
1 

International Journal Research Publication Analysis                                              
 

Copyright@                                                                                                                                                                                        Page 1   

 

 

DIY EEG-BASED BRAIN–COMPUTER INTERFACE FOR HOME 

AUTOMATION FOR ASSISTED LIVING 

 

Muhammed Aslam T*1, M Kalidas2 , Muhammed Sahil musthaque3 

Mrs Saswathi Behere4,Dr Krishna Kumar P R5 

 

1,2,3Students Dept of CSE,SEA College of Engineering & Technology,Bangalore-560049. 

4,5Faculty, Dept of CSE,SEA College of Engineering & Technology,Bangalore-560049. 

 

Article Received: 11 November 2025  

Article Revised: 01 December 2025        

Published on: 21 December 2025 

 

*Corresponding Author: Muhammed Aslam T 

Students Dept of CSE,SEA College of Engineering & Technology,Bangalore-

560049. 

DOI: https://doi-doi.org/101555/ijrpa.2156  

 

ABSTRACT:  

Assisted living technologies play a crucial role in improving the quality of life for individuals 

with physical disabilities and limited mobility. This paper presents a low-cost DIY EEG-

based Brain–Computer Interface (BCI) system for home automation, enabling users to 

control household appliances using brain signals. The proposed system acquires 

electroencephalogram (EEG) signals through an affordable consumer-grade EEG headset and 

processes them using signal preprocessing and feature extraction techniques. Machine 

learning algorithms are employed to classify user intent based on distinct EEG patterns. The 

recognized commands are transmitted to a microcontroller-based home automation unit, 

which controls appliances such as lights, fans, and electronic devices in real time. The DIY 

design emphasizes affordability, simplicity, and ease of deployment using open-source 

software and readily available hardware components. Experimental results demonstrate 

reliable command recognition and responsive appliance control, highlighting the feasibility of 

the system for assisted living applications. The proposed solution offers an accessible and 

scalable approach to hands-free smart home control, promoting independence and improved 

living conditions for individuals with motor impairments. 
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INTRODUCTION 

For the past decades, numerous attempts have been made to allow patients with paralysis, 

suffering from neurological disorders such as amyotrophic lateral sclerosis or spinal cord 

injury, to communicate with the external world using an electroencephalography (EEG)-

based brain–computer interface (EEG-based BCI) [1]. Recently, the application of BCIs has 

been extended from clinical areas to non-medical fields, including entertainment, cognitive 

training, and others, for normal users [2]. Especially, it becomes plausible that the user of a 

BCI can achieve the control of home systems by thoughts through the Internet of things (IoT) 

[3]. 

 

A type of EEG-based BCI leverages an event-related potential (ERP), mostly the P300 

component (P300) of it, to enable the selective control of communication interfaces through 

attentive brain responses to target stimuli [4]. For instance, the speller made of a BCI based 

on P300 (P300 BCI) allows a user to type a letter simply by selectively attending to the target 

letter [5]. However, the performance of P300 BCI relying on visual stimuli is vulnerable to 

visual distraction due to interferences of adjacent stimuli or other environmental distractors 

[1,6–8]. This issue has been practically resolved by the design of stimulus presentation 

paradigms to minimize interferences between target and non-target stimuli [8]. On the other 

hand, recent studies have reported that complex visual and auditory distractions did not affect 

the P300 amplitude and BCI performance because they enhanced brain responses by 

increasing a task difficulty [9,10]. These suggest that P300 BCI can be used in daily living 

environments where visual and auditory distractions are rampant. 

 

To design a BCI with visual stimuli, a few studies have proposed using the N200 

component (N200) of ERPs as well [11]. N200 is evoked by an exogenous attentional 

stimulus and shown to be a useful feature for BCIs since its amplitudes remain relatively 

stable even with visual-motion distraction [11,12]. Guan et al. showed that N200-BCI 

conveyed the information of users’ intention as much as P300 BCI did [13]. Moreover, a 

N200-based BCI speller using motion-onset visual responses demonstrated similar 

performance to the P300 speller [11,12]. Accordingly, the integration of P300 and N200 can 

be advantageous to maintain robust performance of BCIs for home appliance control [12]. 

In the aspect of environmental control, ERPs, especially P300 have been widely used 

for BCIs. In order to elicit P300, the arrangement of visual stimuli in the form of a 

matrix has been the most commonly used. The matrix-based paradigm to present stimuli 
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originally designed for a P300 speller [14] has also been used for the purpose of controlling 

environmental devices, replacing spelling characters with icons associated with device 

control functions [15–22]. Among studies which chose the matrix-based paradigm for their 

P300 BCIs, some studies especially considered a real-life situation when using P300 BCI for 

the purpose of environmental control. Schettini et al. developed a P300 BCI system for 

Amyotrophic lateral sclerosis (ALS) patients to control devices and showed that the usability 

of P300 BCI was comparable to that of other user interfaces such as touch screens and 

buttons [20]. Corralejo et al. proposed a P300 BCI for disabled people to control 

multiple devices considering real-life scenarios [17]. In the study, the proposed BCI 

received favorable reviews about the design and usefulness from users who had motor or 

cognitive disabilities. Zhang et al.  also developed an environmental control system that 

enables patients with spinal cord injuries to control multiple home appliances based on a 

P300 BCI. The proposed P300 BCI was extended further in terms of considering real-life 

scenarios, so it included an asynchronous mode to allow users to switch the environmental 

control system and selection of devices [22]. Another suggested arrangement of icons was a 

region-based paradigm (RBP) [23]. Aydin et al. [24,25] designed a Web-based P300 BCI for 

controlling home appliances, where a two-level RBP was applied to enable users to control 

various appliances in a single interface without complex visual presentation. Despite recent 

advances in virtual reality (VR) and augmented reality (AR), few studies confirmed the 

feasibility of using VR or AR as a new visual interface for P300 BCI where matrix-based 

visual stimuli were presented in a user’s real or virtual environment [26,27]. 

 

However, previously developed BCIs for environmental control required a separate display to 

provide visual stimuli [15–17,19,21,22,28–30], and the display only presents control icons as 

visual stimuli. In such a system environment, users are not able to see the real devices they 

are controlling and find it difficult to recognize instantly whether the devices operate as 

intended. Considering the real-life situation of controlling home appliances, it is desirable 

that a user interface (UI) for BCIs shows both visual stimuli and the resulting operation of 

devices in a single screen. Some home appliances whose main purpose is displaying videos 

on screen such as TV and video intercom can additionally show stimuli on the existing 

screen while the appliance is working [31,32]. On the contrary, most home appliances (e.g., 

lamp, fridge, and washing machine) are equipped with only a limited screen or none, thus 

requiring a separate screen for UI to integrate visual stimuli and control results. Therefore, 

we propose a UI displaying a control icon and a real time image of corresponding 
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appliances together and verify that the proposed UI works effectively in a P300-based BCI 

even with increased potential distractions due to the live image of appliances. 

 

In this study, we developed a set of real-time BCIs for controlling home appliances, including 

a TV set (BCITV), a digital door-lock (DL) (BCIDL), and an electric light (EL) (BCIEL). 

The developed BCIs harnessed both P300 and N200 to overcome visual distractions. For 

BCITV, we developed a UI based on the Multiview TV function showing four different 

preview channels simultaneously along with a main channel to which the BCI user 

attended. For both BCIDL and BCIEL, we developed a see-through UI on the tablet screen 

that captured a live image of the appliances while displaying appliance control icons on top 

of the live image. The control commands for BCIDL included lock and unlock, whereas 

those for BCIEL included the degrees of brightness. We evaluated the applicability of our 

online BCIs for controlling diverse home appliances in an unshielded environment. 

 

Materials and Methods 

Participants 

Sixty healthy subjects participated in the study (14 females, mean age of 21.7 ± 2.3 years 

old). Subjects had no history of neurological disease or injury and reportedly a good 

sleep over seven hours (7.4 ± 1.6 hours) the day before the experiment. Among them, thirty 

subjects participated in the experiment of BCITV, fifteen participated in that of BCIDL and 

fifteen in BCIEL. In previous studies, the number of subjects were from 5 to 18 

[5,6,8,12,15,17,19,20,22,24–26], so we set the number of subjects at a level similar to this 

range. All subjects gave informed consent for this study, approved by the Ulsan National 

Institutes of Science and Technology, Institutional Review Board (IRB: UNISTIRB-18-

08-A). 

 

EEG Recordings 

The scalp EEG of subjects was recorded from 31 active wet electrodes (FP1, FPz, FP2, 

F7, F3, Fz, F4, F8, FC5, FC1, FCz, FC2, FC6, T7, C3, Cz, C4, CP5, T8, CP1, CPz, CP2, 

CP6, P7, P3, Pz, P4, P8, O1, Oz, and O2) using a standard EEG cap following the 10–20 

system of American Clinical Neurophysiology Society Guideline 2 (actiCHamp, Brain 

Products GmbH, Germany). Reference and ground electrodes were placed on linked 

mastoids of the left and right ears, respectively. Impedances of all electrodes were 

reduced to <5 kΩ. EEG signals were digitized at 500 Hz and band-pass filtered between 0.01 

and 50 Hz. 
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Experiment Setup 

To build a BCI for controlling TV channels, we developed an emulated Multiview TV 

platform that displayed four preview channels simultaneously at four quadrants from the 

screen center (see Figure 1). The video clips in each channel provided the information about 

channel previews, but at the same time played as visual distractors. The video clips were 

presented on a 50 inch TV with a refresh rate of 60 Hz and a 1920 × 1080 resolution 

(commercial Ultra-high-definition television (UHD TV), LG Electronics Co., Ltd., Republic 

of Korea). The corner parts of the video clip windows were surrounded by additional red 

stimuli. Each of these four stimuli flickered with a frequency of 8 Hz. The flickering 

period (125 ms) was divided into 62.5 ms flash and 62.5 ms dark phases [33]. 

 

A trial block began with a gaze fixation at the center of the screen. Then, the instruction 

about a target channel was given in a manner that the boundary of the target channel turned 

to red. Following the instruction, the four video clips were simultaneously displayed together 

with the four surrounding stimuli that flickered one at a time in a random order, each for 

10 times (Figure 1). Subjects were instructed to gaze at the stimulus surrounding the 

target channel while being seated comfortably on an armchair placed at the distance of 2.5 

m from the TV screen. Then, the video clip of the channel selected by either the system 

software (during training) or the BCI (during testing) was presented for 1000 ms on full 

screen as feedback. The locations of the video clips were shuffled across the trial blocks. The 

BCI experiments to control the DL or the EL also employed the same paradigm as the 

TV experiment, except that the stimuli were presented on the tablet PC screen. 

Furthermore, instead of showing additional flickering stimuli along with the video clips 

in the case of BCITV, the designed control icons, located at four corners on the screen, 

directly flickered. Subjects were instructed to select one of the two control icons for BCIDL 

(lock/unlock) or three for BCIEL (on/off/±brightness). However, to maintain the ratio of the 

target versus non-target stimuli as 1:3 for all types of the BCIs developed here, we added 

two or one dummy stimuli (that also flickered) to BCIDL or BCIEL, respectively. 
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Figure 1. Experimental paradigm and stimulus sequence for each device control. 

(Top panel) Task protocol for each block. One block implies selecting one target at 

once. (Bottom panel) Stimulus sequence for each device; TV, DL (door lock), and 

EL (electric light). 

 

EEG Preprocessing and Online BCI 

EEG signal preprocessing in our analysis included bad channel removal, re-referencing, 

and artifact removal [11–13,33,34]. The “bad” channels were detected by cross-

correlation of low-pass filtered oscillations between neighboring channels (<2 Hz) [34]. In 

our case, a channel showing average correlation with all other neighboring channels less 

than 0.4 was deemed to be a bad channel and removed from the analysis. The noise 

components from the reference source were eliminated by the common average re-

reference (CAR) [5]. This reference-free EEG was band-pass filtered through 0.5–12 Hz 

with an infinite impulse response filter (Butterworth filter, the fourth order). Artifacts were 

removed by the artifact subspace reconstruction (ASR) method [35]. ERPs were extracted by 

segmenting and averaging EEG signals in the epochs that were time-locked to the stimuli, 

where segmentation extracted EEG signals 200 ms before and 600 ms after the stimulus 

onset. Finally, we applied the matched filter to enhance ERP waveforms [5]. 

 

In each experiment, the training took 50 trial blocks while the testing was performed over 30 

trial blocks. During the training session, the user gazed at a randomly displayed target. 

The feedback provided the actual, not to be decoded, channel. From the acquired 

training data, we extracted distinguishable amplitude features between the target and non-

target ERPs by the two-sample t-test (p < 0.01). Then, we reduced the dimensionality of 

the feature space using the principal component analysis (PCA) with the number of 

principal components determined by the amount of variance of the features the principal 

components explained (>90% in our study). Next, we built a classifier for identifying the 

target from ERP features based on the support vector machine (SVM) with the linear 

kernel. During the testing session, subjects controlled the given home appliance following 
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the target instruction using the trained BCI. The classifier trained in the previous session 

predicted an intended target command from ERPs and the prediction outcome was 

displayed as feedback. 

 

Evalutation 

To evaluate the discriminability of ERPs between the target and non-target stimuli, we 

calculated the proportion of the EEG signal variance explained by stimuli (r2), which 

represents the degree of a difference between the target and non-target ERPs [36]. Hence, 

the magnitude of r2 is likely to be associated with BCI performance. r2 at time t was 

defined as a ratio of an explained sum of squares (ESS) to a total sum of squares (TSS): 

 
where gt is the magnitude of grand average of all ERPs for both target and nontarget stimuli, 

providing a baseline ERP magnitude. gt is the magnitude of a single ERP, also for either 

target or non-target stimuli. ft is a modeled ERP, which represents the magnitude of average 

target ERP or averaged non-target ERP. 

The modeled ERP means a representative target or non-target ERP estimated by averaging 

single-trial target or non-target ERPs, respectively. More blocks with clear ERP components 

would lead to higher r2, being close to 1. If some blocks do not show a clear ERP 

component, the magnitude of the average target ERP would be smaller than that of the 

single ERP, resulting in smaller r2. 

 

 

 

where K and KJ indicate the number of presentations of target and non-target stimuli, 

respectively. 

With the ERPs that showed high r2 (i.e., r2 > 0.8), we measured the peak latencies of P300 

and N200 components. The peak latency of each component could reflect characteristics of 
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σ 2 

cognitive processes in controlling different home appliance devices. 

To assess BCI performance, we first measured accuracy and the information transfer rate 

(ITR). 

Accuracy was calculated as 

n 
× 100(%) (5) 

N 

where n denotes the number of times a correct target was selected by a BCI, and N 

denotes a total number of trial blocks (i.e., 30 in our testing scenario). ITR was 

calculated as 

ITR = log C + P log P + (1 – P) log
  

1 – P
 
, (6) 

2 2 2 C – 1 

where P denotes measured accuracy and C denotes the number of classes. We also 

assessed the efficiency of BCI control by measuring changes of accuracy and ITR 

according to the number of the repetitions of stimulus presentation. The number of 

repetitions varied from 1 to 10 in this analysis. To verify performance reliability, we 

determined the chance level of each device control by constructing the distribution of 

surrogate data, which were generated by randomly shuffling the class labels. In other words, 

we repeated a procedure 1000 times in which a classifier was randomly built and tested using 

the surrogate data. Then, we regarded the upper bound of a 95% interval of accuracy as the 

chance level. Finally, we analyzed potential differences in ERPs between a good 

performance group (Good PG) and a poor performance group (Poor PG). Here, each 

subject was assigned to Good PG if his/her performance (i.e., accuracy) was higher than 

the mean of all the subjects, or to Poor PG otherwise. Then, we quantified the distinctness 

of ERP features between classes (i.e., target vs. non-target) using the Fisher’s ratio (FR), 

which represents the degree of separation between classes, for each subject: 

σ2 

FR =  b , (7) 

w 

where σb
2 is between-class variance and σw

2 is within-class variance. 

Statistical Tests 

Statistical tests were conducted on three hypotheses about results from our online BCI 

experiment for controlling home appliances. One of the hypotheses was established for 

ERP peak latency to compare the ERP patterns of BCITV, BCIDL, and BCIEL. In this 
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case, the null hypothesis was formed as follows [37]: 

H0: There is no difference in the average of peak latency between appliances. 

The other hypotheses were established to compare the performance metrics between 

appliances, with the null hypotheses given by: 

H0: There is no difference in the average accuracy between appliances. 

H0: There is no difference in the average ITR between appliances. 

For these hypotheses, the independent variable was the appliance (TV, DL, or EL) 

controlled by BCIs, and one-way analysis of variance (ANOVA) was used to test the 

hypotheses. The sample size was the same as the number of subjects, 30 for BCITV and 

15 for BCIDL and BCIEL, respectively. The significance level (α) was set as 0.05. 

Another statistical test was performed to compare the Fisher’s ratio between performance-

based 

groups (i.e., Good PG and Bad PG). The null hypothesis was set as: 

H0: There is no difference in the Fisher’s ratio between Good PG and Bad PG. 

This hypothesis was tested for each appliance respectively using the Mann–Whitney U 

test. 

The sample size was equal to the number of subjects included in each group and α = 0.05. 

 

RESULTS 

We examined the ERP patterns generated during the BCI control of each home appliance. 

Figure 2 depicts the grand average of ERPs in response to the target and non-target stimuli at 

all the EEG channels. It is clearly shown that the target stimuli elicited large deflections with 

locally distributed ERP components, whereas the non-target stimuli did not. The target 

stimuli apparently elicited more prominent P300 and N200 components in BCITV than in 

BCIDL and BCIEL. Spatiotemporal patterns of ERPs were seemingly different between the 

BCIs for each appliance. In BCITV, a positive component was dominantly observed over the 

frontocentral area 300 ms after stimulus onset (i.e., P300), along with a negative component 

mostly observed over the occipitoparietal area 338 ms after onset (i.e., N2pc, pc denotes 

posterior contralateral scalp distribution). In BCIDL, on the contrary, P300 was 

predominantly observed over the occipitoparietal area, whereas N2pc was found on the frontal 

area. Unlike frontocentral P300 shown in BCITV, P300 for BCIDL appeared right after a 

smaller negative component. In BCIEL, ERP components were shorter than those in other 

BCIs, without clear observation of P300 or N2pc. The most dominant component over 

the frontal area was a positive component appearing earlier than P300 in other BCIs, 
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preceded and followed by smaller negative components, and the dominant component over 

the occipitoparietal area was a negative component, preceded and followed by smaller 

positive components. 

 

Statistical evaluation of ERP patterns could more clearly reveal appliance-specific 

spatiotemporal ERP patterns. Figure 3a depicts the time–channel maps of the ERP 

amplitudes that were significantly different from baseline in response to the target stimuli 

(one-way analysis of variance test on a sample-by-sample basis, p < 0.01). The maps for 

each BCI showed that significant ERP components appeared predominantly in a time 

window between 150 and 450 ms. Hence, we set the window of ERP analysis to this period 

and generated a series of topological maps at every 25 ms within the window. 

Spatiotemporal ERPs in the time window above in response to the stimuli for each home 

appliance showed dissimilar patterns, as illustrated in Figure 3b. In BCITV, a small positive 

deflection began to appear at 200 ms in the occipital area and spread forward over parietal 

and frontal areas. This positive deflection (i.e., positivity) became pronounced in anterior 

areas after 300 ms, and at the same time, a negative deflection (i.e., negativity) generated at 

the occipital area before 300 ms became pronounced in posterior areas, showing a clear 

contrast with anterior positivity. In BCIDL, a spatial pattern of anterior positivity together 

with posterior negativity, similar to the pattern shown after 350 ms in BCITV, appeared earlier 

at 200 ms. Then, posterior negativity faded out and anterior positivity moved backward over 

posterior areas. Around 300 ms, negative deflections replaced the previous positivity with 

wider coverage of lateral areas. At the same time, posterior negativity migrated from 

anterior areas became larger and wider over lateral areas. This pattern of anterior negativity 

together with posterior positivity gradually disappeared until 400 ms. In BCIEL, 

spatiotemporal ERP patterns changed more rapidly than in the cases of other BCIs. A 

spatial pattern of weaker anterior negativity and stronger posterior positivity began to 

appear after 150 ms, which was flipped over after 200 ms. Then, a pronounced pattern of 

anterior positivity along with posterior negativity, which was similar to the spatial pattern 

shown at 300 ms in BCITV, appeared briefly. Then, an opposite pattern of anterior 

negativity and posterior positivity emerged after 300 ms, which was similar to that in 

BCIDL. 



11 

International Journal Research Publication Analysis                                              
 

Copyright@                                                                                                                                                                                        Page 11   

 

Figure 2. Grand average event-related potentials (ERPs) across all subjects of all 

electroencephalography (EEG) channels for TV, DL, and EL. Solid red lines indicate 

the target ERP and solid dark lines denote average of three non-target ERPs.. 

 

 

Figure 3. (a) Time-channel ERP maps and (b) topological map of scalp. Color scale 

denotes significantly different ERP amplitude by the two-sample t-test on a sample-by-

sample basis (p < 0.01). (a) The vertical solid dark lines denote the window of analysis 

from 150 to 450 ms. (b) An individual topological map indicates a time instant within 

the window of analysis, which is represented as the interval of 25 ms. 

 

We also examined the latency of the ERP components observed within the time window 

above. Table 1 shows the latencies of the most predominant positive and negative ERP 

amplitudes showing the greatest t-values (through the paired t-test). On average, BCITV 

yielded the slowest ERP components for both positive and negative deflections (the positive 

peak latency: 312.26 ± 66.02 ms and the negative peak latency: 271.81 ± 97.46 ms), whereas 

the BCIEL revealed the fastest ERP components (the positive 
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peak latency: 235.03 ± 104.52 ms and the negative peak latency: 226.26 ± 102.75 ms). A 

one-way analysis of variance (ANOVA) of latency dependent upon home appliances showed 

a significant difference in latency between the three appliances for both positive deflection (F 

= 9.91, p < 0.01) and negative deflection (F = 21.18, p < 0.01). 

 

Table 1. Latencies of the positive and negative component during each device control. 

 

 

Next, we tested the online BCI control performance for each appliance. Figure 4 shows the 

online accuracy of each appliance control. BCITV, BCIDL, and BCIEL achieved average 

(minimum~maximum) accuracy across subjects as 83.0% ± 17.9% (40.0%~100%), 78.7% ± 

16.2% (43.3%~96.7%), and 80.0% ± 15.6% (43.3%~96.7%), respectively. One-way ANOVA 

showed no significant difference in accuracy between the BCIs (p = 0.69). The chance level 

of classification, obtained by the surrogate data, was 41.17% for BCITV, 40.35% for BCIDL, 

and 41.02% for BCIEL, respectively (see Section 2.5). The averaged ITR was 12.06 ± 6.19, 

3.44 ± 2.78, and 7.27 ± 3.71 bits/min for BCITV, BCIDL, and BCIEL, respectively. One-way 

ANOVA showed a significant difference in ITR (F = 16.67, p < 0.001). 
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Figure 4. Online performance of three types of brain–computer interfaces (BCIs) to 

control TV, DL, and EL. The horizontal labels denote subject IDs. The grey bars show 

average accuracy. The dotted dark line of each device indicates the chance level of 

classification. 

 

In a post hoc analysis, we examined the effect of the number of stimulus repetitions on 

BCI performance. Figure 5 depicts BCI performance as a function of the number of 

stimulus repetitions calculated offline after online BCI experiments. Two performance 

measures, accuracy and information transfer rate (ITR) [38], increased with the number of 

repetitions but saturated at some points after which no increase in performance was 

achieved (paired t-test, p < 0.05). The result shows that BCITV required the most 

repetitions (nine repetitions), followed by BCIEL (six) and BCIDL (six). 

 

 

Figure 5. Performance changes depending on the number of stimulation repetitions. 

(Left panel) Shows the curves of classification accuracy of each type of BCIs. (Right 

panel) shows those of the information transfer rate (ITR). 
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Figure 6. (a) ERP amplitude distribution of the good performance group (Good 

PG) and the poor performance group (Poor PG). (b) Examples of the feature spaces of 

the best performing subject (in Good PG, subject 2) and the worst performing subject 

(in Poor PG, subject 28). Red triangles denote feature vectors in the target class, and 

dark inverted triangles denote those in the non-target class. Blue squares indicate the 

mean of each class. Dotted blue lines denote the distance between the means of two 

classes. Solid red or dark ellipses represent a contour of the multivariate normal 

distribution of each class. (c) The normal distribution of Fisher’s ratios per group. P 

indicates probability in the distribution. Red and dark triangles denote subjects in 

Good PG and Poor PG, respectively. 

 

Finally, we investigated differences in neural activity between the Good PG and 

Poor PG (see Section 2 for defining a performance group (PG)). Figure 6a depicts the 

topological maps of the ERP amplitudes at latency described in Table 1. It demonstrates that 

the Good PG elicited more evident ERP components than the Poor PG did. We further 

analyzed the feature space of each group where the classifiers discriminated a target 

command for BCIs. Figure 6b shows the examples of the feature space of the Good PG and 

the Poor PG. Features 1 and 2 denote the first and second principal components of the 

ERPs, although more features were actually used in classification. Apparently, the feature 

vectors of two classes (i.e., target vs. non-target) were better separated in the Good PG 

than in the Poor PG. The overall Fisher ratio (FR) in each group showed that the ERP 

features were more distinguishable between the classes in the Good PG than in the Poor PG 

(Figure 6c). The Mann–Whitney U test showed a significant difference between Good PG 
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and Poor PG in FR of BCITV (U = 32.0, p < 0.01) and a marginal difference of FR in 

BCIEL (U = 12.0, p = 0.08), but not in BCIDL (U = 17.0, p = 0.27). 

 

DISCUSSION 

This study examined the plausibility of using EEG-BCIs for controlling home appliances 

in real time, including TV, door lock, and electric light. The developed BCIs generated 

an appliance control command in real time by detecting the EEG features elicited when the 

user recognized the appearance of a stimulus associated with an intended command. 

Healthy participants in the study could control the appliances via BCIs with an accuracy 

ranging from 78.7% to 83.0% on average. No difference in online performance among 

the appliances was found. Such controllability drew upon differential spatiotemporal ERP 

patterns between the target and non-target stimuli. Interestingly, the ERP patterns in response 

to the target for individual appliances appeared to be distinct from each other, even though the 

same oddball paradigm was employed. This implies that the ERP components traditionally 

exploited in BCIs based on the oddball paradigm, such as P300 and N200 [5,6,11,13], could 

be further individualized to a particular appliance when an ERP-based BCI is practically 

applied for home environments. 

 

ERP waveforms involving various components were distinctively observed during the 

control of each appliance. It is likely that different background distraction could 

influence the recognition of a visual stimulus in different ways. In BCITV, visual 

stimulation elicited frontocentral N200 as well as occipitoparietal P200 and N300 besides 

typical frontocentral P300. The appearance of these ERP components might be associated 

with various cognitive processes in the presence of visual distraction. For instance, visual 

distraction by video clips could make a viewer emotionally responsive to video while 

concentrating on its adjacent target stimulus to select the channel. This might be 

reflected in N200 as a previous study revealed that N200 is induced by affective processing 

in decision-making [39]. Moreover, the Multiview TV could lead to prospective memory 

(PM) retrieval as the user anticipated viewing a target channel, which could elicit 

occipital N300 associated with PM retrieval [40]. In the design of BCITV, the clamp-like 

shape of a stimulus was attached to the corner of a rectangular TV channel window. 

Accordingly, highlighting of the stimulus could generate a mismatch among the four 

corners of the window, which might lead to an incongruence effect. This incongruence 

effect could increase occipitoparietal P200 [41]. 
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On the contrary, visual stimulation in both BCIDL and BCIEL elicited frontocentral P200 

and N300 as well as occipitoparietal N200 and P300. Particularly, occipitoparietal N200 

here can be regarded as N2pc (pc denotes posterior contralateral scalp distribution) 

preceding P300. N2pc is known to be associated with the focusing of attention [42]. 

Since the stimuli in BCIDL and BCIEL did not involve much visual distraction, as was 

the case of BCITV, and were clearer than those in BCITV, the user might focus more 

readily on a target stimulus, as reflected in N2pc. However, it remains unclear what 

cognitive processes were possibly associated with frontocentral P200 and N300 in BCIDL 

and BCIEL. Based on our results, we speculate that different visual distractions 

associated with each appliance might lead to differences in spatiotemporal ERP patterns, 

but further investigations should follow. 

 

If the usage context of TV was designed similar to that of BCIDL and BCIEL, where a user 

selected an icon representing a specific function, the resulting ERP components in BCITV 

would be similar to those in BCIDL and BCIEL. Yet, here, we designed BCITV in the form 

of Multiview TV to effectively make use of an existing display and investigate whether this 

type of BCI causes different results from BCIs that uses a separate screen presenting icons 

and appliances controlled. In terms of accuracy, there was no significant difference between 

types of BCI, but ERP components were different. This result could be useful for the 

design of a BCI for controlling home appliances mainly used on a screen. 

 

According to our results, BCITV required more repetitions of stimuli than others. 

Generally, visual distraction and working memory are known to involve more cognitive 

loads [43]. That is, TV with complicated visual distractions could lead to slow latency 

through more demanding cognitive processes [44]. Therefore, BCITV might require a 

considerable number of repetitions to capture pronounced ERP components. Meanwhile, 

an individual difference among subjects in the online BCI control performance could be 

caused by several factors such as user age, physical, and psychological conditions, and 

information processing capacity [33,45,46]. Particularly, the stimulus types designed in this 

study, accompanying various ambient visual distractions, could lead to individual differences 

in information processing loads. Additionally, differences in motivation might be related. 

For example, the user who used BCITV could be more motivated to choose a preferred 

channel than the users of BCIDL or BCIEL with simpler control objectives. The UI of 

BCIEL and BCIDL displayed live images of devices together with visual stimuli to show 



17 

International Journal Research Publication Analysis                                              
 

Copyright@                                                                                                                                                                                        Page 17   

a user the real-time feedback of the operation of devices. We envision that this can be 

further developed to create BCIs integrated with augmented reality (AR) using a see-

through display, which will more effectively allow a user to see target appliances and 

visual stimuli at the same time [47]. In sum, the present study demonstrated that a BCI 

based on spatiotemporal ERP patterns can help users control home appliances along with 

advances in the Internet of things (IoT) and AR, to which the in-depth understanding of brain 

activity patterns for controlling different appliances will be essential. 
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