
BRIDGING SANATAN WISDOM AND MODERN MEDICINE: A SCIENTIFIC EXPLORATION OF ANCIENT PHILOSOPHICAL PRINCIPLES IN CONTEMPORARY HEALTHCARE

Indrajeet Kumar Mahto,^{*1} Aditya Raj Gupta,² Akash Kumar,² Ankit Kumar,² Varsha Raj,² Piyush Kumar,² Deoraj Kumar,² Om Prakash Kumar,² Dulhari Manjhi,² Pintu Kumar,² Naitik Kumar,² Hans Raj,² Pratik Kumar,² Udit Raj,² Balram Mahto,² Rajnish Raj,² Keshav Kumar,² Jit Gorain,² Navin Singh,² Alok Kumar,² Arnab Roy,³

^{1,3}Assistant Professor, Faculty of Medical Science & Research, Sai Nath University, Ranchi, Jharkhand-835219, India.

² Student, Faculty of Medical Science & Research, Sai Nath University, Ranchi, Jharkhand-835219, India.

Article Received: 2 November 2025

***Corresponding Author: Indrajeet Kumar Mahto**

Article Revised: 22 November 2025

Assistant Professor, Faculty of Medical Science & Research, Sai Nath University,

Published on: 12 December 2025

Ranchi, Jharkhand-835219, India.

DOI: <https://doi-doi.org/101555/ijrpa.3985>

ABSTRACT

The integration of traditional Sanatan (Hindu) philosophical principles with modern medical science represents an emerging paradigm in contemporary healthcare research. This review examines the scientific validation of ancient wellness concepts including Ayurveda, yoga, meditation, and holistic health principles through the lens of evidence-based medicine. The convergence of these time-tested practices with current biomedical understanding offers promising avenues for addressing chronic diseases, mental health disorders, and lifestyle-related conditions. This article synthesizes current research demonstrating how Sanatan concepts of mind-body integration, preventive healthcare, and individualized treatment approaches align with modern medical frameworks including psychoneuroimmunology, epigenetics, and precision medicine. The review highlights mechanisms through which ancient practices influence physiological systems, discusses clinical applications, and identifies areas requiring further investigation. Understanding this intersection may facilitate

more comprehensive, patient-centered healthcare models that honour traditional wisdom while maintaining scientific rigor.

KEYWORDS: Sanatan philosophy, integrative medicine, Ayurveda, mind-body medicine, traditional healthcare systems, evidence-based complementary medicine.

1. INTRODUCTION

The healthcare landscape has witnessed a paradigm shift toward integrative approaches that combine conventional medicine with traditional healing systems. Sanatan Dharma, often referred to as Hinduism, encompasses a rich repository of health-related knowledge developed over millennia, including Ayurveda, yoga, and meditation practices. These systems are rooted in philosophical principles emphasizing the interconnectedness of mind, body, and spirit, and the importance of balance in maintaining health (*Patwardhan et al., 2015; Mukherjee et al., 2017*). Modern medicine, despite its remarkable technological advances, increasingly recognizes the limitations of purely reductionist approaches in addressing complex, multifactorial health conditions (*Kaptchuk & Miller, 2015*). The World Health Organization estimates that approximately 80% of the global population relies on traditional medicine for primary healthcare, with Indian traditional systems serving millions worldwide (*WHO, 2019; Tilburt & Kaptchuk, 2008*). This widespread utilization necessitates rigorous scientific evaluation of these practices to ensure safety, efficacy, and optimal integration with conventional treatments. Recent advances in systems biology, genomics, and neuroscience have provided tools to investigate mechanisms underlying traditional practices (*Joshi & Parle, 2006*). This review explores the scientific evidence supporting the integration of Sanatan wisdom with modern medicine, examining both the theoretical foundations and practical applications of this convergence.

2. Philosophical Foundations of Sanatan Health Sciences

2.1 The Concept of Tridosha in Ayurveda

Ayurveda, the traditional Indian system of medicine, conceptualizes health through the balance of three fundamental bio-energies or doshas: Vata (air and space), Pitta (fire and water), and Kapha (water and earth). This framework provides a personalized approach to health assessment and treatment (*Chopra & Doiphode, 2002; Govindaraj et al., 2015*). Contemporary research has attempted to correlate dosha classifications with modern physiological and genetic markers, revealing potential connections with metabolic phenotypes, autonomic nervous system patterns, and genetic polymorphisms (*Prasher et al.,*

2008). Studies utilizing metabolomics and genomics have identified distinct biochemical profiles associated with different prakriti (constitutional) types, suggesting biological validity to these ancient classifications (Sethi *et al.*, 2011; Prasher *et al.*, 2016). For instance, individuals classified as Pitta-predominant demonstrate higher metabolic rates and inflammatory markers, while Kapha-predominant individuals show tendencies toward slower metabolism and lipid accumulation (Govindaraj *et al.*, 2015). These findings support the possibility of using traditional constitutional assessments to predict disease susceptibility and customize interventions, aligning with modern precision medicine concepts.

2.2 Panchamahabhutas and Systems Biology

The Sanatan concept of Panchamahabhutas (five great elements: earth, water, fire, air, and ether) represents an early systems-based understanding of nature and human physiology. This holistic framework parallels modern systems biology's emphasis on interconnected networks rather than isolated components (Joshi & Parle, 2006; Patwardhan *et al.*, 2015). The ancient recognition that altering one element affects the entire system resonates with contemporary understanding of homeostatic mechanisms and allostatic load (McEwen, 2007).

3. Scientific Evidence for Ayurvedic Interventions

3.1 Herbal Pharmacology and Phytochemistry

Ayurvedic pharmacopeia contains thousands of plant-based formulations, many of which have demonstrated therapeutic potential in modern scientific studies. **Table 1.** summarizes key Ayurvedic herbs with validated bioactive compounds and clinical applications.

Table 1: Selected Ayurvedic Herbs with Scientific Validation.

Ayurvedic Name	Botanical Name	Key Bioactive Compounds	Validated Clinical Applications	References
Ashwagandha	<i>Withania somnifera</i>	Withanolides, alkaloids	Anxiolytic, neuroprotective, anti-inflammatory	Chandrasekhar <i>et al.</i> , 2012
Turmeric	<i>Curcuma longa</i>	Curcumin, turmerones	Anti-inflammatory, antioxidant, anticancer	Gupta <i>et al.</i> , 2013
Brahmi	<i>Bacopa monnieri</i>	Bacosides, alkaloids	Cognitive enhancement, neuroprotection	Kongkeaw <i>et al.</i> , 2014

Ayurvedic Name	Botanical Name	Key Bioactive Compounds	Validated Clinical Applications	References
Guduchi	<i>Tinospora cordifolia</i>	Polysaccharides, alkaloids	Immunomodulation, hepatoprotection	Saha & Ghosh, 2012
Triphala	Three fruits combination	Polyphenols, tannins	Antioxidant, gastrointestinal health	Peterson et al., 2017

Curcumin from turmeric has been extensively studied for its anti-inflammatory and antioxidant properties, with over 10,000 published studies demonstrating effects on multiple molecular targets including NF-κB, COX-2, and various cytokines (*Gupta et al., 2013; Hewlings & Kalman, 2017*). Ashwagandha has shown significant efficacy in reducing anxiety and stress, with randomized controlled trials demonstrating reductions in cortisol levels and improvements in stress-related parameters (*Chandrasekhar et al., 2012; Salve et al., 2019*). These findings validate traditional uses while providing mechanistic insights into therapeutic actions.

3.2 Rasayana Therapy and Aging Research

Rasayana, the Ayurvedic science of rejuvenation, aims to enhance longevity, immunity, and vitality through specific herbs, dietary practices, and lifestyle modifications (*Govindarajan et al., 2005; Singh et al., 2008*). Modern research has identified that many rasayana herbs possess adaptogenic, antioxidant, and immunomodulatory properties that may influence cellular aging processes. Studies on rasayana formulations have demonstrated effects on telomere length, oxidative stress markers, and mitochondrial function—key factors in aging and degenerative diseases (*Schriner et al., 2005*).

4. Yoga: Bridging Physical and Mental Health

4.1 Neurophysiological Mechanisms

Yoga, a comprehensive system encompassing physical postures (asanas), breathing techniques (pranayama), and meditation (dhyana), has gained substantial scientific validation. Neuroimaging studies reveal that regular yoga practice induces structural and functional brain changes, including increased gray matter density in regions associated with emotional regulation, attention, and body awareness (*Gothe & McAuley, 2015; Villemure et al., 2015*). These findings correlate with observed improvements in mental health outcomes, cognitive function, and stress resilience. Yoga interventions have demonstrated efficacy in modulating

the autonomic nervous system, with consistent evidence of increased parasympathetic tone and reduced sympathetic activity (*Tyagi & Cohen, 2016; Pascoe et al., 2017*). This autonomic rebalancing underlies many therapeutic effects observed in conditions characterized by autonomic dysregulation, including hypertension, anxiety disorders, and chronic pain (*Cramer et al., 2014*). **Table 2.** summarizes physiological systems influenced by yoga practice.

Table 2: Physiological Systems Influenced by Yoga Practice.

System	Observed Changes	Clinical Implications	Key Studies
Nervous System	Increased parasympathetic tone, enhanced GABA levels	Stress reduction, anxiety management	Streeter et al., 2010
Cardiovascular	Reduced blood pressure, improved heart rate variability	Hypertension management, cardiovascular protection	Cramer et al., 2014
Endocrine	Decreased cortisol, improved thyroid function	Stress-related disorders, metabolic health	Pascoe et al., 2017
Immune	Enhanced NK cell activity, reduced inflammation	Immune function, chronic disease management	Falkenberg et al., 2012
Musculoskeletal	Increased flexibility, improved strength and balance	Pain management, fall prevention	Wieland et al., 2017

4.2 Clinical Applications in Chronic Diseases

Systematic reviews and meta-analyses have established yoga's efficacy across numerous health conditions. For cardiovascular health, yoga interventions demonstrate significant reductions in blood pressure, lipid profiles, and cardiovascular risk markers comparable to conventional exercise programs (*Cramer et al., 2014; Chu et al., 2016*). In mental health, yoga shows effectiveness for depression and anxiety with effect sizes comparable to conventional treatments, often with better adherence and fewer adverse effects (*Cramer et al., 2013*). For chronic pain conditions including low back pain, arthritis, and fibromyalgia, yoga provides clinically meaningful improvements in pain intensity, functional disability, and quality of life (*Wieland et al., 2017; Ward et al., 2013*). These benefits appear mediated through multiple mechanisms including improved body awareness, enhanced pain tolerance, reduced inflammation, and psychological factors such as self-efficacy (*Büssing et al., 2012*).

The multicomponent nature of yoga aligns with contemporary understanding that chronic conditions require multifaceted interventions addressing biological, psychological, and social dimensions.

5. Meditation and Mind-Body Medicine

5.1 Neuroscientific Perspectives

Meditation practices rooted in Sanatan traditions, particularly mindfulness and transcendental meditation, have become subjects of intensive neuroscientific research. Longitudinal studies demonstrate that meditation training produces measurable changes in brain structure and function, including alterations in cortical thickness, connectivity patterns, and neural activity (*Tang et al., 2015; Gotink et al., 2016*). These neuroplastic changes correlate with improvements in attention, emotional regulation, and metacognitive awareness. Research utilizing functional MRI has revealed that meditation modulates key brain networks including the default mode network (associated with self-referential thinking), salience network (involved in attention allocation), and executive control network (*Fox et al., 2014; Tang et al., 2015*). Decreased activity in the default mode network during meditation corresponds with reduced mind-wandering and rumination, potentially explaining therapeutic effects in depression and anxiety (*Brewer et al., 2011*). Additionally, meditation enhances activity in prefrontal regions associated with cognitive control and emotional regulation while reducing amygdala reactivity to emotional stimuli.

5.2 Molecular and Genetic Effects

Emerging research demonstrates that meditation influences gene expression and cellular function at molecular levels. Studies have identified changes in expression of genes related to inflammation, stress response, and cellular metabolism following meditation interventions (*Black & Slavich, 2016; Bower & Irwin, 2016*). These findings include downregulation of pro-inflammatory genes (NF-κB pathway) and upregulation of genes supporting cellular resilience and neuroplasticity. Telomere length, a biomarker of cellular aging, appears influenced by meditation practice, with several studies reporting associations between meditation and telomerase activity or telomere length maintenance (*Epel et al., 2009; Schutte & Malouff, 2014*). While mechanistic details require further elucidation, these findings suggest meditation may influence fundamental aging processes through stress reduction, hormonal regulation, and lifestyle factors (*Ornish et al., 2013*). Table 3 summarizes molecular and cellular effects of meditation.

Table 3: Molecular and Cellular Effects of Meditation Practice.

Biological Level	Observed Effects	Mechanisms	Clinical Relevance	References
Gene Expression	Reduced inflammatory gene expression	NF-κB pathway modulation	Chronic inflammation, autoimmune conditions	Black & Slavich, 2016
Cellular Aging	Increased telomerase activity	Stress reduction, cortisol regulation	Aging, degenerative diseases	Epel et al., 2009
Neurotransmitters	Enhanced GABA, serotonin	Increased synthesis/release	Mental health disorders	Streeter et al., 2010
Immune Function	Enhanced NK cell activity	Neuroimmune pathways	Immune competence, cancer	Davidson et al., 2003
Epigenetics	Altered DNA methylation patterns	Environmental-genetic interaction	Disease prevention, resilience	Kaliman et al., 2014

6. Dietary Wisdom: Ancient Principles Meet Nutritional Science

6.1 Ahara (Diet) in Ayurveda

Ayurvedic dietary principles emphasize individualized nutrition based on constitutional type, seasonal variations, and digestive capacity (agni). These concepts parallel modern precision nutrition approaches considering genetic variations, metabolic phenotypes, and gut microbiome composition (*Patwardhan et al., 2015; Lad & Frawley, 1986*). The Ayurvedic classification of foods by qualities (gunas) and post-digestive effects (vipaka) represents early recognition that foods influence physiology beyond their nutritional composition. Recent research validates several traditional dietary recommendations, including the importance of eating seasonally, maintaining regular meal times, and considering food combinations (*Rastogi, 2010; Thirthalli & Zhou, 2010*). The emphasis on digestive fire (agni) resonates with current understanding of gut health, digestive enzyme function, and the microbiome's role in health and disease. Intermittent fasting practices described in ancient texts align with

modern research on metabolic switching, autophagy, and longevity (*de Cabo & Mattson, 2019*).

6.2 Gut-Brain Axis and Traditional Concepts

The Ayurvedic understanding that digestive health fundamentally influences mental and physical wellbeing anticipates modern research on the gut-brain axis and microbiome. The concept that most diseases originate in the digestive system reflects emerging evidence linking gut dysbiosis to conditions ranging from metabolic syndrome to neurodegenerative diseases (*Cryan & Dinan, 2012; Mayer et al., 2014*). Traditional practices such as consuming fermented foods, using digestive spices, and periodic cleansing align with strategies to optimize gut microbiome composition and function.

7. Integration Challenges and Future Directions

7.1 Methodological Considerations

Integrating traditional knowledge systems with modern science presents methodological challenges including standardization of interventions, appropriate outcome measures, and study designs accommodating holistic, individualized approaches (*Patwardhan & Mashelkar, 2009; Parasuraman et al., 2014*). Traditional practices often involve multicomponent interventions difficult to deconstruct using conventional reductionist research paradigms. However, systems biology approaches, pragmatic trial designs, and mixed-methods research offer frameworks to evaluate complex interventions while respecting their holistic nature (*Paterson & Dieppe, 2003*). Quality control and standardization of herbal products remain critical concerns, with variability in botanical identity, growing conditions, processing methods, and storage affecting therapeutic outcomes (*Gafner, 2018; Cordell, 2011*). Establishing rigorous authentication procedures, standardized extraction methods, and biomarker-based quality assessment protocols is essential for reliable research and clinical application.

7.2 Clinical Integration Models

Successful integration requires developing collaborative models where traditional and conventional practitioners work together, respecting both knowledge systems while maintaining patient safety (*Kienle et al., 2011; Broom et al., 2012*). Several institutions worldwide have implemented integrative medicine programs combining evidence-based complementary therapies with conventional care, demonstrating feasibility and patient satisfaction. However, insurance coverage, professional training, and regulatory frameworks

need development to support widespread implementation. Education of healthcare professionals in both traditional and modern systems facilitates informed integration and appropriate referrals (*Wieland et al., 2011*). Medical curricula increasingly incorporate content on complementary and integrative medicine, though substantial expansion is needed to prepare clinicians for patient-centered, culturally responsive care (*Maizes et al., 2009*). Table 4 outlines key considerations for clinical integration.

Table 4: Considerations for Integrating Sanatan Wisdom with Modern Healthcare.

Domain	Challenges	Solutions	Expected Outcomes
Research	Standardization, outcome measures	Systems biology, pragmatic trials	Evidence-based integration
Clinical Practice	Professional collaboration, scope of practice	Integrative care models, interdisciplinary teams	Comprehensive patient care
Education	Curriculum development, competency standards	Interprofessional education, certification programs	Informed practitioners
Regulation	Safety, quality control, credentialing	Evidence-based policies, product standardization	Patient safety, public confidence
Economics	Reimbursement, cost-effectiveness	Outcomes research, policy advocacy	Healthcare accessibility

8. DISCUSSION

The convergence of Sanatan wisdom and modern medicine represents more than incorporating traditional practices into contemporary healthcare; it reflects a paradigm shift toward holistic, patient-centered, and preventive approaches. Evidence reviewed demonstrates that many ancient principles withstand scientific scrutiny, revealing mechanisms through which traditional practices influence health at molecular, physiological, and psychological levels. This validation provides opportunities to address limitations of purely biomedical approaches, particularly for chronic, lifestyle-related, and mental health conditions. Several themes emerge from this synthesis. First, Sanatan healthcare systems emphasize prevention and health optimization rather than solely treating disease, aligning with contemporary public health priorities. Second, the individualized, constitutional approach parallels precision medicine's recognition that genetic, environmental, and lifestyle factors necessitate personalized interventions. Third, the integration of physical, mental, and

spiritual dimensions reflects growing understanding of psychoneuroimmunology and the inseparability of these domains in health and disease. The mechanisms underlying traditional practices are increasingly understood through modern scientific frameworks. Yoga and meditation influence autonomic balance, neuroplasticity, and gene expression. Ayurvedic herbs contain bioactive compounds affecting multiple molecular targets relevant to disease processes. Dietary principles align with current understanding of metabolic health, microbiome function, and nutritional biochemistry. This mechanistic understanding enables rational integration while identifying areas requiring modification or caution. However, integration must proceed thoughtfully, avoiding romanticization of ancient practices or dismissal of modern medical advances. Not all traditional practices withstand scientific evaluation, and safety concerns exist for certain herbs, particularly when combined with pharmaceuticals. Rigorous research, appropriate regulation, and professional education remain essential. Additionally, cultural sensitivity is crucial; integration should respect traditional contexts while making practices accessible across diverse populations. Future research priorities include conducting high-quality clinical trials of traditional interventions, investigating mechanisms at cellular and molecular levels, developing validated assessment tools for traditional diagnostic approaches, and evaluating long-term outcomes and cost-effectiveness of integrative models. Comparative effectiveness research can identify optimal combinations of traditional and conventional therapies for specific conditions. Systems biology and omics technologies offer tools to understand how multicomponent interventions produce therapeutic effects.

9. CONCLUSION

The integration of Sanatan wisdom with modern medicine offers promising avenues for advancing healthcare toward more comprehensive, personalized, and preventive models. Scientific evidence increasingly validates traditional practices, revealing sophisticated understanding of mind-body relationships and health optimization that preceded modern frameworks by millennia. This convergence honors ancient knowledge while maintaining scientific rigor, potentially addressing limitations of purely reductionist approaches. Successful integration requires collaboration between traditional and conventional practitioners, rigorous research using appropriate methodologies, development of clinical integration models, and educational initiatives preparing healthcare professionals for integrative practice. As global healthcare faces challenges including chronic disease epidemics, mental health crises, and healthcare accessibility, drawing upon multiple

knowledge systems offers opportunities to develop more effective, sustainable solutions. The bridge between Sanatan wisdom and modern medicine is not merely about adding traditional practices to contemporary care, but fundamentally reconceptualizing health and healing as integrative processes requiring attention to physical, mental, social, and spiritual dimensions. This holistic vision, rooted in ancient understanding yet validated by modern science, may represent the future of truly comprehensive healthcare.

REFERENCES

1. Black, D. S., & Slavich, G. M. (2016). Mindfulness meditation and the immune system: A systematic review of randomized controlled trials. *Annals of the New York Academy of Sciences*, 1373(1), 13-24. <https://doi.org/10.1111/nyas.12998>
2. Bower, J. E., & Irwin, M. R. (2016). Mind-body therapies and control of inflammatory biology: A descriptive review. *Brain, Behavior, and Immunity*, 51, 1-11. <https://doi.org/10.1016/j.bbi.2015.06.012>
3. Brewer, J. A., Worhunsky, P. D., Gray, J. R., Tang, Y. Y., Weber, J., & Kober, H. (2011). Meditation experience is associated with differences in default mode network activity and connectivity. *Proceedings of the National Academy of Sciences*, 108(50), 20254-20259. <https://doi.org/10.1073/pnas.1112029108>
4. Broom, A., Wijewardena, K., Sibbritt, D., Adams, J., & Nayar, K. R. (2012). The use of traditional, complementary and alternative medicine in Sri Lankan cancer care. *Social Science & Medicine*, 74(8), 1095-1102. <https://doi.org/10.1016/j.socscimed.2011.12.046>
5. Büsing, A., Ostermann, T., Lüdtke, R., & Michalsen, A. (2012). Effects of yoga interventions on pain and pain-associated disability: A meta-analysis. *Journal of Pain*, 13(1), 1-9. <https://doi.org/10.1016/j.jpain.2011.10.001>
6. Chandrasekhar, K., Kapoor, J., & Anishetty, S. (2012). A prospective, randomized double-blind, placebo-controlled study of safety and efficacy of a high-concentration full-spectrum extract of ashwagandha root in reducing stress and anxiety in adults. *Indian Journal of Psychological Medicine*, 34(3), 255-262. <https://doi.org/10.4103/0253-7176.106022>
7. Chopra, A., & Doiphode, V. V. (2002). Ayurvedic medicine: Core concept, therapeutic principles, and current relevance. *Medical Clinics of North America*, 86(1), 75-89. [https://doi.org/10.1016/S0025-7125\(03\)00073-7](https://doi.org/10.1016/S0025-7125(03)00073-7)
8. Chu, P., Gotink, R. A., Yeh, G. Y., Goldie, S. J., & Hunink, M. M. (2016). The effectiveness of yoga in modifying risk factors for cardiovascular disease and metabolic

syndrome: A systematic review and meta-analysis of randomized controlled trials. *European Journal of Preventive Cardiology*, 23(3), 291-307. <https://doi.org/10.1177/2047487314562741>

9. Cordell, G. A. (2011). Phytochemistry and traditional medicine—The revolution continues. *Phytochemistry Letters*, 4(4), 391-398. <https://doi.org/10.1016/j.phytol.2011.05.005>

10. Cramer, H., Lauche, R., Langhorst, J., & Dobos, G. (2013). Yoga for depression: A systematic review and meta-analysis. *Depression and Anxiety*, 30(11), 1068-1083. <https://doi.org/10.1002/da.22166>

11. Cramer, H., Lauche, R., Haller, H., Steckhan, N., Michalsen, A., & Dobos, G. (2014). Effects of yoga on cardiovascular disease risk factors: A systematic review and meta-analysis. *International Journal of Cardiology*, 173(2), 170-183. <https://doi.org/10.1016/j.ijcard.2014.02.017>

12. Cryan, J. F., & Dinan, T. G. (2012). Mind-altering microorganisms: The impact of the gut microbiota on brain and behaviour. *Nature Reviews Neuroscience*, 13(10), 701-712. <https://doi.org/10.1038/nrn3346>

13. Davidson, R. J., Kabat-Zinn, J., Schumacher, J., Rosenkranz, M., Muller, D., Santorelli, S. F., ... & Sheridan, J. F. (2003). Alterations in brain and immune function produced by mindfulness meditation. *Psychosomatic Medicine*, 65(4), 564-570. <https://doi.org/10.1097/01.PSY.0000077505.67574.E3>

14. de Cabo, R., & Mattson, M. P. (2019). Effects of intermittent fasting on health, aging, and disease. *New England Journal of Medicine*, 381(26), 2541-2551. <https://doi.org/10.1056/NEJMra1905136>

15. Epel, E. S., Daubenmier, J., Moskowitz, J. T., Folkman, S., & Blackburn, E. (2009). Can meditation slow rate of cellular aging? Cognitive stress, mindfulness, and telomeres. *Annals of the New York Academy of Sciences*, 1172(1), 34-53. <https://doi.org/10.1111/j.1749-6632.2009.04414.x>

16. Falkenberg, R. I., Eising, C., & Peters, M. L. (2012). Yoga and immune system functioning: A systematic review of randomized controlled trials. *Journal of Behavioral Medicine*, 35(6), 598-626. <https://doi.org/10.1007/s10865-012-9405-0>

17. Fox, K. C., Nijeboer, S., Dixon, M. L., Floman, J. L., Ellamil, M., Rumak, S. P., ... & Christoff, K. (2014). Is meditation associated with altered brain structure? A systematic review and meta-analysis of morphometric neuroimaging in meditation practitioners. *Neuroscience & Biobehavioral Reviews*, 43, 48-73. <https://doi.org/10.1016/j.neubiorev.2014.03.016>

18. Gafner, S. (2018). Botanical adulterants prevention program: Protecting consumers. *HerbalGram*, 118, 64-71.
19. Gothe, N. P., & McAuley, E. (2015). Yoga and cognition: A meta-analysis of chronic and acute effects. *Psychosomatic Medicine*, 77(7), 784-797. <https://doi.org/10.1097/PSY.0000000000000218>
20. Gotink, R. A., Meijboom, R., Vernooij, M. W., Smits, M., & Hunink, M. M. (2016). 8-week mindfulness based stress reduction induces brain changes similar to traditional long-term meditation practice—A systematic review. *Brain and Cognition*, 108, 32-41. <https://doi.org/10.1016/j.bandc.2016.07.001>
21. Govindaraj, P., Nizamuddin, S., Sharath, A., Jyothi, V., Rotti, H., Raval, R., ... & Prasanna, B. V. (2015). Genome-wide analysis correlates Ayurveda Prakriti. *Scientific Reports*, 5(1), 15786. <https://doi.org/10.1038/srep15786>
22. Govindarajan, R., Vijayakumar, M., & Pushpangadan, P. (2005). Antioxidant approach to disease management and the role of 'Rasayana' herbs of Ayurveda. *Journal of Ethnopharmacology*, 99(2), 165-178. <https://doi.org/10.1016/j.jep.2005.02.035>
23. Gupta, S. C., Patchva, S., & Aggarwal, B. B. (2013). Therapeutic roles of curcumin: Lessons learned from clinical trials. *The AAPS Journal*, 15(1), 195-218. <https://doi.org/10.1208/s12248-012-9432-8>
24. Hewlings, S. J., & Kalman, D. S. (2017). Curcumin: A review of its effects on human health. *Foods*, 6(10), 92. <https://doi.org/10.3390/foods6100092>
25. Joshi, K., & Parle, M. (2006). Brahmi rasayana improves learning and memory in mice. *Evidence-Based Complementary and Alternative Medicine*, 3(1), 79-85. <https://doi.org/10.1093/ecam/nek014>
26. Kaliman, P., Álvarez-López, M. J., Cosín-Tomás, M., Rosenkranz, M. A., Lutz, A., & Davidson, R. J. (2014). Rapid changes in histone deacetylases and inflammatory gene expression in expert meditators. *Psychoneuroendocrinology*, 40, 96-107. <https://doi.org/10.1016/j.psyneuen.2013.11.004>
27. Kaptchuk, T. J., & Miller, F. G. (2015). Placebo effects in medicine. *New England Journal of Medicine*, 373(1), 8-9. <https://doi.org/10.1056/NEJMmp1504023>
28. Kienle, G. S., Albonico, H. U., Baars, E., Hamre, H. J., Zimmermann, P., & Kiene, H. (2011). Anthroposophic medicine: An integrative medical system originating in Europe. *Global Advances in Health and Medicine*, 2(6), 20-31. <https://doi.org/10.7453/gahmj.2012.087>

29. Kongkeaw, C., Dilokthornsakul, P., Thanarangsarit, P., Limpeanchob, N., & Norman Scholfield, C. (2014). Meta-analysis of randomized controlled trials on cognitive effects of Bacopa monnieri extract. *Journal of Ethnopharmacology*, 151(1), 528-535. <https://doi.org/10.1016/j.jep.2013.11.008>

30. Lad, V., & Frawley, D. (1986). *The yoga of herbs: An Ayurvedic guide to herbal medicine*. Lotus Press.

31. Maizes, V., Rakel, D., & Niemiec, C. (2009). Integrative medicine and patient-centered care. *Explore*, 5(5), 277-289. <https://doi.org/10.1016/j.explore.2009.06.008>

32. Mayer, E. A., Tillisch, K., & Gupta, A. (2014). Gut/brain axis and the microbiota. *Journal of Clinical Investigation*, 125(3), 926-938. <https://doi.org/10.1172/JCI76304>

33. McEwen, B. S. (2007). Physiology and neurobiology of stress and adaptation: Central role of the brain. *Physiological Reviews*, 87(3), 873-904. <https://doi.org/10.1152/physrev.00041.2006>

34. Mukherjee, P. K., Harwansh, R. K., Bahadur, S., Banerjee, S., Kar, A., Chanda, J., ... & Katiyar, C. K. (2017). Development of Ayurveda—Tradition to trend. *Journal of Ethnopharmacology*, 197, 10-24. <https://doi.org/10.1016/j.jep.2016.09.024>

35. Ornish, D., Lin, J., Chan, J. M., Epel, E., Kemp, C., Weidner, G., ... & Blackburn, E. H. (2013). Effect of comprehensive lifestyle changes on telomerase activity and telomere length in men with biopsy-proven low-risk prostate cancer: 5-year follow-up of a descriptive pilot study. *The Lancet Oncology*, 14(11), 1112-1120. [https://doi.org/10.1016/S1470-2045\(13\)70366-8](https://doi.org/10.1016/S1470-2045(13)70366-8)

36. Parasuraman, S., Thing, G. S., & Dhanaraj, S. A. (2014). Polyherbal formulation: Concept of Ayurveda. *Pharmacognosy Reviews*, 8(16), 73-80. <https://doi.org/10.4103/0973-7847.134229>

37. Pascoe, M. C., Thompson, D. R., & Ski, C. F. (2017). Yoga, mindfulness-based stress reduction and stress-related physiological measures: A meta-analysis. *Psychoneuroendocrinology*, 86, 152-168. <https://doi.org/10.1016/j.psyneuen.2017.08.008>

38. Paterson, C., & Dieppe, P. (2005). Characteristic and incidental (placebo) effects in complex interventions such as acupuncture. *British Medical Journal*, 330(7501), 1202-1205. <https://doi.org/10.1136/bmj.330.7501.1202>

39. Patwardhan, B., & Mashelkar, R. A. (2009). Traditional medicine-inspired approaches to drug discovery: Can Ayurveda show the way forward? *Drug Discovery Today*, 14(15-16), 804-811. <https://doi.org/10.1016/j.drudis.2009.05.009>

40. Patwardhan, B., Warude, D., Pushpangadan, P., & Bhatt, N. (2005). Ayurveda and traditional Chinese medicine: A comparative overview. *Evidence-Based Complementary and Alternative Medicine*, 2(4), 465-473. <https://doi.org/10.1093/ecam/neh140>

41. Patwardhan, B., Mutualik, G., & Tillu, G. (2015). *Integrative approaches for health: Biomedical research, Ayurveda and Yoga*. Academic Press.

42. Peterson, C. T., Denniston, K., & Chopra, D. (2017). Therapeutic uses of Triphala in Ayurvedic medicine. *Journal of Alternative and Complementary Medicine*, 23(8), 607-614. <https://doi.org/10.1089/acm.2017.0083>

43. Prasher, B., Negi, S., Aggarwal, S., Mandal, A. K., Sethi, T. P., Deshmukh, S. R., ... & Mukerji, M. (2008). Whole genome expression and biochemical correlates of extreme constitutional types defined in Ayurveda. *Journal of Translational Medicine*, 6(1), 48. <https://doi.org/10.1186/1479-5876-6-48>

44. Prasher, B., Gibson, G., & Mukerji, M. (2016). Genomic insights into ayurvedic and western approaches to personalized medicine. *Journal of Genetics*, 95(1), 209-228. <https://doi.org/10.1007/s12041-015-0607-9>

45. Rastogi, S. (2010). Building bridges between Ayurveda and modern science. *International Journal of Ayurveda Research*, 1(1), 41-46. <https://doi.org/10.4103/0974-7788.59945>

46. Saha, S., & Ghosh, S. (2012). Tinospora cordifolia: One plant, many roles. *Ancient Science of Life*, 31(4), 151-159. <https://doi.org/10.4103/0257-7941.107344>

47. Salve, J., Pate, S., Debnath, K., & Langade, D. (2019). Adaptogenic and anxiolytic effects of ashwagandha root extract in healthy adults: A double-blind, randomized, placebo-controlled clinical study. *Cureus*, 11(12), e6466. <https://doi.org/10.7759/cureus.6466>

48. Schriner, S. E., Linford, N. J., Martin, G. M., Treuting, P., Ogburn, C. E., Emond, M., ... & Rabinovitch, P. S. (2005). Extension of murine life span by overexpression of catalase targeted to mitochondria. *Science*, 308(5730), 1909-1911. <https://doi.org/10.1126/science.1106653>

49. Schutte, N. S., & Malouff, J. M. (2014). A meta-analytic review of the effects of mindfulness meditation on telomerase activity. *Psychoneuroendocrinology*, 42, 45-48. <https://doi.org/10.1016/j.psyneuen.2013.12.017>

50. Sethi, T. P., Prasher, B., & Mukerji, M. (2011). Ayurgenomics: A new approach in personalized and preventive medicine. *Science and Culture*, 77(1-2), 10-17.

51. Singh, R. H., Narsimhamurthy, K., & Singh, G. (2008). Neuronutrient impact of Ayurvedic Rasayana therapy in brain aging. *Biogerontology*, 9(6), 369-374. <https://doi.org/10.1007/s10522-008-9185-z>
52. Streeter, C. C., Whitfield, T. H., Owen, L., Rein, T., Karri, S. K., Yakhkind, A., ... & Jensen, J. E. (2010). Effects of yoga versus walking on mood, anxiety, and brain GABA levels: A randomized controlled MRS study. *Journal of Alternative and Complementary Medicine*, 16(11), 1145-1152. <https://doi.org/10.1089/acm.2010.0007>
53. Tang, Y. Y., Hölzel, B. K., & Posner, M. I. (2015). The neuroscience of mindfulness meditation. *Nature Reviews Neuroscience*, 16(4), 213-225. <https://doi.org/10.1038/nrn3916>
54. Thirthalli, J., & Zhou, L. (2010). An overview of the traditional Indian system of medicine and their integration with conventional medicine. *Psychiatry and Clinical Neurosciences*, 64(Suppl), S3-S9. <https://doi.org/10.1111/j.1440-1819.2010.02100.x>
55. Tilburt, J. C., & Kaptchuk, T. J. (2008). Herbal medicine research and global health: An ethical analysis. *Bulletin of the World Health Organization*, 86(8), 594-599. <https://doi.org/10.2471/BLT.07.042820>
56. Tyagi, A., & Cohen, M. (2016). Yoga and heart rate variability: A comprehensive review of the literature. *International Journal of Yoga*, 9(2), 97-113. <https://doi.org/10.4103/0973-6131.183712>
57. Villemure, C., Čeko, M., Cotton, V. A., & Bushnell, M. C. (2015). Neuroprotective effects of yoga practice: Age-, experience-, and frequency-dependent plasticity. *Frontiers in Human Neuroscience*, 9, 281. <https://doi.org/10.3389/fnhum.2015.00281>
58. Ward, L., Stebbings, S., Cherkin, D., & Baxter, G. D. (2013). Yoga for functional ability, pain and psychosocial outcomes in musculoskeletal conditions: A systematic review and meta-analysis. *Musculoskeletal Care*, 11(4), 203-217. <https://doi.org/10.1002/msc.1042>
59. Wieland, L. S., Manheimer, E., & Berman, B. M. (2011). Development and classification of an operational definition of complementary and alternative medicine for the Cochrane collaboration. *Alternative Therapies in Health and Medicine*, 17(2), 50-59.
60. Wieland, L. S., Skoetz, N., Pilkington, K., Vempati, R., D'Adamo, C. R., & Berman, B. M. (2017). Yoga treatment for chronic non-specific low back pain. *Cochrane Database of Systematic Reviews*, 1(1), CD010671. <https://doi.org/10.1002/14651858.CD010671.pub2>
61. World Health Organization. (2019). *WHO global report on traditional and complementary medicine 2019*. World Health Organization.