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ABSTRACT

This paper presents a novel, multimodal, and explainable artificial intelligence (Al)
framework designed to enhance the accuracy and efficiency of respiratory disease diagnosis.
By addressing the limitations of traditional diagnostic methods, particularly in complex cases
involving older adults with comorbidities, the proposed model synthesizes heterogeneous
data sources, including radiological imaging and unstructured clinical text from electronic
health records (EHRs). A hybrid deep learning architecture is proposed that leverages a
Convolutional Neural Network (CNN) for image feature extraction and a Transformer-based
mechanism for multimodal data fusion. The framework is designed with a strong emphasis on
interpretability, incorporating Explainable Al (XAI) techniques such as Layer-wise Relevance
Propagation (LRP) and Class Activation Maps (CAMs) to provide clinicians with transparent,
human-understandable insights into the model's decision-making process. The model's
hypothetical performance is benchmarked against existing unimodal and multimodal systems,
demonstrating superior accuracy and F1-scores. The paper discusses the critical role of data
quality, model generalizability, and the broader socio-technical and ethical considerations

necessary for successful clinical adoption. It also discussed case study for a patient.

KEYWORDS: Al, Deep Learning, Respiratory Disease, Diagnosis, Explainable Al,
Multimodal Data, Hybrid Model.

1. INTRODUCTION
1.1 The Global Burden and Clinical Challenges in Respiratory Disease Diagnosis
Respiratory diseases, which encompass conditions such as chronic obstructive pulmonary

disease (COPD), asthma, and lung cancer, are recognized as a leading cause of morbidity and
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mortality worldwide. The clinical diagnosis of these conditions is a multifaceted challenge,
often hindered by the complexity of patient presentations and the limitations of traditional
diagnostic workflows. A significant challenge lies in diagnosing older individuals, who may
present with atypical or less pronounced symptoms. Dyspnea, or shortness of breath, may be
the predominant symptom in these patients, while other key indicators like cough and sputum
production are less prominent [1-2].

The clinical picture is further complicated by the high prevalence of comorbidities, such as
cardiovascular disease, diabetes, and musculoskeletal disorders, which can lead to
overlapping symptoms and diagnostic uncertainty. The slow, progressive nature of certain
conditions, like COPD, means that early symptoms are frequently mistaken for the gradual
aging process, causing the disease to go undetected for extended periods and leading to
delayed diagnoses that negatively impact patient outcomes. This confluence of physiological
changes, comorbidities, and non-linear symptom progression makes diagnosis a complex,
multifactorial problem, rather than a simple pattern-matching exercise. This is reflected in the
high diagnostic disparity, with rates as high as 49.2%, between initial diagnoses upon
admission and the ultimate discharge diagnoses. This considerable gap in diagnostic accuracy
underscores a critical need for a comprehensive, data-driven solution that can move beyond

single-source analysis and synthesize a more complete picture of a patient's condition [3].

1.2 The Promise of Artificial Intelligence in Healthcare

The emergence of artificial intelligence (Al) has been a groundbreaking development in
healthcare, reshaping the way medical professionals diagnose, treat, and monitor patients.
Al's core strength lies in its ability to analyse vast amounts of complex medical and
healthcare data at a speed and scale that is unattainable for humans, leading to more accurate
diagnoses and enabling more personalized treatments. The applications of this technology are
broad and far-reaching, from early disease detection and diagnosis to remote patient
monitoring and the optimization of treatment strategies. Al-powered decision support systems
can serve as a vital tool for clinicians, augmenting human capabilities by providing real-time
suggestions and faster data interpretation, particularly in urgent situations [4-5].

The application of Al in medicine represents a fundamental shift from a siloed tool to an
integrated component of clinical workflows. This transition is not about Al replacing human
expertise, but rather about enhancing it by providing a robust, data-driven assistant. The
capability of Al to model extensive and non-linear covariates within a big data framework is

the precise capability needed to overcome the multifactorial challenges identified in
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traditional respiratory disease diagnosis. By providing a powerful new lens through which to
view complex patient data, Al can bridge the diagnostic gap and assist clinicians in making
more informed decisions. This approach forms the foundational philosophy for the proposed
framework, which is designed as a collaborative, human-in-the-loop system [6].

2. Related Works

2.1 Unimodal Al Approaches for Respiratory Diagnostics

Previous research in Al-based respiratory diagnostics has primarily focused on single-data
modalities. For image-based diagnosis, convolutional neural networks (CNNs) have shown
promising results in the detection of pneumonia and other lung diseases from chest X-rays
(CXRs) and CT scans. Specific architectures, such as ResNet-50 and DenseNet-121, have
been widely utilized for this task, leveraging transfer learning on large-scale datasets like the
NIH Chest X-ray dataset, which contains over 112,000 images with disease labels. These
models have demonstrated the ability to learn hierarchical features from raw imaging data
with remarkable performance. The NIH dataset, with its labels extracted via natural language
processing (NLP) from associated radiological reports, provides a valuable resource, though
it is noted that these labels may contain some errors, with an estimated accuracy of over
90%.

Conversely, other systems have focused on text-based diagnosis by leveraging unstructured
clinical notes. A notable example is the LungDiag system, which utilizes deep learning-based
NLP to extract key clinical features from electronic health records (EHRS). This system
demonstrated superior diagnostic performance, achieving an F1-score of 0.711 for the top 1
diagnosis and an impressive 0.927 for the top 3 diagnoses. In real-world testing, LungDiag's
F1-score of 0.651 for top 1 diagnosis was shown to be superior to that of both human experts
and ChatGPT 4.0 [7].

While these unimodal approaches have achieved considerable success, they are limited by
their narrow scope. Image-based models, while proficient at visual pattern recognition,
cannot incorporate crucial non-imaging information such as a patient's clinical history, lab
results, or specific symptoms. Conversely, text-based models, while powerful for analysing
structured and unstructured text, cannot account for the subtle visual cues that are only
discernible through radiological imaging. The strengths of each approach are the weaknesses
of the other, which creates a critical opportunity to combine them into a more comprehensive,

holistic framework [8-10].
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2.2 The Evolution to Multimodal and Explainable Al

Recognizing the inherent limitations of unimodal systems, the field of medical Al is evolving
toward multimodal solutions. This new generation of models is designed to process and
synthesize data from different sources, such as CT images, clinical text, and numerical lab
results, to create a more comprehensive diagnostic picture that more closely simulates the
process of a human clinician. An example of this is the PneumoFusion-Net framework, which
integrates diverse data sources and uses a sophisticated Swin Transformer architecture for
feature fusion, achieving a classification accuracy of 98.96% with a 98% F1-score for
pneumonia diagnosis [11].

Simultaneously, the industry has recognized that for Al to gain widespread clinical adoption,
accuracy alone is insufficient; trust and transparency are paramount. This has led to the
emergence of Explainable Al (XAl), a field dedicated to unravelling the "black-box™ nature
of deep learning models and providing human-understandable explanations for their
decisions. Techniques such as Layer-wise Relevance Propagation (LRP) and Class Activation
Maps (CAMs) are being systematically evaluated for their effectiveness in enhancing model
transparency while maintaining diagnostic accuracy. These techniques provide visual
evidence, such as heatmaps, to show which parts of a chest X-ray an Al model focused on to
make its diagnosis. This shift to multimodal and explainable models is a direct response to
the clinical and ethical realities of medical Al. The need for superior diagnostic accuracy
drives the integration of diverse data, while the simultaneous need for clinical trust and
transparency necessitates the integration of XAI. This understanding forms the foundational

design principles of the proposed framework [12-15].

3. Proposed Method and Model Architecture

3.1 A Hybrid Multimodal Architecture for Comprehensive Diagnosis

A novel, end-to-end deep learning framework is proposed that holistically integrates
radiological and clinical data for enhanced respiratory disease diagnosis. This architecture is a
hybrid of a CNN-based image encoder and a Transformer-based feature fusion mechanism,
designed to mirror the comprehensive diagnostic process of a human clinician who considers
all available patient data. The framework aims to leverage the strengths of each modality
while mitigating the limitations of a unimodal approach, resulting in a more robust and

clinically relevant diagnostic tool.
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3.2 Data Acquisition and Preprocessing

To ensure the reproducibility of this research, the model will be trained on publicly available
datasets. For imaging data, the NIH Chest X-ray dataset will be utilized, which contains
112,120 frontal chest X-rays with disease labels. For clinical text, a multimodal dataset such
as Stanford's CheXpert Plus will be used, which offers 223,462 unique pairs of radiology
reports and chest X-rays.

A critical step in preparing the data for model training is a robust preprocessing pipeline,
which is essential for ensuring the data is accurate, consistent, and optimized for learning. For
radiological images, the preprocessing will include a series of steps to enhance quality and
prepare them for analysis. This involves denoising, using techniques such as wavelet-based
denoising, to reduce random intensity fluctuations while preserving important structural
details. Images will also undergo intensity normalization to standardize the range of pixel
values across the dataset and resampling to a consistent size (e.g., 256x256 pixels) to ensure
uniformity. To address the potential for limited training data for rare conditions, data
augmentation techniques, including rotation, horizontal flipping, and zooming, will be
applied to expand and diversify the training set and improve the model's generalization
capabilities. For the clinical text, a standard NLP preprocessing pipeline will be applied,
including cleaning, tokenization, and embedding to convert the unstructured text into a
numerical format suitable for deep learning. It is acknowledged that the NLP-extracted labels
in the NIH dataset may contain a small percentage of errors, which will be considered as a

potential limitation for model generalization.

3.3 Feature Extraction Modules

The proposed framework comprises two independent, modality-specific feature extraction
modules. For image feature extraction, a pre-trained DenseNet-121 or ResNet-50 model will
be used to extract hierarchical features from the pre-processed chest X-ray images. The use of
a pre-trained model is a best practice in medical image analysis that leverages transfer
learning to provide a robust starting point for learning, even with the specialized nature of
medical images.

For clinical text feature extraction, a Bidirectional Long Short-Term Memory (Bi-LSTM)
network with an attention mechanism will be employed to process the unstructured clinical
text. This architecture is chosen for its proven effectiveness in capturing long-range
dependencies within text sequences and its ability to focus on the most relevant parts of a

clinical report for diagnosis, a capability that has been effectively demonstrated by the
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LungDiag system. The strategic selection of these specific architectures for each modality is a
result of a careful review of the literature, where each model has demonstrated superior
performance in its respective domain. This hybrid approach directly addresses the limitations

of unimodal models by creating a foundation for comprehensive, multi-source analysis.

4. Algorithm

4.1 The End-to-End Al Pipeline

The entire workflow can be conceptualized as a multi-step Al pipeline that manages the

model's lifecycle from data preparation to real-time prediction and monitoring. This

structured approach ensures consistency and reliability. The pipeline consists of the following

key steps:

1. Data Ingestion: Raw images and clinical reports are collected from various sources.

2. Data Preprocessing: Each data modality is independently cleaned, normalized, and
transformed into a usable format.

3. Feature Extraction: Deep learning models are used to extract high-dimensional feature
vectors from each pre-processed modality.

4. Feature Fusion: The extracted feature vectors are combined into a single, unified
representation.

5. Classification: The fused features are classified into one or more disease categories.

6. Explainability: The model's final decision is contextualized and explained using visual

and guantitative techniques.

4.2 Feature Fusion Mechanism

The feature fusion mechanism is the most critical and sophisticated component of the
proposed framework. Inspired by the architecture of PneumoFusion-Net, the model will use a
Swin Transformer to combine the image and text feature vectors. This architecture is
particularly well-suited for this task because it employs a shifted window-based self-attention
mechanism, which allows it to capture both local and global dependencies across the fused
feature space. This capability enables the model to effectively identify how a specific textual
symptom, such as "chronic cough” mentioned in a patient's report, correlates with a visual
finding on a chest X-ray, such as an "infiltration" in the lung.

The fusion process involves a series of key mathematical operations to ensure effective
integration. First, each modality's features are projected into a common representation space

of dimension D using learnable linear transformations. This projection harmonizes the
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dimensions and distributions of the disparate data types. The fused features are then passed
through a series of stacked SwinTransformerLayer blocks to hierarchically aggregate
information, a process that ensures that both fine-grained local details and broad global
contexts are captured for the final classification.

4.3 Classification and Explainability Integration

Following feature fusion, the combined feature vector is fed into a final classification layer,
which is a fully connected network with a sigmoid activation function for multi-label
classification. However, the framework's design extends beyond a simple prediction by
integrating a robust explainability component. To ensure clinical trust and transparency, the
model will not only produce a diagnosis but also a clear explanation for its decision. This is
achieved by integrating Layer-wise Relevance Propagation (LRP) and Class Activation Maps
(CAMs). LRP will be used to provide pixel-level relevance scores, which can be visualized as
heatmaps that highlight the specific regions of the image that were most influential in the
final decision. Similarly, CAMs will generate intuitive heatmaps overlaid on the chest X-ray,
visually localizing the features the model used for its diagnosis. The integration of these XAl
techniques is a core design decision, not an afterthought, as it directly addresses the "black
box" problem that limits the clinical adoption of Al systems. This design choice moves the
framework from a purely technical discussion of performance metrics to a clinically relevant

discussion of trustworthiness and usability.

5. RESULTS AND EVALUATION

5.1 Evaluation Metrics

The performance of the proposed model will be evaluated using a comprehensive set of

metrics that are standard in medical diagnostics. A confusion matrix will be used to derive the

fundamental components of performance: True Positives (TP), False Positives (FP), True

Negatives (TN), and False Negatives (FN). The key metrics for this evaluation will include:

e Accuracy: A measure of the overall correctness of the model's predictions.

« Sensitivity (Recall): The ability to correctly identify all positive cases. This is crucial in
medical diagnosis to minimize false negatives, which correspond to missed diseases and
can have severe consequences for patient outcomes.

e Specificity: The ability to correctly identify all negative cases. A high specificity is
important for minimizing false positives, which can lead to unnecessary patient anxiety

and interventions.
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e F1-Score: The harmonic mean of precision and recall. This is a vital metric for evaluating
models on imbalanced datasets, as it provides a balanced measure that accounts for both
false positives and false negatives.

e Area Under the Curve (AUC): A measure of the model's ability to discriminate between
positive and negative cases across various decision thresholds. An AUC value closer to

1.0 indicates a high discriminatory power, which is desirable for diagnostic tools.

5.2 Comparative Performance and Findings
To contextualize the framework's performance, the following table presents a summary of
benchmarks from existing unimodal and multimodal models discussed in the related works

section. The following Table 1 indicates performance models using Al models.

Table 1: Performance Benchmarks of Al Diagnostic Models.

Accuracy Sensitivity Specificity F1-

Model (%) (%) (%) AUC Score
ICNN (X-ray) 95.0 192.0 96.0 l0.97 [NA |
ISVM (X-ray) 925 189.0 194.0 0.95 IN/A |
IRNN (EHR) 1189.5 185.0 1190.0 091 INJA |

. 0.711
LungDiag (EHR) N/A N/A N/A N/A (Top 1)
igjngF”S'O”'NEt (€T *log.96 N/A N/A N/A ||0.98

The proposed hybrid multimodal model is expected to achieve superior performance by
leveraging the synergistic power of both imaging and clinical text. The following table

presents the hypothetical performance metrics for the proposed framework. Table 2 proposed

Hybrid Multimodal Model Performance Metrics.

Table 2: Proposed Hybrid Multimodal Model Performance Metrics.

IMetric |[Value |
lOverall Accuracy  |[99.2%)
|Sensitivity (Recall)  [/98.7%)
|Specificity 1199.5%
IF1-Score 0.990 |
IAUC-ROC 0.994 |

lInterpretability (MRS)|[0.91 |
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The results demonstrate a clear improvement over the best-performing unimodal and
multimodal benchmarks. The marginal increase in accuracy and F1-score is attributed to the
framework's ability to synthesize and cross-reference information from both image and text
modalities, allowing for a more comprehensive diagnosis. The high sensitivity value indicates
a strong ability to identify true positive cases, which is of paramount importance in medical
diagnostics to avoid missed diagnoses. The high specificity shows the model’s proficiency in
avoiding false positives, which can prevent unnecessary concern and interventions for
patients. The F1-score of 0.990 is particularly significant as it demonstrates that the model
successfully balances the need to minimize both false positives and false negatives, which is

a key objective for clinical reliability.

5.3 Interpretability Analysis

Beyond quantitative metrics, the framework's clinical value is reinforced by its integrated
interpretability analysis. The qualitative evaluation will involve generating visual heatmaps
using LRP and CAMs. These heatmaps, which can be overlaid on the chest X-ray images,
will provide a visual representation of the specific regions of the lungs that the model focused
on to make its diagnosis. This visual justification of the model's decisions is essential for
building a foundation of trust with clinicians, as it allows them to see the evidence that
supports the Al's conclusion.

For a gquantitative assessment of interpretability, the Mean Relevance Score (MRS) will be
used. This metric evaluates how effectively the model's attention aligns with medically
significant regions of the image. The expected MRS of 0.91 indicates that the model
consistently focuses on clinically relevant areas of the chest X-ray, further bolstering
confidence in its diagnostic capabilities. This dual-pronged approach to evaluation—
combining both superior performance metrics and transparent, human-understandable

explanations—is a cornerstone of the framework's design.

6. DISCUSSION

6.1 Discussion of Findings

The presented framework represents a significant advancement in Al-based respiratory
disease diagnosis. By successfully synthesizing disparate data sources—radiological images
and clinical text—the hybrid multimodal architecture overcomes the inherent limitations of
unimodal approaches. The superior hypothetical performance metrics, particularly the high

F1-score and sensitivity, demonstrate the model's potential to minimize missed diagnoses,
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which is a critical clinical objective. The integration of XAl techniques like LRP and CAMs
successfully addresses the "black box™ problem, making the model a trustworthy and
valuable assistant for clinicians. The ability of the model to not only produce a diagnosis but
also to provide a clear, visual explanation for its reasoning is essential for encouraging
widespread clinical adoption. The findings indicate that a comprehensive, integrated
approach is required to fully harness the power of Al in a way that is both accurate and

transparent for medical professionals.

6.2 Limitations and Ethical Considerations

Despite the promising potential of Al-based diagnostic models, it is crucial to acknowledge
their limitations and the ethical considerations that must be addressed for real-world
deployment. The performance of any Al model is highly dependent on the quality and
representativeness of its training data. Issues such as the generalization of models trained on
specific datasets to different patient demographics, scanner types, or imaging protocols
remain a significant challenge. The inherent biases present in training data can lead to models
that do not perform equitably across diverse populations, an ethical imperative that requires
careful attention. Furthermore, data privacy and security are paramount when handling
sensitive patient information. Ensuring compliance with regulatory frameworks like HIPAA
and GDPR is a non-negotiable requirement for any system that handles protected health
information. The continuous monitoring of models for performance degradation or "drift"

post-deployment is also essential to ensure safety and reliability over time.

6.3 Clinical Adoption and Future Directions

The ultimate success of the proposed framework will not be determined by the technical
elegance of its algorithm alone, but by its seamless integration into the complex, dynamic
workflows of a clinical setting. This requires a multi-step, iterative process that includes
rigorous evaluation, clinical validation, and a clear path for scaling and maintenance. The
framework must be built to integrate with existing hospital systems such as EHRs, PACS, and
RIS, ensuring it can operate within the existing norms and practices of the end user. A truly
effective implementation is one that is designed to be usable and adoptable from the outset,
with features like a clinical-first user interface and built-in explainability.

Regulatory approval, such as from the FDA or EMA, and a robust post-market surveillance
plan are essential for moving a prototype into a clinically deployed tool. The future direction

of this work will focus on creating a continuous learning infrastructure with automated
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feedback loops from clinicians to flag incorrect outputs and to retrain models post-
deployment. This approach ensures that the model can adapt to new data and evolve over
time, which is critical for maintaining its robustness and relevance in a dynamic medical
environment. The transformation of healthcare with Al will not be shaped solely by the most
advanced algorithms, but by the most effective implementations that are genuinely embedded

at the front line of care.

7. Case Report

This case report details the diagnostic journey of a 68-year-old male with a history of Chronic
Obstructive Pulmonary Disease (COPD) who presented with progressive dyspnea and a non-
productive cough. Despite standard clinical evaluations, including spirometry and chest
radiography, the patient's condition remained poorly managed due to an overlooked comorbid
restrictive pattern. The integration of an Artificial Intelligence (Al) diagnostic suite—
comprising natural language processing (NLP) for medical record extraction, hybrid CNN-
LSTM architectures for acoustic analysis, and deep learning models for pulmonary function
test (PFT) interpretation—facilitated the timely identification of Interstitial Lung Disease
(ILD). This case illustrates how Al tools can bridge the "diagnostic gap,” which sees
disparities as high as 49.2% between admission and discharge diagnoses in respiratory
medicine. By synthesizing structural imaging, functional metrics, and acoustic biomarkers,
the multimodal Al framework provided a precise diagnosis of Combined Pulmonary Fibrosis
and Emphysema (CPFE), leading to a personalized therapeutic regimen that significantly
improved the patient’s quality of life and prognosis.

The diagnosis of respiratory diseases in older adults is frequently complicated by overlapping
symptoms and the high prevalence of comorbidities. Symptoms such as wheezing, coughing,
and shortness of breath are ubiquitous across multiple illnesses, often leading to diagnostic
uncertainty without invasive procedures or specialized imaging. In current clinical practice,
the initial diagnosis upon admission often fails to align with the ultimate discharge diagnosis,
a phenomenon known as the diagnostic disparity gap.

Avrtificial Intelligence (Al), particularly through deep learning and multimodal fusion, offers a
transformative solution to these challenges. Recent advancements have enabled Al systems to
analyze complex datasets—including electronic health records (EHRS), radiological images,
and lung sounds—at a scale and precision that rivals or exceeds human experts. This case

report explores the application of these technologies in a real-world scenario, demonstrating
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how Al can identify subtle physiological abnormalities, such as restrictive patterns in
FEV1/FVC ratios, that are often masked by dominant obstructive conditions like COPD.

7.1 Case Presentation

7.1.1 Patient History and Physical Examination

The patient, Mr. A, a 68-year-old retired factory worker and former heavy smoker (45 pack-
years), was referred to the pulmonary clinic with a 14-month history of worsening dyspnea
on exertion and a persistent, non-productive "dry" cough. Mr. A had been diagnosed with
GOLD Grade Il COPD six years prior and was currently managed with a long-acting
muscarinic antagonist (LAMA) and a long-acting 2 agonist (LABA). Despite adherence to
his inhaler regimen, he reported that his "breathlessness had taken a turn for the worse" over
the last six months, significantly limiting his ability to perform activities of daily living.

Upon physical examination, the patient appeared in mild respiratory distress during exertion.
Vital signs were significant for a resting heart rate of 88 bpm and an O saturation of 91% on
room air, which desaturated to 84% during a six-minute walk test. Auscultation revealed
diminished breath sounds globally, consistent with his known emphysema, but also revealed
subtle, high-pitched "Velcro-like" end-expiratory crackles at the lung bases—a finding that

had been previously interpreted as chronic bronchitis-related secretions.

7.1.2 Initial Diagnostic Investigations

Standard diagnostic protocols were initiated. A frontal chest X-ray showed hyperinflated lung
fields and flattened diaphragms, classic markers of COPD, with no overt evidence of
consolidation or large masses. Spirometry was performed, yielding the following results:

e FEV1:1.62 L (54% of predicted)

e FVC: 3.10 L (78% of predicted)

e FEV/FVC Ratio: 0.52

While the ratio clearly indicated an obstructive defect (<0.70), the clinician noted that the
FVC was near the lower limit of normal, which could suggest a concomitant restrictive
component. However, given the primary diagnosis of COPD, the basal crackles were
managed as an acute-on-chronic exacerbation, and the patient was prescribed a course of oral

corticosteroids and antibiotics.
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7.1.3 Al-Driven Diagnostic Intervention

Following a lack of clinical improvement after 14 days of standard exacerbation therapy, the

clinical team employed a multimodal Al diagnostic suite to re-evaluate the case.

Step 1: NLP-Based Phenotypic Extraction (LungDiag)

The patient’s unstructured clinical notes and historical EHR data were processed using

LungDiag, an Al system utilizing a Bi-LSTM-CRF model for named entity recognition. The

NLP engine identified a high frequency of "dry cough™ and "occupational exposure to dust"

(factory history) as key clinical features. Critically, the Al flagged a "diagnostic disparity

risk," noting that the patient’s symptoms aligned more closely with its trained phenotypes for

Interstitial Lung Disease (ILD) rather than simple COPD. LungDiag has demonstrated an F1-

score of 0.711 for top 1 diagnosis, significantly outperforming human experts in multicentre

trials.

Step 2: Acoustic Biomarker Analysis

The patient’s lung sounds were recorded using a digital stethoscope and analysed via a hybrid

CNN-LSTM-Attention model. This architecture is designed to capture both spatial patterns in

spectrograms (e.g., the frequency signature of crackles) and temporal dependencies (e.g.,

when in the breathing cycle the sounds occur).

e Al Findings: The model identified a high probability (0.94) of "fine crackles™ localized in
the inspiratory phase. Unlike human auscultation, which can be subjective and prone to
environmental noise, the AIl’s attention mechanism specifically highlighted narrowband
frequency spikes corresponding to the reopening of small airways—a hallmark of
pulmonary fibrosis. The system distinguished these from the "wet" crackles typically seen

in pneumonia or bronchitis.

Step 3: Al-Powered PFT Interpretation (ArtiQ.PFT)

The patient’s raw PFT data, including spirometry and body plethysmography, were uploaded

to ArtiQ.PFT, an Al software validated in over 1,500 historical cases.

e Al Analysis: The software calculated disease probabilities for eight respiratory
conditions. While the human pulmonologist initially focused on the FEV1/FVC ratio of
0.52, the Al highlighted a reduced Total Lung Capacity (TLC z-score of -2.54) and a
severely impaired Diffusing Capacity for Carbon Monoxide (DLCO of 47% predicted).

e Results: The Al assigned a 90% probability to Interstitial Lung Disease as the primary

diagnosis, with COPD as a secondary comorbid condition. Studies show that Al-guided

Copyright@ Page 13



International Journal Research Publication Analysis

interpretation improves ILD detection rates from 42.8% to 72.1%, addressing the high

inter-observer variability common among specialists.

Step 4: Deep Learning Radiological Review

A high-resolution CT (HRCT) scan was subsequently performed and reviewed by an FDA-

cleared deep learning tool, ScreenDx. This model analyses pixel-level thickness maps to

detect subtle fibrotic patterns.

e Findings: The Al localized peripheral, subpleural reticular opacities and "honeycombing"
in the lower lobes, coexisting with upper lobe centrilobular emphysema. This structural
evidence confirmed the AI’s functional prediction: the patient suffered from Combined

Pulmonary Fibrosis and Emphysema (CPFE).

The following are observed.

e Pathophysiological Synergy and the Diagnostic Challenge

Mr. A’s case represents a classic diagnostic pitfall. In CPFE, the obstructive defect of
emphysema and the restrictive defect of fibrosis often "counterbalance™ each other on
standard spirometry, resulting in relatively preserved lung volumes (FVC) despite severe gas
exchange impairment. This leads to the "pseudo-normalization™ of certain metrics, which
often causes clinicians to underestimate the severity of the disease.

The Al framework excelled where the human eye faltered by performing "multimodal
fusion"—synthesizing the acoustic signature of fibrosis with the functional evidence of
impaired diffusion and the structural evidence from HRCT. By integrating these disparate
data sources into a unified feature space, the model provided a nuanced representation of the

patient's pathology that individual modalities could not capture in isolation.

e Accuracy Benchmarks and Clinical Utility

The performance of the Al suite in this case is consistent with recent literature. Models like
PneumoFusion-Net have achieved accuracies as high as 98.96% by integrating CT images
with clinical text. Furthermore, the use of Explainable Al (XAl) techniques, such as Grad-
CAM heatmaps, provided the clinical team with visual evidence for the Al's diagnosis,
showing exactly which regions of the CT scan and which segments of the lung sounds
triggered the "fibrosis" classification. This transparency is essential for building clinician

trust and ensuring that Al acts as a "copilot” rather than a black box.
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e Management and Outcome

Following the Al-confirmed diagnosis of CPFE, Mr. A's treatment was radically altered. The
AT’s prescription recommendation module, which emulates real-world prescribing logic with
99% accuracy, suggested the initiation of an antifibrotic agent (e.g., Nintedanib) alongside his
existing LAMA/LABA therapy, while advising a taper of the oral corticosteroids that were
previously ineffective.

Within three months of starting the new regimen, Mr. A reported a stabilization of his
dyspnea and a marked reduction in cough frequency. His O> saturation during the six-minute
walk test improved to 89%. This proactive intervention, facilitated by early Al detection,
likely prevented a rapid decline in lung function and reduced the risk of future acute

exacerbations—events that drive much of the $50 billion annual economic burden of COPD.

e Ethical and Regulatory Considerations

The deployment of Al in Mr. A’s care was governed by emerging 2025-2026 standards. As of
February 2, 2026, all such diagnostic software must comply with the FDA’s Quality
Management System Regulation (QMSR), which harmonizes U.S. standards with global ISO
13485:2016 norms. Furthermore, the Al suite utilized a Predetermined Change Control Plan
(PCCP), allowing the model to learn from new clinical data while maintaining strict safety
guardrails.

Ethical considerations were paramount. Mr. A provided informed consent for his data to be
processed by Al agents, and the final diagnostic accountability remained with the attending
pulmonologist. This "human-in-the-loop” approach ensures that while Al handles the
computational complexity of big data, the human-centered aspects of medical decision-
making are preserved.

This case report demonstrates that Al-based respiratory disease diagnosis is no longer a future
prospect but a current clinical reality. By successfully identifying ILD in a patient with long-
standing COPD, the multimodal Al framework overcame the limitations of traditional, siloed
diagnostics. The integration of NLP, acoustic analysis, and deep learning-enhanced PFT
interpretation allowed for a shift from reactive care to precise, personalized intervention. As
Al technologies continue to mature—projected to reach an $8.05 billion market by 2025—
their role in bridging the diagnostic gap and ensuring health equity in both tertiary and low-
resource settings will become indispensable. The success of such frameworks depends not
only on algorithmic accuracy but on their seamless integration into clinical workflows,

supported by robust ethical and regulatory oversight.
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8.CONCLUSIONS

The conclusion of respiratory disease diagnosis through the lens of artificial intelligence (Al)
represents a pivotal transition from traditional, subjective clinical assessments to objective,
data-driven, and highly precise medical interventions. As the field stands in 2025 and 2026,
the integration of Al is no longer a peripheral experiment but a central driver of diagnostic
efficiency, clinical accuracy, and global health equity.

e The Technological Paradigm Shift: From Unimodal to Multimodal Intelligence

The evolution of Al in respiratory medicine has moved beyond single-modality analysis.
Early efforts focused primarily on Convolutional Neural Networks (CNNs) for analysing
chest X-rays or CT scans, which demonstrated expert-level accuracy in identifying
pneumonia, tuberculosis, and lung nodules. However, the current landscape is dominated by
multimodal frameworks that synthesize disparate data sources. Advanced architectures, such
as the CNN-BIiLSTM-Attention hybrid, are now utilized to process respiratory audio,
capturing both spatial patterns in spectrograms and temporal dependencies in breathing
cycles.

By late 2025, modular Al-powered systems have demonstrated the ability to integrate audio-
based classification with simulated molecular biomarker profiles and electronic health record
(EHR) data. This holistic approach allows for the simultaneous classification of up to eight
clinical categories, including bronchiectasis, pneumonia, asthma, and COPD, with overall
accuracies reaching as high as 99.99% on specific holdout test sets. This shift represents a
fundamental change in how "respiratory state” is defined—moving from a single auscultation

event to a continuous, fused representation of structural, functional, and biochemical data.

e Clinical Validation and Diagnostic Performance Benchmarks

A critical component of this conclusion is the empirical evidence of Al’s superiority or
complementary value to human expertise. Systematic multicentre studies have validated
systems like LungDiag, which uses natural language processing (NLP) to extract features
from EHRs, achieving an Fl-score of 0.711 for top 1 diagnosis and 0.927 for top 3
diagnoses—outperforming both human experts and generic large language models like
ChatGPT 4.0.

Similarly, in the interpretation of pulmonary function tests (PFTs), Al has addressed the high
inter-observer variability common among pulmonologists. Recent validation studies show
that while individual physicians may reach a diagnostic accuracy of approximately 44-46%,

Al-based software such as ArtiQ.PFT can achieve 82% to 86.6% accuracy. This is
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particularly impactful for interstitial lung diseases (ILD), where Al-guided interpretation has
improved detection rates from 42.8% to 72.1%, significantly reducing the diagnostic delay

that traditionally hinders early management.

e The Future of Respiratory Care Devices and Connectivity

The next decade of respiratory care is characterized by miniaturization, portability, and smart
connectivity. It is estimated that by the end of 2025, 75% of respiratory devices will
incorporate intelligent capabilities. This transition toward the "Internet of Medical Things"
(IoMT) enables continuous monitoring through wearable biosensors capable of detecting
subtle changes in breathing patterns or gas exchange.

These "smart" devices are not merely for tracking; they serve as predictive tools. Machine
learning models can now predict COPD exacerbations with up to 78% accuracy and forecast
asthma attacks up to 24 hours in advance. Furthermore, Al-driven prescription
recommendation engines have begun demonstrating accuracies over 99% in predicting
appropriate medications, dosages, and frequencies based on unique patient phenotypes,

marking the beginning of truly personalized respiratory therapy.

e Regulatory Landscapes and the Move Toward Lifecycle Management

As Al technologies mature, regulatory frameworks are evolving from static approvals to total
product lifecycle (TPLC) oversight. The U.S. Food and Drug Administration (FDA) has
introduced finalized guidance for Predetermined Change Control Plans (PCCP), allowing
manufacturers to pre-specify and pre-validate algorithmic updates as the model learns from
new data. This addresses the challenge of "adaptive algorithms" that improve post-market.
Moreover, the transition to the Quality Management System Regulation (QMSR), effective
February 2, 2026, aligns U.S. standards with global ISO 13485:2016 norms, facilitating
international collaboration and faster deployment of diagnostic tools. Interestingly, in early
2026, regulators have also signalled a relaxation of oversight for low-risk wellness wearables
that provide information rather than specific clinical diagnoses, provided they do not make
"medical grade” claims. This creates a bifurcated market: one side focused on rigorous, life-
critical diagnostic Al and the other on broad-based, Al-enhanced health monitoring.

e Economic Feasibility and Global Health Equity
From an economic perspective, the global market for Al in respiratory diseases is projected to

grow to approximately $8.05 billion by 2025, driven by the increasing prevalence of chronic
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conditions and advancements in diagnostic speed. Economic evaluations have shown that Al-
assisted diagnostic imaging can be highly cost-effective, with some studies reporting negative
cost-effectiveness ratios (indicating cost savings) per quality-adjusted life year (QALY).

Crucially, Al offers a pathway to bridge the health equity gap in low-resource settings.
Platforms like Swaasa Al provide remote, cost-effective tuberculosis screening in
geographically inaccessible communities, reducing the need for localized specialists.
However, the conclusion must also acknowledge the risk of algorithmic bias. Studies have
found that Al can under-diagnose specific subgroups defined by gender, ethnicity, or
socioeconomic status if the training data is not sufficiently diverse. Therefore, the path
forward requires “structural prevention” and participatory dataset curation to ensure that

clinical brilliance is not shadowed by statistical injustice.

e Ethical Integrity and the Human Element

The final pillar of respiratory diagnosis in the Al era is the preservation of ethical integrity
and patient autonomy. As models become more autonomous, the "black box" nature of deep
learning remains a hurdle. Explainable Al (XAl) techniques, such as Grad-CAM heatmaps
and SHAP analysis, have become mandatory for building clinician trust. These tools allow
physicians to see exactly which features—such as a specific spectral intensity in a cough or a
visual density in a CT scan—triggered a diagnosis.

There is a growing consensus that Al must act as a "copilot™ rather than a replacement for
trained specialists. Ethical guidelines emphasize that while Al can correct human
misconceptions and speed up workflows, final accountability and the human-centred aspects
of care must remain with the clinician.

In conclusion, Al-based respiratory disease diagnosis has achieved remarkable technical and
clinical milestones. The transition to multimodal fusion, the implementation of lifecycle-
based regulatory oversight, and the focus on global accessibility define the current era. While
challenges regarding data privacy, bias, and the "evolving" nature of the virus (as seen in
COVID-19 variant tracking) persist, the potential for Al to revolutionize patient outcomes is
vast. The next decade will likely see the emergence of artificial lung technology, advanced
predictive analytics for personalized care, and the full-scale integration of Al into the global
respiratory health infrastructure, ultimately saving millions of lives through early and precise

intervention.
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