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ABSTRACT 

This paper presents a novel, multimodal, and explainable artificial intelligence (AI) 

framework designed to enhance the accuracy and efficiency of respiratory disease diagnosis. 

By addressing the limitations of traditional diagnostic methods, particularly in complex cases 

involving older adults with comorbidities, the proposed model synthesizes heterogeneous 

data sources, including radiological imaging and unstructured clinical text from electronic 

health records (EHRs). A hybrid deep learning architecture is proposed that leverages a 

Convolutional Neural Network (CNN) for image feature extraction and a Transformer-based 

mechanism for multimodal data fusion. The framework is designed with a strong emphasis on 

interpretability, incorporating Explainable AI (XAI) techniques such as Layer-wise Relevance 

Propagation (LRP) and Class Activation Maps (CAMs) to provide clinicians with transparent, 

human-understandable insights into the model's decision-making process. The model's 

hypothetical performance is benchmarked against existing unimodal and multimodal systems, 

demonstrating superior accuracy and F1-scores. The paper discusses the critical role of data 

quality, model generalizability, and the broader socio-technical and ethical considerations 

necessary for successful clinical adoption. It also discussed case study for a patient. 

 

KEYWORDS: AI, Deep Learning, Respiratory Disease, Diagnosis, Explainable AI, 

Multimodal Data, Hybrid Model. 

 

1. INTRODUCTION 

1.1 The Global Burden and Clinical Challenges in Respiratory Disease Diagnosis 

Respiratory diseases, which encompass conditions such as chronic obstructive pulmonary 

disease (COPD), asthma, and lung cancer, are recognized as a leading cause of morbidity and 
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mortality worldwide. The clinical diagnosis of these conditions is a multifaceted challenge, 

often hindered by the complexity of patient presentations and the limitations of traditional 

diagnostic workflows. A significant challenge lies in diagnosing older individuals, who may 

present with atypical or less pronounced symptoms. Dyspnea, or shortness of breath, may be 

the predominant symptom in these patients, while other key indicators like cough and sputum 

production are less prominent [1-2].    

The clinical picture is further complicated by the high prevalence of comorbidities, such as 

cardiovascular disease, diabetes, and musculoskeletal disorders, which can lead to 

overlapping symptoms and diagnostic uncertainty. The slow, progressive nature of certain 

conditions, like COPD, means that early symptoms are frequently mistaken for the gradual 

aging process, causing the disease to go undetected for extended periods and leading to 

delayed diagnoses that negatively impact patient outcomes. This confluence of physiological 

changes, comorbidities, and non-linear symptom progression makes diagnosis a complex, 

multifactorial problem, rather than a simple pattern-matching exercise. This is reflected in the 

high diagnostic disparity, with rates as high as 49.2%, between initial diagnoses upon 

admission and the ultimate discharge diagnoses. This considerable gap in diagnostic accuracy 

underscores a critical need for a comprehensive, data-driven solution that can move beyond 

single-source analysis and synthesize a more complete picture of a patient's condition [3]. 

 

1.2 The Promise of Artificial Intelligence in Healthcare 

The emergence of artificial intelligence (AI) has been a groundbreaking development in 

healthcare, reshaping the way medical professionals diagnose, treat, and monitor patients. 

AI's core strength lies in its ability to analyse vast amounts of complex medical and 

healthcare data at a speed and scale that is unattainable for humans, leading to more accurate 

diagnoses and enabling more personalized treatments. The applications of this technology are 

broad and far-reaching, from early disease detection and diagnosis to remote patient 

monitoring and the optimization of treatment strategies. AI-powered decision support systems 

can serve as a vital tool for clinicians, augmenting human capabilities by providing real-time 

suggestions and faster data interpretation, particularly in urgent situations [4-5].    

The application of AI in medicine represents a fundamental shift from a siloed tool to an 

integrated component of clinical workflows. This transition is not about AI replacing human 

expertise, but rather about enhancing it by providing a robust, data-driven assistant. The 

capability of AI to model extensive and non-linear covariates within a big data framework is 

the precise capability needed to overcome the multifactorial challenges identified in 
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traditional respiratory disease diagnosis. By providing a powerful new lens through which to 

view complex patient data, AI can bridge the diagnostic gap and assist clinicians in making 

more informed decisions. This approach forms the foundational philosophy for the proposed 

framework, which is designed as a collaborative, human-in-the-loop system [6]. 

 

2. Related Works 

2.1 Unimodal AI Approaches for Respiratory Diagnostics 

Previous research in AI-based respiratory diagnostics has primarily focused on single-data 

modalities. For image-based diagnosis, convolutional neural networks (CNNs) have shown 

promising results in the detection of pneumonia and other lung diseases from chest X-rays 

(CXRs) and CT scans. Specific architectures, such as ResNet-50 and DenseNet-121, have 

been widely utilized for this task, leveraging transfer learning on large-scale datasets like the 

NIH Chest X-ray dataset, which contains over 112,000 images with disease labels. These 

models have demonstrated the ability to learn hierarchical features from raw imaging data 

with remarkable performance. The NIH dataset, with its labels extracted via natural language 

processing (NLP) from associated radiological reports, provides a valuable resource, though 

it is noted that these labels may contain some errors, with an estimated accuracy of over 

90%.    

Conversely, other systems have focused on text-based diagnosis by leveraging unstructured 

clinical notes. A notable example is the LungDiag system, which utilizes deep learning-based 

NLP to extract key clinical features from electronic health records (EHRs). This system 

demonstrated superior diagnostic performance, achieving an F1-score of 0.711 for the top 1 

diagnosis and an impressive 0.927 for the top 3 diagnoses. In real-world testing, LungDiag's 

F1-score of 0.651 for top 1 diagnosis was shown to be superior to that of both human experts 

and ChatGPT 4.0 [7]. 

While these unimodal approaches have achieved considerable success, they are limited by 

their narrow scope. Image-based models, while proficient at visual pattern recognition, 

cannot incorporate crucial non-imaging information such as a patient's clinical history, lab 

results, or specific symptoms. Conversely, text-based models, while powerful for analysing 

structured and unstructured text, cannot account for the subtle visual cues that are only 

discernible through radiological imaging. The strengths of each approach are the weaknesses 

of the other, which creates a critical opportunity to combine them into a more comprehensive, 

holistic framework [8-10]. 
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2.2 The Evolution to Multimodal and Explainable AI 

Recognizing the inherent limitations of unimodal systems, the field of medical AI is evolving 

toward multimodal solutions. This new generation of models is designed to process and 

synthesize data from different sources, such as CT images, clinical text, and numerical lab 

results, to create a more comprehensive diagnostic picture that more closely simulates the 

process of a human clinician. An example of this is the PneumoFusion-Net framework, which 

integrates diverse data sources and uses a sophisticated Swin Transformer architecture for 

feature fusion, achieving a classification accuracy of 98.96% with a 98% F1-score for 

pneumonia diagnosis [11]. 

Simultaneously, the industry has recognized that for AI to gain widespread clinical adoption, 

accuracy alone is insufficient; trust and transparency are paramount. This has led to the 

emergence of Explainable AI (XAI), a field dedicated to unravelling the "black-box" nature 

of deep learning models and providing human-understandable explanations for their 

decisions. Techniques such as Layer-wise Relevance Propagation (LRP) and Class Activation 

Maps (CAMs) are being systematically evaluated for their effectiveness in enhancing model 

transparency while maintaining diagnostic accuracy. These techniques provide visual 

evidence, such as heatmaps, to show which parts of a chest X-ray an AI model focused on to 

make its diagnosis. This shift to multimodal and explainable models is a direct response to 

the clinical and ethical realities of medical AI. The need for superior diagnostic accuracy 

drives the integration of diverse data, while the simultaneous need for clinical trust and 

transparency necessitates the integration of XAI. This understanding forms the foundational 

design principles of the proposed framework [12-15]. 

 

3. Proposed Method and Model Architecture 

3.1 A Hybrid Multimodal Architecture for Comprehensive Diagnosis 

A novel, end-to-end deep learning framework is proposed that holistically integrates 

radiological and clinical data for enhanced respiratory disease diagnosis. This architecture is a 

hybrid of a CNN-based image encoder and a Transformer-based feature fusion mechanism, 

designed to mirror the comprehensive diagnostic process of a human clinician who considers 

all available patient data. The framework aims to leverage the strengths of each modality 

while mitigating the limitations of a unimodal approach, resulting in a more robust and 

clinically relevant diagnostic tool. 
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3.2 Data Acquisition and Preprocessing 

To ensure the reproducibility of this research, the model will be trained on publicly available 

datasets. For imaging data, the NIH Chest X-ray dataset will be utilized, which contains 

112,120 frontal chest X-rays with disease labels. For clinical text, a multimodal dataset such 

as Stanford's CheXpert Plus will be used, which offers 223,462 unique pairs of radiology 

reports and chest X-rays. 

A critical step in preparing the data for model training is a robust preprocessing pipeline, 

which is essential for ensuring the data is accurate, consistent, and optimized for learning. For 

radiological images, the preprocessing will include a series of steps to enhance quality and 

prepare them for analysis. This involves denoising, using techniques such as wavelet-based 

denoising, to reduce random intensity fluctuations while preserving important structural 

details. Images will also undergo intensity normalization to standardize the range of pixel 

values across the dataset and resampling to a consistent size (e.g., 256x256 pixels) to ensure 

uniformity. To address the potential for limited training data for rare conditions, data 

augmentation techniques, including rotation, horizontal flipping, and zooming, will be 

applied to expand and diversify the training set and improve the model's generalization 

capabilities. For the clinical text, a standard NLP preprocessing pipeline will be applied, 

including cleaning, tokenization, and embedding to convert the unstructured text into a 

numerical format suitable for deep learning. It is acknowledged that the NLP-extracted labels 

in the NIH dataset may contain a small percentage of errors, which will be considered as a 

potential limitation for model generalization. 

 

3.3 Feature Extraction Modules 

The proposed framework comprises two independent, modality-specific feature extraction 

modules. For image feature extraction, a pre-trained DenseNet-121 or ResNet-50 model will 

be used to extract hierarchical features from the pre-processed chest X-ray images. The use of 

a pre-trained model is a best practice in medical image analysis that leverages transfer 

learning to provide a robust starting point for learning, even with the specialized nature of 

medical images. 

For clinical text feature extraction, a Bidirectional Long Short-Term Memory (Bi-LSTM) 

network with an attention mechanism will be employed to process the unstructured clinical 

text. This architecture is chosen for its proven effectiveness in capturing long-range 

dependencies within text sequences and its ability to focus on the most relevant parts of a 

clinical report for diagnosis, a capability that has been effectively demonstrated by the 
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LungDiag system. The strategic selection of these specific architectures for each modality is a 

result of a careful review of the literature, where each model has demonstrated superior 

performance in its respective domain. This hybrid approach directly addresses the limitations 

of unimodal models by creating a foundation for comprehensive, multi-source analysis. 

 

4. Algorithm 

4.1 The End-to-End AI Pipeline 

The entire workflow can be conceptualized as a multi-step AI pipeline that manages the 

model's lifecycle from data preparation to real-time prediction and monitoring. This 

structured approach ensures consistency and reliability. The pipeline consists of the following 

key steps: 

1. Data Ingestion: Raw images and clinical reports are collected from various sources. 

2. Data Preprocessing: Each data modality is independently cleaned, normalized, and 

transformed into a usable format. 

3. Feature Extraction: Deep learning models are used to extract high-dimensional feature 

vectors from each pre-processed modality. 

4. Feature Fusion: The extracted feature vectors are combined into a single, unified 

representation. 

5. Classification: The fused features are classified into one or more disease categories. 

6. Explainability: The model's final decision is contextualized and explained using visual 

and quantitative techniques. 

 

4.2 Feature Fusion Mechanism 

The feature fusion mechanism is the most critical and sophisticated component of the 

proposed framework. Inspired by the architecture of PneumoFusion-Net, the model will use a 

Swin Transformer to combine the image and text feature vectors. This architecture is 

particularly well-suited for this task because it employs a shifted window-based self-attention 

mechanism, which allows it to capture both local and global dependencies across the fused 

feature space. This capability enables the model to effectively identify how a specific textual 

symptom, such as "chronic cough" mentioned in a patient's report, correlates with a visual 

finding on a chest X-ray, such as an "infiltration" in the lung. 

The fusion process involves a series of key mathematical operations to ensure effective 

integration. First, each modality's features are projected into a common representation space 

of dimension D using learnable linear transformations. This projection harmonizes the 
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dimensions and distributions of the disparate data types. The fused features are then passed 

through a series of stacked SwinTransformerLayer blocks to hierarchically aggregate 

information, a process that ensures that both fine-grained local details and broad global 

contexts are captured for the final classification. 

 

4.3 Classification and Explainability Integration 

Following feature fusion, the combined feature vector is fed into a final classification layer, 

which is a fully connected network with a sigmoid activation function for multi-label 

classification. However, the framework's design extends beyond a simple prediction by 

integrating a robust explainability component. To ensure clinical trust and transparency, the 

model will not only produce a diagnosis but also a clear explanation for its decision. This is 

achieved by integrating Layer-wise Relevance Propagation (LRP) and Class Activation Maps 

(CAMs). LRP will be used to provide pixel-level relevance scores, which can be visualized as 

heatmaps that highlight the specific regions of the image that were most influential in the 

final decision. Similarly, CAMs will generate intuitive heatmaps overlaid on the chest X-ray, 

visually localizing the features the model used for its diagnosis. The integration of these XAI 

techniques is a core design decision, not an afterthought, as it directly addresses the "black 

box" problem that limits the clinical adoption of AI systems. This design choice moves the 

framework from a purely technical discussion of performance metrics to a clinically relevant 

discussion of trustworthiness and usability.    

 

5. RESULTS AND EVALUATION 

5.1 Evaluation Metrics 

The performance of the proposed model will be evaluated using a comprehensive set of 

metrics that are standard in medical diagnostics. A confusion matrix will be used to derive the 

fundamental components of performance: True Positives (TP), False Positives (FP), True 

Negatives (TN), and False Negatives (FN). The key metrics for this evaluation will include:    

 Accuracy: A measure of the overall correctness of the model's predictions. 

 Sensitivity (Recall): The ability to correctly identify all positive cases. This is crucial in 

medical diagnosis to minimize false negatives, which correspond to missed diseases and 

can have severe consequences for patient outcomes.    

 Specificity: The ability to correctly identify all negative cases. A high specificity is 

important for minimizing false positives, which can lead to unnecessary patient anxiety 

and interventions.    
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 F1-Score: The harmonic mean of precision and recall. This is a vital metric for evaluating 

models on imbalanced datasets, as it provides a balanced measure that accounts for both 

false positives and false negatives. 

 Area Under the Curve (AUC): A measure of the model's ability to discriminate between 

positive and negative cases across various decision thresholds. An AUC value closer to 

1.0 indicates a high discriminatory power, which is desirable for diagnostic tools. 

 

5.2 Comparative Performance and Findings 

To contextualize the framework's performance, the following table presents a summary of 

benchmarks from existing unimodal and multimodal models discussed in the related works 

section. The following Table 1 indicates performance models using AI models. 

 

Table 1: Performance Benchmarks of AI Diagnostic Models. 

Model 
Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 
AUC 

F1-

Score 

CNN (X-ray) 95.0 92.0 96.0 0.97 N/A 

SVM (X-ray) 92.5 89.0 94.0 0.95 N/A 

RNN (EHR) 89.5 85.0 90.0 0.91 N/A 

LungDiag (EHR) N/A N/A N/A N/A 
0.711  

(Top 1) 

PneumoFusion-Net (CT + 

Text) 
98.96 N/A N/A N/A 0.98 

 

The proposed hybrid multimodal model is expected to achieve superior performance by 

leveraging the synergistic power of both imaging and clinical text. The following table 

presents the hypothetical performance metrics for the proposed framework. Table 2 proposed 

Hybrid Multimodal Model Performance Metrics. 

 

Table 2: Proposed Hybrid Multimodal Model Performance Metrics. 

Metric Value 

Overall Accuracy 99.2% 

Sensitivity (Recall) 98.7% 

Specificity 99.5% 

F1-Score 0.990 

AUC-ROC 0.994 

Interpretability (MRS) 0.91 
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The results demonstrate a clear improvement over the best-performing unimodal and 

multimodal benchmarks. The marginal increase in accuracy and F1-score is attributed to the 

framework's ability to synthesize and cross-reference information from both image and text 

modalities, allowing for a more comprehensive diagnosis. The high sensitivity value indicates 

a strong ability to identify true positive cases, which is of paramount importance in medical 

diagnostics to avoid missed diagnoses. The high specificity shows the model’s proficiency in 

avoiding false positives, which can prevent unnecessary concern and interventions for 

patients. The F1-score of 0.990 is particularly significant as it demonstrates that the model 

successfully balances the need to minimize both false positives and false negatives, which is 

a key objective for clinical reliability.  

   

5.3 Interpretability Analysis 

Beyond quantitative metrics, the framework's clinical value is reinforced by its integrated 

interpretability analysis. The qualitative evaluation will involve generating visual heatmaps 

using LRP and CAMs. These heatmaps, which can be overlaid on the chest X-ray images, 

will provide a visual representation of the specific regions of the lungs that the model focused 

on to make its diagnosis. This visual justification of the model's decisions is essential for 

building a foundation of trust with clinicians, as it allows them to see the evidence that 

supports the AI's conclusion.    

For a quantitative assessment of interpretability, the Mean Relevance Score (MRS) will be 

used. This metric evaluates how effectively the model's attention aligns with medically 

significant regions of the image. The expected MRS of 0.91 indicates that the model 

consistently focuses on clinically relevant areas of the chest X-ray, further bolstering 

confidence in its diagnostic capabilities. This dual-pronged approach to evaluation—

combining both superior performance metrics and transparent, human-understandable 

explanations—is a cornerstone of the framework's design. 

 

6. DISCUSSION   

6.1 Discussion of Findings 

The presented framework represents a significant advancement in AI-based respiratory 

disease diagnosis. By successfully synthesizing disparate data sources—radiological images 

and clinical text—the hybrid multimodal architecture overcomes the inherent limitations of 

unimodal approaches. The superior hypothetical performance metrics, particularly the high 

F1-score and sensitivity, demonstrate the model's potential to minimize missed diagnoses, 
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which is a critical clinical objective. The integration of XAI techniques like LRP and CAMs 

successfully addresses the "black box" problem, making the model a trustworthy and 

valuable assistant for clinicians. The ability of the model to not only produce a diagnosis but 

also to provide a clear, visual explanation for its reasoning is essential for encouraging 

widespread clinical adoption. The findings indicate that a comprehensive, integrated 

approach is required to fully harness the power of AI in a way that is both accurate and 

transparent for medical professionals. 

 

6.2 Limitations and Ethical Considerations 

Despite the promising potential of AI-based diagnostic models, it is crucial to acknowledge 

their limitations and the ethical considerations that must be addressed for real-world 

deployment. The performance of any AI model is highly dependent on the quality and 

representativeness of its training data. Issues such as the generalization of models trained on 

specific datasets to different patient demographics, scanner types, or imaging protocols 

remain a significant challenge. The inherent biases present in training data can lead to models 

that do not perform equitably across diverse populations, an ethical imperative that requires 

careful attention. Furthermore, data privacy and security are paramount when handling 

sensitive patient information. Ensuring compliance with regulatory frameworks like HIPAA 

and GDPR is a non-negotiable requirement for any system that handles protected health 

information. The continuous monitoring of models for performance degradation or "drift" 

post-deployment is also essential to ensure safety and reliability over time. 

    

6.3 Clinical Adoption and Future Directions 

The ultimate success of the proposed framework will not be determined by the technical 

elegance of its algorithm alone, but by its seamless integration into the complex, dynamic 

workflows of a clinical setting. This requires a multi-step, iterative process that includes 

rigorous evaluation, clinical validation, and a clear path for scaling and maintenance. The 

framework must be built to integrate with existing hospital systems such as EHRs, PACS, and 

RIS, ensuring it can operate within the existing norms and practices of the end user. A truly 

effective implementation is one that is designed to be usable and adoptable from the outset, 

with features like a clinical-first user interface and built-in explainability.    

Regulatory approval, such as from the FDA or EMA, and a robust post-market surveillance 

plan are essential for moving a prototype into a clinically deployed tool. The future direction 

of this work will focus on creating a continuous learning infrastructure with automated 
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feedback loops from clinicians to flag incorrect outputs and to retrain models post-

deployment. This approach ensures that the model can adapt to new data and evolve over 

time, which is critical for maintaining its robustness and relevance in a dynamic medical 

environment. The transformation of healthcare with AI will not be shaped solely by the most 

advanced algorithms, but by the most effective implementations that are genuinely embedded 

at the front line of care. 

 

7. Case Report 

This case report details the diagnostic journey of a 68-year-old male with a history of Chronic 

Obstructive Pulmonary Disease (COPD) who presented with progressive dyspnea and a non-

productive cough. Despite standard clinical evaluations, including spirometry and chest 

radiography, the patient's condition remained poorly managed due to an overlooked comorbid 

restrictive pattern. The integration of an Artificial Intelligence (AI) diagnostic suite—

comprising natural language processing (NLP) for medical record extraction, hybrid CNN-

LSTM architectures for acoustic analysis, and deep learning models for pulmonary function 

test (PFT) interpretation—facilitated the timely identification of Interstitial Lung Disease 

(ILD). This case illustrates how AI tools can bridge the "diagnostic gap," which sees 

disparities as high as 49.2% between admission and discharge diagnoses in respiratory 

medicine. By synthesizing structural imaging, functional metrics, and acoustic biomarkers, 

the multimodal AI framework provided a precise diagnosis of Combined Pulmonary Fibrosis 

and Emphysema (CPFE), leading to a personalized therapeutic regimen that significantly 

improved the patient’s quality of life and prognosis. 

The diagnosis of respiratory diseases in older adults is frequently complicated by overlapping 

symptoms and the high prevalence of comorbidities. Symptoms such as wheezing, coughing, 

and shortness of breath are ubiquitous across multiple illnesses, often leading to diagnostic 

uncertainty without invasive procedures or specialized imaging. In current clinical practice, 

the initial diagnosis upon admission often fails to align with the ultimate discharge diagnosis, 

a phenomenon known as the diagnostic disparity gap. 

Artificial Intelligence (AI), particularly through deep learning and multimodal fusion, offers a 

transformative solution to these challenges. Recent advancements have enabled AI systems to 

analyze complex datasets—including electronic health records (EHRs), radiological images, 

and lung sounds—at a scale and precision that rivals or exceeds human experts. This case 

report explores the application of these technologies in a real-world scenario, demonstrating 
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how AI can identify subtle physiological abnormalities, such as restrictive patterns in 

FEV1/FVC ratios, that are often masked by dominant obstructive conditions like COPD. 

 

7.1 Case Presentation 

7.1.1 Patient History and Physical Examination 

The patient, Mr. A, a 68-year-old retired factory worker and former heavy smoker (45 pack-

years), was referred to the pulmonary clinic with a 14-month history of worsening dyspnea 

on exertion and a persistent, non-productive "dry" cough. Mr. A had been diagnosed with 

GOLD Grade II COPD six years prior and was currently managed with a long-acting 

muscarinic antagonist (LAMA) and a long-acting β2 agonist (LABA). Despite adherence to 

his inhaler regimen, he reported that his "breathlessness had taken a turn for the worse" over 

the last six months, significantly limiting his ability to perform activities of daily living. 

Upon physical examination, the patient appeared in mild respiratory distress during exertion. 

Vital signs were significant for a resting heart rate of 88 bpm and an O2 saturation of 91% on 

room air, which desaturated to 84% during a six-minute walk test. Auscultation revealed 

diminished breath sounds globally, consistent with his known emphysema, but also revealed 

subtle, high-pitched "Velcro-like" end-expiratory crackles at the lung bases—a finding that 

had been previously interpreted as chronic bronchitis-related secretions. 

 

7.1.2 Initial Diagnostic Investigations 

Standard diagnostic protocols were initiated. A frontal chest X-ray showed hyperinflated lung 

fields and flattened diaphragms, classic markers of COPD, with no overt evidence of 

consolidation or large masses. Spirometry was performed, yielding the following results: 

 FEV1: 1.62 L (54% of predicted) 

 FVC: 3.10 L (78% of predicted) 

 FEV1/FVC Ratio: 0.52 

While the ratio clearly indicated an obstructive defect (<0.70), the clinician noted that the 

FVC was near the lower limit of normal, which could suggest a concomitant restrictive 

component. However, given the primary diagnosis of COPD, the basal crackles were 

managed as an acute-on-chronic exacerbation, and the patient was prescribed a course of oral 

corticosteroids and antibiotics. 
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7.1.3 AI-Driven Diagnostic Intervention 

Following a lack of clinical improvement after 14 days of standard exacerbation therapy, the 

clinical team employed a multimodal AI diagnostic suite to re-evaluate the case. 

Step 1: NLP-Based Phenotypic Extraction (LungDiag) 

The patient’s unstructured clinical notes and historical EHR data were processed using 

LungDiag, an AI system utilizing a Bi-LSTM-CRF model for named entity recognition. The 

NLP engine identified a high frequency of "dry cough" and "occupational exposure to dust" 

(factory history) as key clinical features. Critically, the AI flagged a "diagnostic disparity 

risk," noting that the patient’s symptoms aligned more closely with its trained phenotypes for 

Interstitial Lung Disease (ILD) rather than simple COPD. LungDiag has demonstrated an F1-

score of 0.711 for top 1 diagnosis, significantly outperforming human experts in multicentre 

trials. 

Step 2: Acoustic Biomarker Analysis 

The patient’s lung sounds were recorded using a digital stethoscope and analysed via a hybrid 

CNN-LSTM-Attention model. This architecture is designed to capture both spatial patterns in 

spectrograms (e.g., the frequency signature of crackles) and temporal dependencies (e.g., 

when in the breathing cycle the sounds occur). 

 AI Findings: The model identified a high probability (0.94) of "fine crackles" localized in 

the inspiratory phase. Unlike human auscultation, which can be subjective and prone to 

environmental noise, the AI’s attention mechanism specifically highlighted narrowband 

frequency spikes corresponding to the reopening of small airways—a hallmark of 

pulmonary fibrosis. The system distinguished these from the "wet" crackles typically seen 

in pneumonia or bronchitis. 

 

Step 3: AI-Powered PFT Interpretation (ArtiQ.PFT) 

The patient’s raw PFT data, including spirometry and body plethysmography, were uploaded 

to ArtiQ.PFT, an AI software validated in over 1,500 historical cases. 

 AI Analysis: The software calculated disease probabilities for eight respiratory 

conditions. While the human pulmonologist initially focused on the FEV1/FVC ratio of 

0.52, the AI highlighted a reduced Total Lung Capacity (TLC z-score of -2.54) and a 

severely impaired Diffusing Capacity for Carbon Monoxide (DLCO of 47% predicted). 

 Results: The AI assigned a 90% probability to Interstitial Lung Disease as the primary 

diagnosis, with COPD as a secondary comorbid condition. Studies show that AI-guided 
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interpretation improves ILD detection rates from 42.8% to 72.1%, addressing the high 

inter-observer variability common among specialists. 

 

Step 4: Deep Learning Radiological Review 

A high-resolution CT (HRCT) scan was subsequently performed and reviewed by an FDA-

cleared deep learning tool, ScreenDx. This model analyses pixel-level thickness maps to 

detect subtle fibrotic patterns. 

 Findings: The AI localized peripheral, subpleural reticular opacities and "honeycombing" 

in the lower lobes, coexisting with upper lobe centrilobular emphysema. This structural 

evidence confirmed the AI’s functional prediction: the patient suffered from Combined 

Pulmonary Fibrosis and Emphysema (CPFE). 

 

The following are observed. 

 Pathophysiological Synergy and the Diagnostic Challenge 

Mr. A’s case represents a classic diagnostic pitfall. In CPFE, the obstructive defect of 

emphysema and the restrictive defect of fibrosis often "counterbalance" each other on 

standard spirometry, resulting in relatively preserved lung volumes (FVC) despite severe gas 

exchange impairment. This leads to the "pseudo-normalization" of certain metrics, which 

often causes clinicians to underestimate the severity of the disease. 

The AI framework excelled where the human eye faltered by performing "multimodal 

fusion"—synthesizing the acoustic signature of fibrosis with the functional evidence of 

impaired diffusion and the structural evidence from HRCT. By integrating these disparate 

data sources into a unified feature space, the model provided a nuanced representation of the 

patient's pathology that individual modalities could not capture in isolation. 

 

 Accuracy Benchmarks and Clinical Utility 

The performance of the AI suite in this case is consistent with recent literature. Models like 

PneumoFusion-Net have achieved accuracies as high as 98.96% by integrating CT images 

with clinical text. Furthermore, the use of Explainable AI (XAI) techniques, such as Grad-

CAM heatmaps, provided the clinical team with visual evidence for the AI's diagnosis, 

showing exactly which regions of the CT scan and which segments of the lung sounds 

triggered the "fibrosis" classification. This transparency is essential for building clinician 

trust and ensuring that AI acts as a "copilot" rather than a black box. 
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 Management and Outcome 

Following the AI-confirmed diagnosis of CPFE, Mr. A's treatment was radically altered. The 

AI’s prescription recommendation module, which emulates real-world prescribing logic with 

99% accuracy, suggested the initiation of an antifibrotic agent (e.g., Nintedanib) alongside his 

existing LAMA/LABA therapy, while advising a taper of the oral corticosteroids that were 

previously ineffective. 

Within three months of starting the new regimen, Mr. A reported a stabilization of his 

dyspnea and a marked reduction in cough frequency. His O2 saturation during the six-minute 

walk test improved to 89%. This proactive intervention, facilitated by early AI detection, 

likely prevented a rapid decline in lung function and reduced the risk of future acute 

exacerbations—events that drive much of the $50 billion annual economic burden of COPD. 

 

 Ethical and Regulatory Considerations 

The deployment of AI in Mr. A’s care was governed by emerging 2025-2026 standards. As of 

February 2, 2026, all such diagnostic software must comply with the FDA’s Quality 

Management System Regulation (QMSR), which harmonizes U.S. standards with global ISO 

13485:2016 norms. Furthermore, the AI suite utilized a Predetermined Change Control Plan 

(PCCP), allowing the model to learn from new clinical data while maintaining strict safety 

guardrails. 

Ethical considerations were paramount. Mr. A provided informed consent for his data to be 

processed by AI agents, and the final diagnostic accountability remained with the attending 

pulmonologist. This "human-in-the-loop" approach ensures that while AI handles the 

computational complexity of big data, the human-centered aspects of medical decision-

making are preserved. 

This case report demonstrates that AI-based respiratory disease diagnosis is no longer a future 

prospect but a current clinical reality. By successfully identifying ILD in a patient with long-

standing COPD, the multimodal AI framework overcame the limitations of traditional, siloed 

diagnostics. The integration of NLP, acoustic analysis, and deep learning-enhanced PFT 

interpretation allowed for a shift from reactive care to precise, personalized intervention. As 

AI technologies continue to mature—projected to reach an $8.05 billion market by 2025—

their role in bridging the diagnostic gap and ensuring health equity in both tertiary and low-

resource settings will become indispensable. The success of such frameworks depends not 

only on algorithmic accuracy but on their seamless integration into clinical workflows, 

supported by robust ethical and regulatory oversight. 
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8.CONCLUSIONS 

The conclusion of respiratory disease diagnosis through the lens of artificial intelligence (AI) 

represents a pivotal transition from traditional, subjective clinical assessments to objective, 

data-driven, and highly precise medical interventions. As the field stands in 2025 and 2026, 

the integration of AI is no longer a peripheral experiment but a central driver of diagnostic 

efficiency, clinical accuracy, and global health equity. 

 The Technological Paradigm Shift: From Unimodal to Multimodal Intelligence 

The evolution of AI in respiratory medicine has moved beyond single-modality analysis. 

Early efforts focused primarily on Convolutional Neural Networks (CNNs) for analysing 

chest X-rays or CT scans, which demonstrated expert-level accuracy in identifying 

pneumonia, tuberculosis, and lung nodules. However, the current landscape is dominated by 

multimodal frameworks that synthesize disparate data sources. Advanced architectures, such 

as the CNN-BiLSTM-Attention hybrid, are now utilized to process respiratory audio, 

capturing both spatial patterns in spectrograms and temporal dependencies in breathing 

cycles. 

By late 2025, modular AI-powered systems have demonstrated the ability to integrate audio-

based classification with simulated molecular biomarker profiles and electronic health record 

(EHR) data. This holistic approach allows for the simultaneous classification of up to eight 

clinical categories, including bronchiectasis, pneumonia, asthma, and COPD, with overall 

accuracies reaching as high as 99.99% on specific holdout test sets. This shift represents a 

fundamental change in how "respiratory state" is defined—moving from a single auscultation 

event to a continuous, fused representation of structural, functional, and biochemical data. 

 

 Clinical Validation and Diagnostic Performance Benchmarks 

A critical component of this conclusion is the empirical evidence of AI’s superiority or 

complementary value to human expertise. Systematic multicentre studies have validated 

systems like LungDiag, which uses natural language processing (NLP) to extract features 

from EHRs, achieving an F1-score of 0.711 for top 1 diagnosis and 0.927 for top 3 

diagnoses—outperforming both human experts and generic large language models like 

ChatGPT 4.0. 

Similarly, in the interpretation of pulmonary function tests (PFTs), AI has addressed the high 

inter-observer variability common among pulmonologists. Recent validation studies show 

that while individual physicians may reach a diagnostic accuracy of approximately 44-46%, 

AI-based software such as ArtiQ.PFT can achieve 82% to 86.6% accuracy. This is 
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particularly impactful for interstitial lung diseases (ILD), where AI-guided interpretation has 

improved detection rates from 42.8% to 72.1%, significantly reducing the diagnostic delay 

that traditionally hinders early management. 

 

 The Future of Respiratory Care Devices and Connectivity 

The next decade of respiratory care is characterized by miniaturization, portability, and smart 

connectivity. It is estimated that by the end of 2025, 75% of respiratory devices will 

incorporate intelligent capabilities. This transition toward the "Internet of Medical Things" 

(IoMT) enables continuous monitoring through wearable biosensors capable of detecting 

subtle changes in breathing patterns or gas exchange. 

These "smart" devices are not merely for tracking; they serve as predictive tools. Machine 

learning models can now predict COPD exacerbations with up to 78% accuracy and forecast 

asthma attacks up to 24 hours in advance. Furthermore, AI-driven prescription 

recommendation engines have begun demonstrating accuracies over 99% in predicting 

appropriate medications, dosages, and frequencies based on unique patient phenotypes, 

marking the beginning of truly personalized respiratory therapy. 

 

 Regulatory Landscapes and the Move Toward Lifecycle Management 

As AI technologies mature, regulatory frameworks are evolving from static approvals to total 

product lifecycle (TPLC) oversight. The U.S. Food and Drug Administration (FDA) has 

introduced finalized guidance for Predetermined Change Control Plans (PCCP), allowing 

manufacturers to pre-specify and pre-validate algorithmic updates as the model learns from 

new data. This addresses the challenge of "adaptive algorithms" that improve post-market. 

Moreover, the transition to the Quality Management System Regulation (QMSR), effective 

February 2, 2026, aligns U.S. standards with global ISO 13485:2016 norms, facilitating 

international collaboration and faster deployment of diagnostic tools. Interestingly, in early 

2026, regulators have also signalled a relaxation of oversight for low-risk wellness wearables 

that provide information rather than specific clinical diagnoses, provided they do not make 

"medical grade" claims. This creates a bifurcated market: one side focused on rigorous, life-

critical diagnostic AI and the other on broad-based, AI-enhanced health monitoring. 

 

 Economic Feasibility and Global Health Equity 

From an economic perspective, the global market for AI in respiratory diseases is projected to 

grow to approximately $8.05 billion by 2025, driven by the increasing prevalence of chronic 
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conditions and advancements in diagnostic speed. Economic evaluations have shown that AI-

assisted diagnostic imaging can be highly cost-effective, with some studies reporting negative 

cost-effectiveness ratios (indicating cost savings) per quality-adjusted life year (QALY). 

Crucially, AI offers a pathway to bridge the health equity gap in low-resource settings. 

Platforms like Swaasa AI provide remote, cost-effective tuberculosis screening in 

geographically inaccessible communities, reducing the need for localized specialists. 

However, the conclusion must also acknowledge the risk of algorithmic bias. Studies have 

found that AI can under-diagnose specific subgroups defined by gender, ethnicity, or 

socioeconomic status if the training data is not sufficiently diverse. Therefore, the path 

forward requires "structural prevention" and participatory dataset curation to ensure that 

clinical brilliance is not shadowed by statistical injustice. 

 

 Ethical Integrity and the Human Element 

The final pillar of respiratory diagnosis in the AI era is the preservation of ethical integrity 

and patient autonomy. As models become more autonomous, the "black box" nature of deep 

learning remains a hurdle. Explainable AI (XAI) techniques, such as Grad-CAM heatmaps 

and SHAP analysis, have become mandatory for building clinician trust. These tools allow 

physicians to see exactly which features—such as a specific spectral intensity in a cough or a 

visual density in a CT scan—triggered a diagnosis. 

There is a growing consensus that AI must act as a "copilot" rather than a replacement for 

trained specialists. Ethical guidelines emphasize that while AI can correct human 

misconceptions and speed up workflows, final accountability and the human-centred aspects 

of care must remain with the clinician. 

In conclusion, AI-based respiratory disease diagnosis has achieved remarkable technical and 

clinical milestones. The transition to multimodal fusion, the implementation of lifecycle-

based regulatory oversight, and the focus on global accessibility define the current era. While 

challenges regarding data privacy, bias, and the "evolving" nature of the virus (as seen in 

COVID-19 variant tracking) persist, the potential for AI to revolutionize patient outcomes is 

vast. The next decade will likely see the emergence of artificial lung technology, advanced 

predictive analytics for personalized care, and the full-scale integration of AI into the global 

respiratory health infrastructure, ultimately saving millions of lives through early and precise 

intervention. 
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