

ZIRCONIA CROWNS IN PROSTHETIC DENTISTRY: A REVIEW

Dr. Puvvada Venkata Vaibhav^{*1}, Dr. B. Lakshmana Rao², Dr. P. Sudha Rani³,

Dr. S. Namratha⁴, Dr. Jagan Mohan Rao⁵

¹*Oral & Maxillofacial Prosthodontist and Implantologist, Vijayawada, India.*

²*Professor & HOD, Department of Prosthodontics, Lenora Institute of Dental Sciences, Rajahmundry, India.*

³*Final Year Post Graduate student, Department of Prosthodontics, Lenora Institute of Dental Sciences, Rajahmundry, India.*

⁴*Second Year Post Graduate student, Department of Prosthodontics, Lenora Institute of Dental Sciences, Rajahmundry, India.*

⁵*First Year Post Graduate student, Department of Prosthodontics, Lenora Institute of Dental Sciences, Rajahmundry, India.*

Article Received: 11 December 2025

***Corresponding Author: Dr. Puvvada Venkata Vaibhav**

Article Revised: 31 December 2025

Oral & Maxillofacial Prosthodontist and Implantologist, Vijayawada, India.

Published on: 19 January 2026

DOI: <https://doi-doi.org/101555/ijrpa.9937>

ABSTRACT

Zirconia-based crowns have emerged as one of the most widely used all-ceramic restorative options in modern dentistry due to their superior mechanical strength, favorable biological response, and continuous improvements in esthetic properties. Initially introduced as a framework material for porcelain-veneered restorations, zirconia has undergone significant evolution through advancements in material engineering and digital manufacturing technologies. This review article provides an in-depth analysis of zirconia crown materials, including their crystallographic structure, classification based on yttria content and translucency, clinical performance, and recent innovations such as multilayer zirconia, ultra-translucent formulations, CAD/CAM workflows, and additive manufacturing. Current limitations and future research directions are also discussed to guide clinicians in evidence-based material selection.

1. INTRODUCTION

The replacement of lost tooth structure with durable and biologically compatible materials remains a fundamental objective of restorative dentistry. Fixed dental prostheses such as

crowns must withstand complex occlusal forces, maintain marginal integrity, and achieve esthetic harmony with surrounding dentition. For decades, porcelain-fused-to-metal (PFM) crowns were considered the gold standard; however, concerns regarding metal allergies, corrosion, gingival discoloration, and compromised translucency have driven the demand for metal-free alternatives.

Zirconium dioxide (zirconia) was introduced into dentistry in the late 1990s as a high-strength ceramic material adapted from orthopedic applications. Over time, zirconia has transitioned from an opaque substructure material to a versatile restorative option capable of fulfilling both functional and esthetic requirements. Continuous improvements in zirconia composition, sintering protocols, and digital fabrication have significantly broadened its clinical indications.

2. Material Science of Dental Zirconia

2.1 Crystallographic Phases of Zirconia

Zirconia is a polymorphic ceramic that exists in three temperature-dependent crystalline phases:

- **Monoclinic phase** (room temperature)
- **Tetragonal phase** (1170–2370°C)
- **Cubic phase** (above 2370°C)

Pure zirconia undergoes volumetric changes during phase transformation, making it unsuitable for clinical use. To stabilize zirconia at oral temperatures, oxides such as yttrium oxide (Y_2O_3) are added, producing yttria-stabilized zirconia (YSZ).

2.2 Transformation Toughening Mechanism

The most notable property of zirconia is **transformation toughening**, wherein stress-induced transformation of tetragonal grains into the monoclinic phase results in localized volume expansion. This expansion generates compressive stresses that arrest crack propagation, thereby significantly enhancing fracture resistance. This mechanism distinguishes zirconia from other dental ceramics such as feldspathic porcelain and lithium disilicate.

2.3 Mechanical and Optical Properties

Dental zirconia demonstrates:

- Flexural strength ranging from 600 to 1200 MPa
- High fracture toughness (6–10 MPa $\sqrt{\text{m}}$)

- Low thermal conductivity
- High resistance to chemical and thermal degradation

However, increased strength is often inversely related to translucency, necessitating material modifications to balance mechanical and esthetic demands.

3. Classification and Types of Zirconia Crowns

Zirconia crowns can be classified based on **yttria content, microstructure, translucency, and fabrication design**.

3.1 3Y-TZP (Conventional Zirconia)

3 mol% yttria-stabilized tetragonal zirconia polycrystal (3Y-TZP) contains predominantly tetragonal grains and offers the highest strength and fracture resistance. Due to its opacity, it is primarily indicated for posterior crowns, bridges, and implant-supported restorations.

3.2 Monolithic Zirconia Crowns

Monolithic zirconia crowns are milled from a single zirconia block without veneering porcelain. This design minimizes technical complications such as chipping and delamination, making monolithic zirconia ideal for posterior regions and patients with parafunctional habits.

3.3 Veneered (Bilayered) Zirconia Crowns

Veneered zirconia crowns consist of a zirconia core layered with esthetic porcelain. Although improved translucency and shade characterization can be achieved, clinical studies have reported higher incidences of veneer chipping, which has limited their use in recent years.

3.4 High-Translucency Zirconia (4Y-PSZ and 5Y-PSZ)

High-translucency zirconia contains increased cubic phase content, which reduces light scattering at grain boundaries. While esthetics are significantly improved, mechanical strength decreases, restricting their use to anterior single-unit restorations and low-stress regions.

3.5 Multilayer and Gradient Zirconia

Multilayer zirconia blocks exhibit a gradual transition in translucency and strength from cervical to incisal regions. This design closely mimics the natural tooth structure and reduces the need for external staining or veneering.

4. Clinical Performance and Longevity

Long-term clinical studies report survival rates exceeding 95% for zirconia crowns over 5–10 years. Common complications include loss of retention, occlusal wear of opposing enamel, and occasional fractures in thin restorations. Compared with PFM crowns, zirconia demonstrates similar or superior longevity with improved esthetic outcomes and periodontal response.

5. Recent Advancements in Zirconia Technology

5.1 CAD/CAM and Digital Workflows

The adoption of CAD/CAM technology has improved marginal accuracy, internal fit, and fabrication efficiency. Digital impressions reduce distortion associated with conventional techniques and enhance communication between clinicians and laboratories.

5.2 Additive Manufacturing (3D Printing)

Research into additive manufacturing of zirconia is rapidly expanding. 3D printing offers potential advantages such as complex geometries, reduced waste, and cost efficiency. However, challenges related to sintering shrinkage and mechanical reliability remain under investigation.

5.3 Ultra-Translucent and Nano-Grain Zirconia

Advances in grain size reduction and dopant distribution have led to ultra-translucent zirconia formulations capable of mimicking enamel while maintaining acceptable strength.

5.4 Surface Treatment and Bonding Innovations

Improved bonding strategies involving air abrasion, MDP-containing primers, and resin cements have significantly enhanced the adhesion of zirconia restorations, addressing one of its major clinical limitations.

6. Biocompatibility and Soft Tissue Response

Zirconia exhibits excellent biocompatibility with minimal inflammatory response and low bacterial adhesion. Studies have shown favorable soft tissue integration and stable gingival margins, making zirconia suitable for both natural teeth and implant abutments.

7. Limitations and Clinical Challenges

Despite its advantages, zirconia crowns present challenges including reduced translucency in high-strength variants, technique-sensitive bonding, and potential wear of opposing enamel if inadequately polished.

8. Future Directions

Future research focuses on artificial intelligence-assisted design, bioactive zirconia surfaces, hybrid materials, and eco-friendly manufacturing processes. These innovations aim to further optimize clinical outcomes and patient-specific customization.

9. CONCLUSION

Zirconia crowns represent a major advancement in restorative dentistry, offering a unique combination of strength, durability, and biological compatibility. Continuous developments in material science and digital technologies have expanded their clinical applications. Proper material selection and adherence to evidence-based protocols are essential to maximize long-term success.

REFERENCES

1. Denry I, Kelly JR. State of the art of zirconia for dental applications. *Dent Mater* 2008;24(3):299–307.
2. Manicone PF, Rossi Iommelli P, Raffaelli L. An overview of zirconia ceramics. *J Dent* 2007;35(11):819–826.
3. Piconi C, Maccauro G. Zirconia as a ceramic biomaterial. *Biomaterials* 1999;20(1):1–25.
4. Kelly JR, Benetti P. Ceramic materials in dentistry: historical evolution and current practice. *Aust Dent J* 2011; 56:84–96.
5. Zhang Y. Making yttria-stabilized tetragonal zirconia translucent. *Dent Mater* 2014;30(10):1195–1203.
6. Sailer I, Makarov NA, Thoma DS, Zwahlen M, Pjetursson BE. All-ceramic or metal-ceramic tooth-supported fixed dental prostheses. *Dent Mater* 2015;31(6):603–623.
7. Harada K, Raigrodski AJ, Chung KH, Flinn BD, Dogan S, Mancl LA. A comparative evaluation of the translucency of zirconia. *J Prosthet Dent* 2016;116(2):257–263.
8. Lawson NC, et al. Fracture resistance of translucent zirconia crowns. *J Prosthet Dent* 2019;121(1):144–150.
9. Chevalier J. What future for zirconia as a biomaterial? *Biomaterials* 2006;27(4):535–543.

10. Zhang Y, Lawn BR. Novel zirconia materials in dentistry. *J Dent Res* 2018;97(2):140–147.
11. Guess PC, et al. Monolithic zirconia crown fracture load. *Dent Mater* 2010;26(7):716–723.
12. Ortorp A, Kihl ML, Carlsson GE. A clinical study of zirconia crowns. *Int J Prosthodont* 2009;22(3):292–299.
13. Papia E, Larsson C, du Toit M, Vult von Steyern P. Bonding to zirconia A systematic review. *Dent Mater* 2014;30(2):14–27.
14. Kern M. Bonding to oxide ceramics—Laboratory testing vs clinical outcome. *Dent Mater* 2015;31(1):8–14.
15. Al-Amleh B, Lyons K, Swain M. Clinical trials in zirconia restorations. *J Oral Rehabil* 2010;37(9):641–652.
16. Kontonasaki E, Rigos AE, Ilia C, Istantos T. Monolithic zirconia: A review. *Dent Mater* 2019;35(7):187–e201.
17. Baldissara P, Llukacej A, Ciocca L, Valandro LF, Scotti R. Translucency of zirconia. *J Prosthet Dent* 2010;104(2):104–109.
18. Bomicke W, et al. Five-year clinical evaluation of zirconia crowns. *Clin Oral Investig* 2017;21(9):2621–2629.
19. Revilla-León M, Özcan M. Additive manufacturing technologies in dentistry. *J Prosthodont* 2019;28(2):146–158.
20. Vichi A, Sedda M, Fabian Fonzar R, Carrabba M, Ferrari M. Comparison of zirconia materials. *Dent Mater* 2016;32(3):76–e85.