reliance on
set anatomical atlases. The framework’s applicability in neuroscience research is further
expanded by its support for cross-species analysis and its potential to be expanded to other

developmental and pathological imaging studies.

2. LITERATURE REVIEW

Image segmentation and brain classification are the two main goals of previous research on
brain MRI analysis (Coupeau et al., 2022; Srinivasan et al., 2024; Kaur and Gaba, 2021,
Poriya, 2023). In both areas, machine learning techniques, particularly convolutional neural
networks (CNNs) and graph convolutional networks (GCNs), have demonstrated strong
capabilities in automatically extracting meaningful features and identifying complex patterns
within neuroimaging data. To guarantee consistent voxel resolution, a number of crucial
preprocessing techniques are regularly used, regardless of the learning architecture chosen.
These include noise reduction, bias field correction, intensity normalisation, and spatial
resampling. While skull-stripping and cropping techniques are used to exclude non-brain
tissues and identify pertinent brain regions, spatial registration is frequently used to align
individual scans within a shared anatomical space, frequently utilising standardised reference
templates. In order to define regions of interest (ROIls), which are the foundation for creating
graph-based representations, segmentation is essential. Traditionally, manual annotation or
atlas-based techniques based on individual brain pictures or standardised templates have been
used for this process (Van Essen and Drury, 1997; Yang et al., 2020; Fil et al., 2021). These
methods rely mostly on prior anatomical knowledge and the quality of the atlas, which limits
their capacity to account for developmental changes, inter-individual variability, and
pathological abnormalities, even while they allow for consistent anatomical labelling and
cross-subject comparisons. Advances in CNN architectures, including AlexNet, ResNet,
VGG, and DenseNet, have significantly improved performance in MRI-based classification,
clustering, and age estimation tasks (Krizhevsky et al., 2012; He et al., 2016; Cole et al.,

2017; Jiang et al., 2020). More recent models incorporate attention mechanisms to enhance

Copyright@ Page 3



International Journal Research Publication Analysis

feature representation and further improve predictive accuracy (Lam et al., 2020; Cheng et
al., 2021). Simultaneously, graph-based methods—in which nodes represent anatomical
regions, voxels, or tissue types and edges encode structural, functional, or effective
connections—have drawn more attention for modelling brain connectivity and regional
interactions (Fedorov et al., 2012; Bullmore and Bassett, 2011; Sporns, 2018). While edge
attributes might indicate distances, tract lengths, or connection strengths, node attributes
frequently consist of spatial coordinates, morphological characteristics, and intensity-based
measurements. However, defining meaningful edges and determining appropriate
thresholding strategies remain challenging, as fully connected graphs are computationally
expensive and difficult to interpret. In order to better simulate complicated inter-regional
relationships and learn from these graph representations, graph neural networks (GNNs) have
been created (Li et al., 2021; Ravinder et al., 2023; Srinivasan et al., 2024; Coupeau et al.,
2022). By incorporating both local and global network features, GNN-based frameworks
have shown increased performance in brain age estimation and developmental studies.
However, a lot of current GNN techniques depend on clearly defined graph topologies that
come from tractography or multi-modal data that are aligned to standard templates (Lim et
al., 2024; Cai et al., 2023), which limits their use in non-traditional contexts. Additional
difficulties include significant anatomical diversity, a lack of standardised atlases, a restricted
supply of automated techniques, and tiny sample sizes for analysing developing brains and
unconventional animal models. In these situations, segmentation is frequently still done by
hand, requiring specialised knowledge and being vulnerable to operator-dependent bias and
inter-observer variability (Fedorov et al., 2012). By creating representative templates using
affine transformations and label propagation techniques, atlas-based registration methods
provide partial solutions (De Vico Fallani et al., 2017). However, these methods often
necessitate extensive post-processing to guarantee precise anatomical alignment. Recent
efforts have introduced automatic and incremental segmentation methods incorporating
biological priors as complementary strategies (Galisot et al., 2022); however, their
generalizability remains limited. The need for more adaptable, data-driven, and atlas-
independent analytical frameworks is thus highlighted by the fact that, despite notable
advancements in deep learning and graph-based neuroimaging analysis, current approaches
still have significant limitations in terms of adaptability, interpretability, and robustness,

especially in developmental studies and research involving unconventional animal models.
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3. THE PIPELINE THAT IS PROPOSED

3.1 From 3D MR Pictures to Graphs

In this work, we provide a general-purpose framework for creating graph-based
representations from three-dimensional brain MRI data from developing brains and non-
traditional animal models. This method's main goal is to maintain important structural and
intensity-related information from the source images while facilitating effective and
significant graph building. The suggested approach turns volumetric MRI data into graphs,
which enables graph neural networks to automatically learn, recognise, and take advantage of
the most instructive features while training. The modelling of both global anatomical links
and local tissue qualities is made easier by this transition, which is frequently challenging to
capture with traditional voxel-based or patch-based learning methods. Furthermore, the
graph-based representation supports scalable analysis across varying brain sizes and
developmental stages, enhancing the adaptability of the framework. By doing this, the
suggested methodology seeks to eliminate the need for predetermined anatomical priors and
offer a flexible, data-driven basis for upcoming learning and prediction tasks.

3.2 Preprocessing

To improve picture quality and guarantee consistency among MRI scans, the preprocessing
step includes skull stripping and z-score intensity normalisation. In order to isolate brain
areas for further examination, non-brain tissues like the scalp and skull are removed using a
technique called skull stripping. This stage lessens background noise and keeps unrelated
information from interfering with learning. Because Z-score intensity normalisation
maintains the relative alignment of white matter, grey matter, and cerebrospinal fluid tissues
while standardising voxel intensity distributions, it is frequently used in brain MRI
investigations, especially in machine learning applications (Schmid, 2023). Robust feature
learning is made possible by this normalisation procedure, which enhances comparability
between people and imaging sessions. The two primary steps of the graph construction
process are node definition and edge establishment, which come after preprocessing. The
volumetric MRI data can be represented as structured graphs that are appropriate for graph-

based learning and analysis by following these procedures.
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3.3 Creation of Nodes and Edges
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Figure 2:- Diagram showing the creation of a brain network using neuroimaging data.

As shown in Figure 2, node creation is carried out based on the segmentation of areas of
interest (ROIs). The suggested framework uses a segmentation strategy that is independent of
predetermined biological priors in order to analyse developing brains and unconventional
animal models. A totally data-driven segmentation approach is made possible by treating
MRI data as traditional intensity-based pictures rather than pre-labeled anatomical features.
This approach enhances adaptability across different species and developmental stages. Two
segmentation methods—a split-and-merge algorithm and a histogram-based clustering
algorithm—are assessed in this study for ROI formation. Voxels with identical intensity
levels are grouped into appropriate segments by the histogram-based technique, which
divides the global intensity range into N equal intervals. A key challenge associated with this
approach lies in selecting appropriate parameter values, as the optimal number of segments
depends on the study objectives and the desired granularity of regional representation. Image
1 provides an illustration of this technique. The split-and-merge algorithm (Gonzalez and
Woods, 2017), the second method, functions in two consecutive stages. In the split phase, a
user-defined homogeneity criterion and a minimum region size are used to recursively divide
the image into smaller, more homogeneous parts known as “"cubes." The intensity range
within each zone is usually used to evaluate homogeneity. In order to improve regional
coherence and lessen over-segmentation, spatially nearby regions are merged in the
succeeding merge phase if their union meets predetermined homogeneity criteria. Each ROI

that is produced after segmentation is represented as a graph node with morphological,
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spatial, and intensity-based characteristics. The creation of organised brain graphs is therefore
made possible by establishing edges between nodes based on spatial adjacency, similarity
metrics, or distance requirements. This node-edge formulation offers a strong basis for further
graph neural network analysis by making it easier to characterise both local tissue

characteristics and distant anatomical relationships.

3.4 Classification and Analysis of Graphs

As was previously mentioned, because graph neural networks (GNNSs) can capture intricate
interactions between many areas of interest (ROIs), they are especially well suited for
analysing brain MRI data. GNNs function at a higher structural level, with nodes representing
different brain areas or subregions and edges encoding the interconnections between them, in
contrast to convolutional neural networks, which are mainly concerned with extracting
features from local voxel neighbourhoods. The network can learn both local and global
dependencies within brain networks thanks to its relational modelling paradigm, producing
predictions that are frequently more correct and biologically significant. The suggested
framework formulates the task as a multi-class graph classification issue and uses a
specialised GNN architecture to process the created brain graphs in order to accomplish age
estimation. Each graph is associated with one of K distinct age groups and represents a
unique brain scan. The model is able to capture developmental trends and changes in
connectivity related to various age groups because node representations are updated through
iterative message-passing procedures that aggregate data from nearby nodes. Furthermore,
compact global representations are created using graph-level pooling techniques and then
delivered to fully connected layers for final classification. By emphasising key areas and
linkages involved in the prediction process, our design supports better interpretability while

strengthening resistance to noise and anatomical variability.

3.4.1 Layers of Graph Convolution

The suggested approach uses a series of three graph convolutional layers to provide efficient
information propagation throughout the graph structure. These layers allow the model to
capture both local and global patterns in brain organization by iteratively aggregating and
transforming features from nearby nodes. The available dataset in this study is relatively
small, with just about 200 graph samples, despite the fact that many different graph
convolutional designs have been described in the literature. Because such designs could result

in overfitting and poor generalisation performance, the use of extremely deep or complicated
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networks with many parameters was avoided. The effect of feature dimensionality on
learning performance was examined using two distinct parameter settings. In the first setup,
the model starts by employing the first GCNConv layer to project the seven initial node
features into an eight-dimensional feature space. The second layer then expands this
representation to sixteen dimensions, while the third layer expands it even further to thirty-
two dimensions. The network is able to gradually capture increasingly complicated structural
and intensity-related patterns because each convolutional layer applies a learnt linear
transformation followed by a non-linear activation function, namely the Rectified Linear Unit
(ReLU). A more aggressive approach to feature extension is used in the second configuration.
The dimensionality is extended from the initial seven input features to sixteen in the first
layer, thirty-two in the second, and sixty-four in the third. The purpose of this exponential
increase in feature dimensions is to assess the model's capacity to acquire more complex and
expressive representations. The study examines the trade-off between model complexity and
generalisation performance in the case of sparse training data by contrasting these two

configurations.

3.4.2 Fully Connected Layers and Pooling

Following the graph convolutional layers, global pooling procedures are used to create a
compact graph-level representation appropriate for classification. Both global mean pooling
and global max pooling algorithms are assessed in this study to efficiently summarise node-
level attributes while taking the dataset's small size into account. While global max pooling
chooses the maximum feature values, highlighting the most noticeable and discriminative
patterns, global mean pooling calculates the average feature values across all nodes,
reflecting the overall structural properties of the neural graph. The framework seeks to
determine the best approach for maintaining pertinent information in situations where data is

scarce by contrasting these two pooling processes.
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Figure 3: Fully Connected layers.

Copyright@ Page 8



International Journal Research Publication Analysis

Graph-level classification is then carried out by passing the resulting pooled feature vectors
through a series of three fully connected (FC) layers, fcl, fc2, and fc3 in Figure 3. In order to
effectively discriminate between various age groups, these layers gradually convert the high-
dimensional pooled representations into lower-dimensional feature spaces. The network may
model complex decision boundaries by using a non-linear activation function after each fully
connected layer applies a learnt linear transformation. Class probability scores for the
predetermined age groups are generated by the last completely linked layer. Global pooling
and fully linked layers work together to improve the overall predictive performance of the

suggested GNN-based classification architecture and enable robust feature integration.

4. TESTS AND FINDINGS
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Figure 5: The accuracy of the ND diagnosis.
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The effectiveness of several convolutional neural network (CNN) and graph neural network
(GNN) designs in estimating brain age using unconventional animal models—specifically,
sheep—was assessed through a series of tests in Figure 4. Finding the best modelling
techniques to capture developmental trends in brain MRI data was the main goal of these
experiments in Figure 5. A computing platform with an Intel Core i7-11850H processor
running at 2.50 GHz, 32 GB of system memory, and an NVIDIA GeForce RTX A3000
laptop GPU was used for all experiments, guaranteeing adequate computational resources for
training and assessment. The Python programming language and pertinent deep learning
libraries were used to create the entire analysis pipeline, which included data preprocessing,
model training, validation, and performance evaluation. This experimental design made it
possible to evaluate the suggested framework consistently and reproducibly across various
model configurations and parameter settings.

5. CONCLUSION

In order to minimise potential bias in the analysis, we introduced an innovative and adaptable
pipeline in this study for predicting brain age in unconventional animal models without
depending on predetermined neuroanatomical priors. A completely data-driven study of brain
development is made possible by the suggested architecture, which combines automated MRI
segmentation, graph creation, and learning based on graph neural networks (GNNS).
According to experimental data, the suggested GNN-based pipeline continuously performs
better in terms of age prediction accuracy than conventional convolutional neural network
(CNN) techniques. Automatic MRI segmentation is the first step in the procedure. Segmented
volumes are then transformed into graph representations and analysed using GNN models.
Additionally, two segmentation methods with various GNN topologies and parameter
configurations were thoroughly examined to determine how they affected robustness and
performance. According to experimental data, the suggested GNN-based pipeline
continuously performs better in terms of age prediction accuracy than conventional
convolutional neural network (CNN) techniques. Automatic MRI segmentation is the first
step in the procedure. Segmented volumes are then transformed into graph representations
and analysed using GNN models. Additionally, two segmentation methods with various GNN
topologies and parameter configurations were thoroughly examined to determine how they
affected robustness and performance. The results demonstrate the benefits of using graph-
based models to capture intricate interregional interactions and patterns of brain development.

The suggested method improves interpretability and adaptability in addition to predicting
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accuracy, which makes it appropriate for a variety of cross-species and developmental

neuroimaging investigations. In order to further enhance performance and generalisation,

future work will concentrate on expanding the framework to larger and more varied datasets,

including multimodal imaging data, and investigating sophisticated GNN structures. Further

understanding of the biological processes behind brain development and ageing may also be

possible with the incorporation of explainable artificial intelligence approaches.

REFERENCES

1.

Bullmore, E. T. and Bassett, D. S. (2011). Brain graphs: Graphical models of the human
brain connectome. 7:113-140.

Cai, H., Gao, Y., and Liu, M. (2023). Graph Trans- former Geometric Learning of Brain
Networks Us- ing Multimodal MR Images for Brain Age Estimation. 42(2):456-466.
Cheng, J., Liu, Z., Guan, H., Wu, Z., Zhu, H., Jiang, J., Wen, W., Tao, D., and Liu,
T.(2021). Brain Age Estimation From MRI Using Cascade Networks With Ranking
Loss.40 (12):3400-3412.

W. A., Steves, C., Spector, T. D., and Montana, G. (2017). Predicting brain age with deep
learning from raw imaging data results in a reliable and heritable biomarker. 163:115—
124,

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Im- ageNet Classification with
Deep Convolutional Neu- ral Networks. In Advances in Neural Information Pro- cessing
Systems, volume 25. Curran Associates, Inc.

Lam, P., Zhu, A. H., Gari, I. B., Jahanshad, N., and Thomp- son, P. M. (2020). 3D
GridAttention Networks for Interpretable Age and Alzheimer’s disease Prediction from
Structural MRI.

Dong, P., Kim, J., Shi, F., Rekik, 1., Lin, W., and Shen, D. (2019). Computational
neuroanatomy of baby brains: A review. 185:906-925.

Li, X., Zhou, Y., Dvornek, N., Zhang, M., Gao, S., Zhuang, J., Scheinost, D., Staib, L. H.,
Ventola, P., and Duncan, J. S. (2021). BrainGNN: Interpretable Brain Graph Neural
Network for fMRI Analysis. 74:102233.

Lim, H., Joo, Y., Ha, E., Song, Y., Yoon, S., and Shin, T. (2024). Brain Age Prediction
Using Multi-Hop Graph Attention Combined with Convolutional Neural Net- work.
11(3):265.

Copyright@ Page 11



