

International Journal Research Publication Analysis

Page: 01-11

AN AI-POWERED FRAMEWORK FOR REAL-TIME FITNESS TRACKING AND CALORIC ANALYSIS AND PERSONALIZED MEAL RECOMMENDATIONS

**Gokul Gopan*¹, Harikrishnan M² , Betson George Abraham³ ,Neha Bineesh⁴ ,
Mrs Sowmya Rani G⁵,Dr Krishna Kumar P R⁶**

^{1,2,3,4}Students Dept of CSE,SEA College of Engineering & Technology,Bangalore-560049.

^{5,6}Faculty, Dept of CSE,SEA College of Engineering & Technology,Bangalore-560049.

Article Received: 09 November 2025

***Corresponding Author: Gokul Gopan**

Article Revised: 29 November 2025

Students Dept of CSE,SEA College of Engineering & Technology,Bangalore-

Published on: 19 December 2025

560049. DOI: <https://doi-doi.org/101555/ijrpa.9098>

ABSTRACT

The integration of artificial intelligence (AI) into the domains of fitness and nutrition has gained significant momentum in recent years. With the rapid evolution of deep learning, computer vision, and mobile computing. AI-powered applications have become more accessible, accurate, and efficient. Traditional fitness and diet-tracking systems required users to manually input their workout activities and food intake, often resulting in time-consuming and inaccurate logging. This limitation created the need for smarter systems capable of automating the tracking process. As AI technologies matured, they opened the door for advanced features such as real-time human pose estimation, food recognition, calorie prediction, and personalized meal planning-all of which could be performed directly through mobile devices without additional hardware.

Computer vision plays a crucial role in modern fitness applications by enabling machines to interpret and analyze human body movements from camera input. Techniques such as MediaPipe Pose estimation can identify key body joints and angles, allowing the system to assess exercise form, count repetitions, and estimate calorie expenditure with a high level of accuracy. These advancements allow users to track their workouts and nutrition automatically, reducing dependency on manual reporting and enhancing consistency in maintaining a healthy lifestyle.

KEYWORDS: AI-Powered Fitness, Personalized Health, Machine Learning, Diet Recommendation, Workout Optimization, Gamification, Data-Driven Insights, Digital Health, Adaptive Coaching, User Engagement, Smart Nutrition, Fitness Applications, AI Fitness Tracker.

INTRODUCTION:

In recent years, artificial intelligence and computer vision have played a significant role in transforming fitness and health-monitoring systems. Most conventional fitness applications rely on manual input for recording exercises and dietary intake, which often results in inaccurate tracking and reduced user engagement. The absence of automated exercise evaluation and real-time feedback limits the effectiveness of such systems, especially for individuals performing workouts without professional supervision. These challenges have created a growing demand for intelligent, automated, and personalized fitness solutions that can accurately monitor physical activity and nutritional habits.

Pose estimation has emerged as a powerful technique in computer vision for understanding human movement by detecting and tracking key body landmarks. Modern pose estimation frameworks, such as MediaPipe Pose, can identify multiple joint points including shoulders, elbows, hips, knees, and ankles in real time using a standard camera. By analyzing joint angles and movement patterns across consecutive video frames, pose estimation enables automatic repetition (rep) counting during exercises. The system detects transitions between movement phases, such as upward and downward motions, allowing accurate counting of repetitions while also evaluating posture correctness. This approach eliminates the need for wearable sensors and provides real-time feedback to ensure safe and effective exercise execution.

In this project, an AI-powered fitness and nutrition application is proposed that integrates pose estimation-based repetition counting with food recognition and personalized calorie analysis. The system uses real-time pose estimation to track exercises, count repetitions, and assess posture accuracy, while a TensorFlow Lite-based model identifies food items to estimate calorie and macronutrient intake. User-specific parameters such as age, height, weight, and fitness goals are utilized to calculate daily energy requirements and generate personalized meal recommendations. Cloud services are employed to ensure secure data storage and real-time synchronization. By combining automated rep counting, posture correction, nutrition tracking, and intelligent guidance, the proposed system offers a

comprehensive and efficient solution for modern fitness management.

1. Literature Review

The rapid growth of artificial intelligence, computer vision, and mobile computing has led to significant advancements in fitness and health monitoring systems. Several researchers have explored automated workout tracking, posture estimation, food recognition, and personalized health recommendations using machine learning techniques. This chapter reviews existing literature relevant to pose estimation-based exercise tracking, AI-driven nutrition analysis, cloud-based fitness applications, and chatbot-assisted health systems, while highlighting their limitations and research gaps.

Personalized Fitness and Diet Systems

Personalized fitness and diet systems provide customized workout plans and nutritional recommendations based on individual user data such as age, weight, height, activity level, and fitness goals. These systems calculate parameters like BMR and TDEE to determine daily calorie needs and suitable exercise intensity. By continuously analyzing user activity and food intake, they adapt recommendations in real time. This personalized approach improves accuracy, user engagement, and long-term adherence compared to generic fitness applications.

2. Existing System

1. Manual Workout Tracking

Most existing fitness applications require users to manually record exercise details such as workout type, duration, and repetition count. This manual process is time-consuming and often leads to inaccurate or incomplete data entry.

2. Manual Diet and Calorie Logging

Current diet-tracking systems depend on users manually searching for food items and entering portion sizes. This approach is prone to estimation errors and reduces the reliability of calorie and nutrient tracking.

3. Lack of Real-Time Posture Analysis

Many fitness applications provide only pre-recorded videos or static instructions. They do not analyze user posture in real time, which can result in incorrect exercise form and potential risk of injury.

4. Generic Recommendations

Existing systems usually offer generic workout plans and diet charts that are not fully

personalized based on individual user profiles, fitness goals, or daily activity levels.

5. Limited Automation and Intelligence

Most current fitness applications lack AI-driven automation such as pose estimation, food recognition, and adaptive calorie recommendations, leading to reduced user engagement and effectiveness.

Table 1 Overview of Details of Survey.

Name	Book author	Description
MediaPipe Pose	F. Zhang et al. (2020)	A real-time pose estimation framework that detects 33 human body landmarks and enables accurate posture analysis and repetition counting on mobile devices.
OpenPose	Z. Cao et al. (2021)	A deep learning-based multi-person pose estimation system capable of detecting skeletal keypoints for human activity recognition.
TensorFlow	M. Abadi et al. (2016)	An open-source machine learning framework used for building and training deep learning models for image recognition and prediction tasks.
TensorFlow Lite	TensorFlow Lite Team (2023)	A lightweight ML framework optimized for deploying trained models on mobile and embedded devices with low latency.
Firestore	Google Firebase Documentation (2023)	A cloud-based backend platform providing authentication, real-time database, and secure storage for mobile applications.
Chatbots in Fitness & Nutrition	Various Authors	Intelligent conversational systems that provide fitness guidance, diet advice, and improve user engagement through personalized interaction.

3. Proposed System

The proposed system is an AI-powered fitness and nutrition application designed to automate workout tracking, diet monitoring, and personalized health guidance. By integrating computer vision, machine learning, and cloud-based services, the system minimizes manual data entry and provides accurate, real-time feedback to users.

3.1. User Profile Management

The system allows users to register and create a personal profile by entering details such as age, gender, height, weight, activity level, and fitness goal. These parameters are used to calculate BMR and TDEE, which form the foundation for personalized calorie and nutrition recommendations.

3.2. AI-Based Workout Tracking

Using MediaPipe Pose, the system captures real-time video input from the mobile camera to detect body landmarks and recognize different exercises. It automatically counts repetitions and tracks workout sessions without the need for wearable devices.

3.3. Real-Time Posture Evaluation and Feedback

The system analyzes joint angles and movement patterns to determine whether exercises are performed correctly. Instant corrective feedback is provided to the user, helping prevent injuries and improve workout effectiveness.

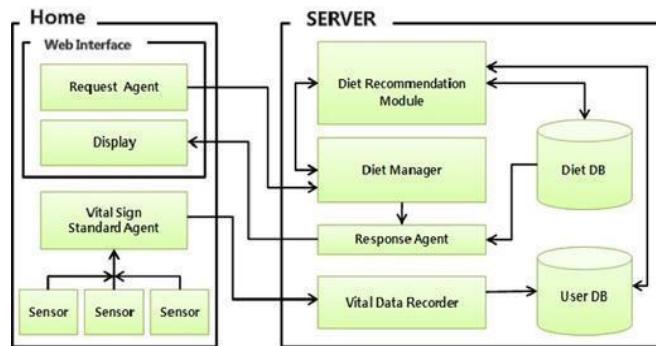
3.4. Food Recognition and Nutrition Analysis

A TensorFlow Lite-based model detects food items from captured images. The identified food is mapped to a nutrition database to estimate calories and macronutrients such as protein, fat, and carbohydrates automatically. [Figure 1]

3.5. Personalized Calorie and Meal Recommendation

Based on user profile data, workout activity, and daily food intake, the system dynamically generates personalized calorie targets and structured meal plans for weight loss, weight gain, or maintenance.

3.6. Chatbot-Based Fitness Assistance


The system includes an AI-powered chatbot that responds to user queries related to workouts, diet plans, calorie intake, and fitness guidance, acting as a virtual trainer and diet advisor.

3.7. Cloud-Based Data Storage and Security

Firebase Authentication ensures secure user access, while Cloud Firestore stores user profiles, workout history, food logs, and meal plans with real-time synchronization across devices.

3.8. Integrated and Automated System Workflow

All modules of the system work together seamlessly to deliver a fully automated, intelligent, and user-friendly fitness management solution.

Figure 1 Diet Recommendation System Architecture .[7]

4. Methodologies

The methodology describes the systematic approach followed to design and implement the proposed AI-powered fitness and nutrition system. It explains how different modules interact to provide automated workout tracking, food recognition, calorie estimation, and personalized recommendations.

4.1. User Profile Creation and Data Collection

User details such as name, age, gender, height, weight, activity level, and fitness goals are collected during registration. These inputs are used to calculate BMR and TDEE, which serve as the foundation for personalized calorie and diet planning.

4.2. AI-Based Workout Tracking Using Pose Estimation

The system captures real-time video from the mobile camera and uses MediaPipe Pose to detect body landmarks. Joint angles and movement patterns are analyzed to recognize exercises and automatically count repetitions.

4.3. Real-Time Posture Evaluation and Feedback

Based on landmark detection, the system evaluates posture correctness during workouts. If incorrect form is detected, instant feedback is provided to help users correct their posture and avoid injuries.

4.4. Food Recognition and Nutrition Analysis

Food images captured through the camera are processed using a TensorFlow Lite-based model. The detected food items are mapped to a nutrition database to estimate calories and macronutrients such as protein, fat, and carbohydrates.

4.5. Personalized Calorie and Meal Recommendation

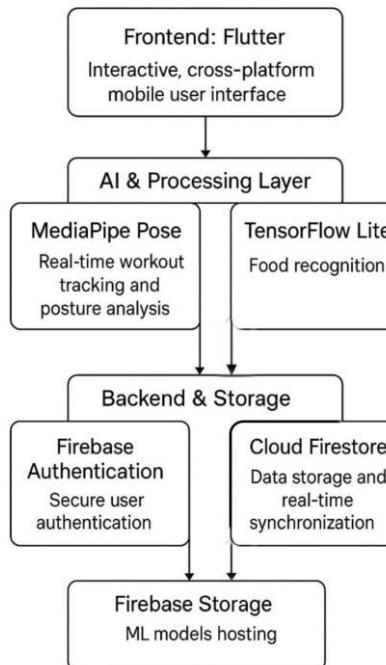
Using user profile data, workout calories burned, and food intake, the system dynamically generates personalized daily calorie targets and meal plans for weight loss, weight gain, or maintenance.

4.6. Chatbot-Based Fitness Assistance

A chatbot module responds to user queries related to fitness, workouts, calorie intake, and diet plans. It acts as a virtual trainer and provides real-time guidance and motivation.

4.7. Cloud Integration and Data Management

Firebase Authentication ensures secure login, while Cloud Firestore stores user profiles, workout history, food logs, and recommendations. Real-time synchronization enables seamless access across devices.


5. System Architecture

The system is designed using a modular architecture.

Frontend: Flutter is used to develop an interactive and cross-platform mobile user interface.

AI & Processing: MediaPipe Pose and TensorFlow Lite handle real-time workout tracking, posture analysis, and food recognition on-device.

Backend & Storage: Firebase Authentication, Cloud Firestore, and Firebase Storage manage secure user authentication, data storage, and real-time synchronization (Figure 4)

Figure 2 Simplified Diagram of System Architecture.

6. Evaluation and Testing

The proposed system was evaluated through functional and performance testing to verify the accuracy of workout tracking, food recognition, and calorie estimation. MediaPipe Pose was

tested for posture detection and repetition counting under different lighting and movement conditions, while the TensorFlow Lite food recognition model was evaluated using sample food images. Firebase services were tested for secure authentication, real-time data storage, and synchronization. The results showed reliable performance, fast response time, and accurate outputs, confirming that the system meets its functional requirements effectively.

6.1. System Design and Implementation

The system is designed to ensure scalability, security, and a seamless user experience.

6.2. User Interface (UI)

The user interface is designed to be simple, intuitive, and user-friendly to ensure smooth interaction with the application. It provides easy access to features such as workout tracking, food recognition, calorie reports, and chatbot assistance. Real-time visual feedback and clear navigation enhance user engagement and usability. The UI is optimized for mobile devices to support efficient and responsive performance.

6.3. Backend and API Integration

The backend of the system is implemented using Firebase services. Firebase Authentication manages secure user login, while Cloud Firestore stores user profiles, workout logs, and nutrition data. Firebase Cloud Functions support chatbot responses and backend processing. This integration ensures secure, scalable, and real-time data handling across the application.

6.4. Security and Privacy

Security and privacy are ensured through Firebase Authentication and secure access rules that restrict data access to authorized users only. User data such as personal details, workout history, and dietary information are securely stored in Cloud Firestore. On-device processing using TensorFlow Lite and MediaPipe Pose further enhances privacy by minimizing data transmission to external servers.

7. RESULT AND DISCUSSION

The system demonstrated effective performance in real-time workout tracking, posture correction, and food recognition. MediaPipe Pose accurately detected body landmarks and counted repetitions, while the TensorFlow Lite model successfully identified food items and estimated nutritional values. Firebase enabled smooth real-time data synchronization. Overall, the integration of AI and cloud technologies improved automation, accuracy, and user engagement compared to traditional fitness applications.

7.1. User Feedback and Engagement

User feedback indicated high satisfaction with the automated workout tracking and food recognition features. Real-time posture correction helped users perform exercises more confidently and safely. The personalized calorie and meal recommendations increased user motivation and consistency. The chatbot feature further enhanced engagement by providing instant fitness and diet-related guidance, making the application more interactive and supportive.

7.2. Performance and Scalability

The system demonstrates efficient performance by processing pose estimation and food recognition tasks in real time with minimal latency on mobile devices. On-device inference using TensorFlow Lite ensures fast response times and reduces dependency on network connectivity. Firebase Cloud Firestore supports scalable data storage and real-time synchronization, allowing the system to handle multiple users concurrently without performance degradation. The modular architecture enables easy expansion of features and datasets, ensuring the system can scale effectively as user demand increases.

7.3. Challenges and Limitations

Despite its effectiveness, the system has certain limitations. Pose estimation accuracy may decrease in low-light conditions or when the user is partially out of the camera frame. Food recognition accuracy can be affected by overlapping food items or poor image quality. Additionally, the food dataset is limited to selected items, which restricts broader nutritional analysis. Network dependency for cloud synchronization may also impact performance in areas with poor internet connectivity. These challenges can be addressed in future work by expanding datasets, improving model robustness, and enhancing offline capabilities.

Future Work and Improvement

Future enhancements of the proposed AI-powered fitness and nutrition system can focus on improving model accuracy, scalability, and system intelligence. From a computer vision perspective, the pose estimation module can be extended to support multi-person detection and a wider range of complex compound exercises by integrating temporal models such as LSTM or Transformer-based action recognition networks. Additionally, robustness can be improved by incorporating adaptive lighting normalization and occlusion-handling techniques to ensure consistent performance under real-world conditions.

On the nutrition analysis side, the food recognition system can be enhanced by training on

larger, more diverse datasets and integrating portion-size estimation using depth sensing or monocular volume estimation techniques. This would allow more precise calorie and macronutrient computation. The recommendation engine can be upgraded using reinforcement learning or collaborative filtering approaches to dynamically adapt workout plans and meal suggestions based on long-term user behavior, adherence patterns, and progress trends.

From a system architecture standpoint, migrating backend services to a microservices-based cloud architecture with load balancing and caching mechanisms can improve scalability for large user bases. Advanced data security techniques such as end-to-end encryption, role-based access control, and differential privacy can further strengthen user data protection. Finally, integrating federated learning would allow continuous model improvement across devices while preserving user privacy, making the system more efficient, secure, and suitable for real-world large-scale deployment.

CONCLUSION

This project successfully demonstrates the design and implementation of an AI-powered fitness and nutrition management system that integrates computer vision, machine learning, and cloud technologies into a unified platform. By leveraging MediaPipe Pose for real-time workout tracking, TensorFlow Lite for food recognition, and Firebase for secure data management, the system automates exercise monitoring and dietary analysis while minimizing manual user input.

The proposed solution provides accurate repetition counting, posture feedback, automated calorie estimation, and personalized meal recommendations, making it an effective virtual fitness assistant. Overall, the system highlights the potential of AI-driven approaches in enhancing user engagement, accuracy, and efficiency in modern health and fitness applications, while providing a strong foundation for future intelligent health-monitoring systems.

REFERENCES

1. J. Smith and T. Brown, “AI-Based Personalized Diet Planning: A Machine Learning Approach to Tailored Nutrition and Meal Optimization,” *Journal of Nutrition and AI*, vol. 9, no. 3, pp. 134–140, 2020.

2. A. Kumar and R. Singh, "AI-Powered Fitness Recommendation Systems: Enhancing Workout Plans Through Data-Driven Insights and Predictive Analysis," *Journal of Health Informatics*, vol. 12, no. 4, pp. 45–52, 2019.
3. TensorFlow Team, "TensorFlow for Health and Fitness Applications: Leveraging Deep Learning for Personalized Health Insights," *TensorFlow Research Publications*, 2020.
4. L. Johnson and M. Wang, "Machine Learning in Health Prediction: Applications and Challenges in Personalized Fitness and Well-being," *IEEE Transactions on Health AI*, vol. 7, pp. 2032–2043, 2019.
5. C. Xu, "The Role of AI in Precision Health: Analyzing Data-Driven Personalized Recommendations in Fitness Applications," *International Journal of AI in Healthcare*, vol. 14, no. 4, pp. 89–96, 2018.
6. H. Li, "Advances in AI-Powered Fitness Applications: Predictive Analytics, Real-Time Monitoring, and Adaptive Workout Planning," *Digital Health Digest*, vol. 59, no. 2, pp. 115–120, 2020.
7. R. Mehra, "Cloud-Based Solutions for Personalized Fitness: Enhancing Data Storage, Processing, and Analytics for AI-Driven Health Systems," *Cloud Computing Journal*, vol. 7, no. 11, pp. 55–61, 2019.
8. S. Patel, "The Role of AI in Sustainable Health Practices: How Machine Learning is Driving Personalized Nutrition and Exercise Recommendations," *Sustainable Healthcare Journal*, vol. 11, no. 2, pp. 33–42, 2018.
9. A. Rodrigues, "Smart Fitness Technologies: Future Trends in AI-Assisted Training, Performance Tracking, and Virtual Coaching," *Technology and Health Journal*, vol. 13, no. 2, pp. 131–137, 2019.
10. V. Singh, "AI in Modern Healthcare: A Comprehensive Review of Applications in Personalized Medicine, Fitness, and Wellness," *International Journal of AI Innovations in Healthcare*, vol. 21, no. 3, pp. 205–214, 2020.