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ABSTRACT 

Constructing an appropriate landing trajectory for a UAV plays a crucial role in ensuring both 

flight safety and operational efficiency. When the system must cope with challenges such as 

varying weather, dynamic environmental conditions, and strict precision requirements during 

descent, the Pontryagin principle serves as a powerful optimization approach. This principle 

offers a systematic way to determine the optimal landing path by establishing optimality 

conditions and maximizing the relevant performance functions. In this study, a Pontryagin-

based optimization method is utilized to design the UAV’s landing trajectory. Simulation 

results obtained using Matlab–Simulink demonstrate that this approach significantly 

enhances landing accuracy and reduces potential risks. 

 

INTRODUCTION 

An unmanned Aerial Vehicle (UAV) is a flying device that is controlled and remotely 

operated by humans on the ground. It plays an important role in many areas of social life, 

commercial and entertainment activities as well as military and defense activities. In general, 

automatic control in all UAV operations is very important, especially the take-off and landing 

process. Because this process is affected by many factors such as weather, UAV operating 

status parameters, etc., and UAVs are most susceptible to unsafe failures during this stage. In 

their research, the authors focused on studying the landing process of UAVs. The landing 

process is the stage of the UAV gradually slowing down from the specified height until it 

stops completely on the runway. When the UAV lands on the runway, it must also move back 

to the parking lot, so when the UAV reaches a rolling speed (about 5km/h), it is considered 
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the end of the landing process. The landing stages of a fixed-wing UAV are shown 

specifically in Figure 1. 

 

 

Figure 1. Diagram of UAV landing stages 

 

The paper presents the problem of constructing optimal landing trajectories for UAVs in the 

vertical plane. The landing trajectories are built in the case of no vertical overload restriction 

and the case of vertical overload restriction to create a reference landing trajectory to 

construct automatic systems for the programmatic landing of UAVs. With the method of 

constructing optimal trajectory proposed by the group of authors, the group hopes that their 

research can be applied in practice to develop automation of UAV operation stages. 

 

MATERIAL AND METHODS 

Developing the problem of optimizing the landing trajectory for UAV-70V  

Pontryagin maximum principle 

Pontryagin's maximal principle is a mathematical method developed by Pontryagin to solve 

the optimal problem. In particular, the focus is on proposing mathematical modeling methods 

and building concise results on strong optimal necessary conditions. When considering the 

optimal control problem, Pontryagin's principle will predefine the control vector. This is in 

line with the principle layer of maximum variation. Therefore, this principle is often used in 

practice. Pontryagin's maximal principle presents a series of optimal conditions, which are 

the basis for determining optimal control and optimal trajectory. Pontryagin's maximal 

principle focuses on solving the optimal problem with fixed or non-fixed boundaries, and 

times with limited control signals. 

  

To solve the problem of optimizing the landing trajectory of UAVs, it is necessary to 

determine and select quality indicators appropriately. The main quality indicator is a quality 

indicator of the control system, which is given in the form of: 
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0[ ( ), ( ); ( ), ( )]fJ J x t x t u t x t         (1) 

 

The selection of quality indicators is to ensure that the UAV moves optimally according to 

specific tasks. The process of solving the problem of optimizing the landing trajectory of a 

UAV, depending on the quality requirements, can choose a specific problem. For the landing 

process of a UAV, the requirement for accurate landing control is always set. In addition, the 

minimum energy criterion also needs to be considered. Therefore, we choose the Bolza 

problem to build the optimal landing trajectory for UAVs: 

The Bolza problem has the form: 

0

0 0 0 0[ ( ), ( ), , ] ( , , )
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J g x t x t t t f x u t dt          (2) 

Landing trajectory optimization problem for UAV-70V 

Let's consider the case of UAV motion as a point mass in a vertical plane. Then the equation 

system describes the UAV movement in the form of: 
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Where:  V - Velocity;   - Orbital inclination; x - Distance; y - Altitude; g  - Gravitational 

acceleration ( 9.80665( / ²)g m s );  , , ,
T

X V x y - UAV status vector. 

xn - Tangential overload, calculated according to the formula [4]: 
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Where:  T - Traction of the motor; ( , )xC H  - UAV drag coefficient. 

  yn  - Velocity normal overload, and calculated according to the formula: 
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In which: ( , )yC H  - Lifting force coefficient of UAV. The lifting force coefficient of UAVs 

can be approximate ( , ) .y yC H C  . The angle of attack of the UAV is small, so it can be 

considered sin  . Then the expression (5) is rewritten as: 
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Selecting the control signal [ , ]T

x yu n n  The indicator function (quality indicator) selected 

according to the Bolza problem is in the form of:  
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Where: 1 2 3 4, , ,    - Weights; 
2 2 2

1 2( , )k diag k k -Coefficient; 0t  and ft  – The beginning and 

end of the control process; , , ,f f f fV x y - The desired state vector value of the UAV given at 

the end ft ; ( ), ( ), ( ), ( )f f f fV t t x t y t - The status vector value of the UAV given at the end ft . 

According to Pontryagin's maximal principle, Hamilton's function corresponds to the form: 

21
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In which: , , ,V x yP P P P - The corresponding co-state variables according to the variable 

, , ,V x y  

At that time, the system of equations for the co-state variable has the form: 
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If the control signal is not restricted, we find the optimal overload at each moment that makes 

the Hamilton function H  reach its maximum. That is
* * * * *max , , , ( , , , )(x u P t) x u P tH H . From 

the optimum condition, we get the optimum overload: 
2 2

1 2;x V y

g
n P gk n P k

V
    .  

In case the control signal is restricted (overload stand yn  is restricted). The reason for only 

choosing to limit the standing overload yn is because it has a large range of change and has a 

direct effect on the angle of attack of the UAV. The angle of attack of the UAV must always 

be ensured not to exceed the critical value because if the critical angle of attack value is 

exceeded, it will cause a slowdown and unsafe flight. Thus, limiting standing overload will 



International Journal Research Publication Analysis                                              

Copyright@                                                                                                                                                                                      Page 5  

also help limit the angle of attack of the UAV. We find the overload ,x yn n  at each point that 

causes the Hamilton function H   to peak in the zone yN (the vertical overload restriction 

zone yn ). That is 
* * * * *max , , , ( , , , )

y yn N
(x u P t) x u P t


H H .  

When the UAV lands, the UAV speeds up to the smallest value hcV V , according to the 

equation (6), which reaches yn  it's maximum when   it reaches its maximum. 

Thus, if we limit the maximum value of the angle of attack, the value of the limited overload 

will be determined according to the formula:  
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In addition, according to the above assumption, the standing overload of the UAV must meet 

the conditions 1yn   . Therefore, we must find the maximum value of the Function H  for 

the variable ,x yn n  (in which yn  the condition must be satisfied 1 y yhcn n   ). According to the 

Hamilton function expression, it is a H  2nd-order function for variables yn . Therefore, 

finding the jaw maximum H  is not difficult. The necessary problem is to find the initial 

conditions 0( )VP t , 0( )P t , 0( )xP t , 0( )yP t , ft  satisfaction of boundary conditions ( )f fV t V , 

(t )f f  , x(t )f fx , (t )f fy y , ( , , ) 0fX P t H . This is the solution to the boundary problem, the 

solution of this problem will be difficult because of the connection with the calculation time, 

the choice of the initial approximate parameters, and the convergence of the method. Some 

studies have used the Newton-Raphson method, but when the control signals are limited, the 

Newton-Raphson method is very complex. Other studies have proposed a method of 

continuous parametric solution, which has shown outstanding superiority. Thus, the method 

of continuous solving by parameters will find the initial set of conditions that satisfy the 

boundary conditions. 

The system of equations that fully describe the movement of the UAV will be: 
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Solving the problem of optimizing the landing trajectory for UAV-70V 

Based on considering the methods of solving the boundary problem, we choose the method of 

continuous solving according to parameters to solve the problem of optimal landing trajectory 

of UAVs. 

 

When using the method of continuous parametric solving to the UAV trajectory optimization 

problem, the case in the vertical plane or in space is essentially the same, except for the 

number of equations describing the movement of the UAV as well as the corresponding 

number of co-state equations. In addition, the number of control signals in these 2 cases is 

also different. So, using the method of continuous parametric solution, it is only necessary to 

consider the case in the vertical plane, and the case in the completely similar space. 

 

The use of the method of continuous parametric solving to the optimal problem of the 

trajectory board of the UAV in the vertical plane will be carried out according to the 

following steps: 

Step 1: Set any (approximate) initial value of the co-state variables (necessary so that they are 

not simultaneously equal to 0), the co-state variables that start to perform the problem at the 

initial time 
0t have the form: 
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      (12) 

In which: f mmV V  at ft  the time ; f mm   at ft  the time ; f mmX X  at ft the time ; f mmY Y  at 

ft the time. 
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With , , ,mm mm mm mmV X Y  - Velocity, orbital tilt angle, distance, desired altitude at the end ft . 

This means that the desired velocity, coordinates, and angle of movement at the end is 

foreknowledge, we control the UAV to the right end of the trajectory;  

i  - Positive integer (number of repetitions). 

N  - The total number of co-state variables and variables ft  (the number of co-state variables 

is equal to the number of equations, describing the movement of the object).  

Step 2: Solve the problem of controlling the movement of UAVs from 0t  to ft . 

Step 3: According to the trajectory, calculate the movement of the UAV, and receive a double 

error vector: 
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Step 4: Give the family number 0( )jP t  of the function for the second state covariable j . It is 

possible to 0( )jP t  get equal to 0,1  words 0( )jP t  with any sign ( ) if 0( ) 0jP t   or you can 

choose the homogeneous number of state covariables as 0,001 . 

From there, it is calculated: 0 0 0( ) ( ) ( )i

j jP t P t P t    
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Step 5: Solve the UAV motion control problem (according to the previous expression of 

optimal control) from 0t  to ft . 

Step 6: According to the trajectory of the UAV's motion calculation, it will receive a double 

error vector: 
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Step 7: Create the second column j  of the matrix Z  (Jacobi matrix), if 1j  , then: 
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In which:           
0 0 0( ( )) ( ( ))i

jk jk j k

j j

Z Z P t Z P t

P P
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

 
                 (1 k N  ) 

Step 8: If j N  and the 1j j   calculation is performed starting with step 4; if j N  then 

the full Jacobi matrix ( Z ) is calculated and continues with step 9. 

Step 9: The  value of the new initial state covariate is written in the form: 

 
 

1
11

0 0 0 0

0

( ) ( ) . ( ( )).i i iP t P t Z Z P t d
   

 

(17) 

If the matrix 1Z   does not exist, to calculate when the definition approaches zero, the matrix 

Z  is often 1Z  replaced by its approximation. The matrix 
1Z 
 can be replaced Z   by an inverse 

pseudo-matrix. Inverse pseudomatrices can be found using the Greville method or the Moore-

Penrose method (using the Pinv function in Matlab). 

Start the problem with new initial conditions 
1

0( )iP t
, calculate the movement of the UAV 

from 0t  to ft  and calculate the double error. 

Step 10: If the condition is fulfilled 
1

0( ( ))i

pZ P t   , the initial co-state variable result is 

obtained. 

Where: 
1

0( ( ))iZ P t
- Dual error vector modulus, defined: 

1 2 2 2 2 2

0( ( )) ( ( ) ) ( ( ) ) ( ( ) ) ( ( ) ) ( ( ))i

f mm f mm f mm f mm fZ P t V t V t X t X Y t Y t           H  
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p - The pre-selected constant, which characterizes the approximate prize desired to receive. 

If this is not possible, then 
1

0 0( ) ( )i iP t P t , and continue solving the problem starting from step 2. 

Thus: By solving the steps as presented above, the result is that we will find the state variable 

at the initial time (including: 0 0 0 0( ), ( ), ( ), ( ),V X Y fP t P t P t P t t ). From there, we can also 

determine the program trajectory (including: ( ), ( ), ( ), ( )V t t x t y t )) and control signals 

( ,x yn n ).  

We use the simulation method using Matlab Simulink software to test and evaluate the 

research results. At that time, the conditions that need to be ensured for the UAV to land are 

as follows: 

 

Altitude error at the time of landing 0 0,3m y m    ; Distance error: 30x m  ; 

The formula for determining the landing speed is derived from the UAV's gravitational 

equilibrium with the landing lift (the time just before landing when the ground jets are 

applied to the UAV). 

 2

2

hc
yHC

V
Y C S G


 

2
hc

yHC

G
V

C S
   

(18) 

Where: yHCC  - Lifting force coefficient at the time of landing;  - Air density at the ground; 

G  - Gravity of the UAV;  S  - Effective wing area of the UAV. 

Calculating with the UAV-70V model, we can determine the landing speed of the UAV as 

follows: 

 2 2 2 56,5 9,81

3,14
12 5,9123 1,225 1,05

180

hc

yHC y

G mg
V

C S C S  

 
  

   
 26,3817( / )hcV m s   

 

(19) 

Vertical velocity on landing: 1 /yhcV m s ;  

 

The angle of the UAV when landing 0 12o  . This condition is to ensure that the UAV does 

not hit its head down and does not touch its tail when landing. According to the size 

parameters of the UAV (including body size, and claw size), for the UAV not to touch the tail 

when landing, the angle of the UAV must not be exceeded 12o ;  

 

The vertical overload of the UAV during flight in general and landing in particular needs to 

be ensured within the range 1 3,5yn    (to ensure that the UAV is not destroyed by the 

structure), especially when landing, the vertical overload of the UAV must be approximately 

1.  
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Suppose the initial state of the UAV when it enters the landing at point A (Figure 2). The 

UAV flies at the same speed (0) 50 /V m s , the initial trajectory tilt angle (0) 0 ( )rad  , the 

position of the original UAV on landing is: (0) 60y m ; (0) 0x m .  

 

Where: l - Runway length; l - Distance from the end of the runway to the desired landing 

location 40l m   

 

The desired final state of the UAV at point B position: 

0,7 500 0 ; 31 /f f f fy m x m radian V m s     
 

 

 

Figure 2. Diagram of forces acting on the UAV during landing 

 

According to the calculation of UAV size, when the UAV lands, the rear gear of the UAV 

lands first if the angle of the UAV when landing is equal 12o , the distance from the UAV's 

center of gravity to the lowest position of the rear gear is about 0,7m . Therefore, when 

calculating, consider the UAV to land when the height of the UAV is equal to 0,7m . 

Consider that: 1 20,1; 0,1.k k  Using Matlab software gives the following results: 

 

 

Figure 3. The trajectory of the UAV 

 

Figure 4. The dependence of the flight 

velocity of time 
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Figure 5. The dependence of the flight-

path angle of time. 

 

 

Figure 6. The dependence of the 

tangential load factor of time. 

 

 

 

Figure 7. The dependence of the normal 

load factor of time. 

 

 

Figure 8. The dependence of the 

Pontryagin function values of time. 

 

 

Figure 9. The dependence of attack angle 

of time 

 

Figure 10. The dependence of pitch 

angle of time 

 

Thus, with the desired set of initial and final states of the UAV ( , , , )V x y  , the calculation 

program has found out the trajectory of the UAV's landing program as well as the 

corresponding overload ,x yn n  . However, in this case, considering the desired landing speed 

( 31 /fV m s ), it is found that the attack angle and angle of the UAV exceed the permissible 

range 0 10o  . Therefore, next, we will change the desired landing speed ( fV ) to evaluate 

the effect of the desired landing speed on the UAV's state parameters when landing. 

Use Matlab software to write and run the program in each case of the desired velocity at 

different end times ( 1 31 /fV m s ; 2 35 /fV m s ; 3 39 /fV m s ), the results are as follows: 
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Figure 11 shows the trajectory of the UAV corresponding to the desired velocities at different 

end times ( fV ). Figure 12 shows the velocity of the UAV. Figure 13 shows the change in the 

trajectory angle of the UAV over time corresponding to different conditions fV  . Figure 14, 

and Figure 15 show the change in velocity tangential overload and velocity normal overload 

over time. Figure 16 shows the change in the value of Hamilton's function. Figures 17 and 18 

show the change in the angle of attack and the angle of the UAV. 

 

Figure 11. The trajectory of the UAV 
 

Figure 12. The dependence of the flight 

velocity of time. 

 

 

Figure 13. The dependence of the flight-

path angle of time. 

 

 

Figure 14. The dependence of the 

tangential load factor of time. 

 

 

Figure 15. The dependence of the normal 

load factor of time 

 

Figure 16. The dependence of the 

Pontryagin function values of time 
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Figure 17. The dependence of attack 

angle of time. 

 

Figure 18. The dependence of pitch 

angle of time. 

 

Thus, the angle of attack and the angle of the UAV at the end depends on fV . Through the 

survey, it was found that to ensure safe landing conditions, it is only allowed to reduce fV  to 

35 ( / )fV m s  (because if the reduction is smaller, the angle of attack and the angle of the 

UAV exceed the permissible value). At such a speed fV  , it is quite large compared to the 

smallest landing speed hcV . This leads to the UAV's rolling distance will be significantly large, 

and it is unlikely that the UAV will land on a short runway. One solution offered is to limit 

standing overload. 

Cases of restriction of standing overload 

 

The concept of standing overload restriction here is to maintain the standing overload not 

exceeding the permissible value. From the formula for determining the velocity normal 

overload: 

 .sin
. .siny y
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 Y - UAV lift; T  - Motor traction;   - The angle of attack of the UAV. 

 Transforming the formula (20), we are: 
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   (22) 

 For each velocity fV  , we will determine the normal overload of the limited velocity     

( yhcn ) to ensure that the angle of attack does not exceed the permissible value. However, 
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when it fV  decreases, it yhcn  also decreases. And when yhcn  it decreases beyond a certain 

value, the program will not find the optimal solution.  

 

In case of restriction of standing overload, the results of the program are as follows: 

 

Figure 19. The trajectory of the UAV 

 

Figure 20. The dependence of the flight 

velocity of time 

 

 

Figure 21. The dependence of the flight-

path angle of time. 

 

 

Figure 22. The dependence of the 

tangential load factor of time. 

 

 

Figure 23. The dependence of the normal 

load factor of time 

 

Figure 24. The dependence of the 

Pontryagin function values of time 
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Figure 25. The dependence of attack 

angle of time. 

 

 

Figure 26. The dependence of pitch 

angle of time. 

 

When limiting standing overload, allows the UAV to land at a significantly small speed 

31 /fV m s  while still ensuring the angle of attack and angle of attack of the UAV within the 

permissible limits. This will significantly reduce the rolling distance of the UAV in case it is 

necessary to control the UAV to land on a short runway. 

 

DISCUSSION AND CONCLUSION 

Given the prescribed initial and terminal states of the UAV, the computational framework 

successfully determines both the landing trajectory and the associated load factors. 

Nevertheless, when the targeted landing velocity is introduced into the analysis, it becomes 

apparent that the resulting angle of attack and bank angle exceed the allowable operational 

boundaries. This observation necessitates an adjustment of the desired landing velocity to 

systematically evaluate its influence on the vehicle’s state variables throughout the descent 

phase. The investigation reveals that a safe landing configuration permits the reduction of 

landing speed only to a specific lower limit; any further decrease would drive the angle of 

attack and bank angle beyond acceptable thresholds. Although the admissible landing speed 

yields lower angular values, these remain considerably elevated relative to the theoretically 

minimal landing speed, thereby producing an extended ground roll distance. Such an outcome 

poses operational challenges, particularly for landings on runways with limited length. To 

mitigate this issue, the imposition of vertical load factor constraints emerges as an effective 

strategy. Incorporating these constraints enables the UAV to execute landings at substantially 

reduced speeds while maintaining the angle of attack and bank angle within permissible 

bounds. This approach markedly decreases the ground roll distance, enhances operational 

flexibility on short runways, and ultimately contributes to a more robust and reliable landing 

performance. 
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