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ABSTRACT:

Assisted living technologies play a crucial role in improving the quality of life for individuals
with physical disabilities and limited mobility. This paper presents a low-cost DIY EEG-
based Brain—Computer Interface (BCI) system for home automation, enabling users to
control household appliances using brain signals. The proposed system acquires
electroencephalogram (EEG) signals through an affordable consumer-grade EEG headset and
processes them using signal preprocessing and feature extraction techniques. Machine
learning algorithms are employed to classify user intent based on distinct EEG patterns. The
recognized commands are transmitted to a microcontroller-based home automation unit,
which controls appliances such as lights, fans, and electronic devices in real time. The DIY
design emphasizes affordability, simplicity, and ease of deployment using open-source
software and readily available hardware components. Experimental results demonstrate
reliable command recognition and responsive appliance control, highlighting the feasibility of
the system for assisted living applications. The proposed solution offers an accessible and
scalable approach to hands-free smart home control, promoting independence and improved

living conditions for individuals with motor impairments.

KEYWORDS: brain—computer interface; electroencephalography; home appliance; TV,
digital door-lock; electric light; event-related potential
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INTRODUCTION

For the past decades, numerous attempts have been made to allow patients with paralysis,
suffering from neurological disorders such as amyotrophic lateral sclerosis or spinal cord
injury, to communicate with the external world using an electroencephalography (EEG)-
based brain—computer interface (EEG-based BCI) [1]. Recently, the application of BCIs has
been extended from clinical areas to non-medical fields, including entertainment, cognitive
training, and others, for normal users [2]. Especially, it becomes plausible that the user of a
BCI can achieve the control of home systems by thoughts through the Internet of things (10T)

[3].

A type of EEG-based BCI leverages an event-related potential (ERP), mostly the P300
component (P300) of it, to enable the selective control of communication interfaces through
attentive brain responses to target stimuli [4]. For instance, the speller made of a BCI based
on P300 (P300 BCI) allows a user to type a letter simply by selectively attending to the target
letter [5]. However, the performance of P300 BCI relying on visual stimuli is vulnerable to
visual distraction due to interferences of adjacent stimuli or other environmental distractors
[1,6-8]. This issue has been practically resolved by the design of stimulus presentation
paradigms to minimize interferences between target and non-target stimuli [8]. On the other
hand, recent studies have reported that complex visual and auditory distractions did not affect
the P300 amplitude and BCI performance because they enhanced brain responses by
increasing a task difficulty [9,10]. These suggest that P300 BCI can be used in daily living

environments where visual and auditory distractions are rampant.

To design a BCI with visual stimuli, a few studies have proposed using the N200
component (N200) of ERPs as well [11]. N200 is evoked by an exogenous attentional
stimulus and shown to be a useful feature for BClIs since its amplitudes remain relatively
stable even with visual-motion distraction [11,12]. Guan et al. showed that N200-BCI
conveyed the information of users’ intention as much as P300 BCI did [13]. Moreover, a
N200-based BCI speller using motion-onset visual responses demonstrated similar
performance to the P300 speller [11,12]. Accordingly, the integration of P300 and N200 can
be advantageous to maintain robust performance of BCls for home appliance control [12].

In the aspect of environmental control, ERPs, especially P300 have been widely used
for BCls. In order to elicit P300, the arrangement of visual stimuli in the form of a

matrix has been the most commonly used. The matrix-based paradigm to present stimuli
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originally designed for a P300 speller [14] has also been used for the purpose of controlling
environmental devices, replacing spelling characters with icons associated with device
control functions [15-22]. Among studies which chose the matrix-based paradigm for their
P300 BCls, some studies especially considered a real-life situation when using P300 BCI for
the purpose of environmental control. Schettini et al. developed a P300 BCI system for
Amyotrophic lateral sclerosis (ALS) patients to control devices and showed that the usability
of P300 BCI was comparable to that of other user interfaces such as touch screens and
buttons [20]. Corralejo et al. proposed a P300 BCI for disabled people to control
multiple devices considering real-life scenarios [17]. In the study, the proposed BCI
received favorable reviews about the design and usefulness from users who had motor or
cognitive disabilities. Zhang et al. also developed an environmental control system that
enables patients with spinal cord injuries to control multiple home appliances based on a
P300 BCI. The proposed P300 BCI was extended further in terms of considering real-life
scenarios, so it included an asynchronous mode to allow users to switch the environmental
control system and selection of devices [22]. Another suggested arrangement of icons was a
region-based paradigm (RBP) [23]. Aydin et al. [24,25] designed a Web-based P300 BCI for
controlling home appliances, where a two-level RBP was applied to enable users to control
various appliances in a single interface without complex visual presentation. Despite recent
advances in virtual reality (VR) and augmented reality (AR), few studies confirmed the
feasibility of using VR or AR as a new visual interface for P300 BCI where matrix-based

visual stimuli were presented in a user’s real or virtual environment [26,27].

However, previously developed BCls for environmental control required a separate display to
provide visual stimuli [15-17,19,21,22,28-30], and the display only presents control icons as
visual stimuli. In such a system environment, users are not able to see the real devices they
are controlling and find it difficult to recognize instantly whether the devices operate as
intended. Considering the real-life situation of controlling home appliances, it is desirable
that a user interface (Ul) for BCls shows both visual stimuli and the resulting operation of
devices in a single screen. Some home appliances whose main purpose is displaying videos
on screen such as TV and video intercom can additionally show stimuli on the existing
screen while the appliance is working [31,32]. On the contrary, most home appliances (e.g.,
lamp, fridge, and washing machine) are equipped with only a limited screen or none, thus
requiring a separate screen for Ul to integrate visual stimuli and control results. Therefore,

we propose a Ul displaying a control icon and a real time image of corresponding
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appliances together and verify that the proposed Ul works effectively in a P300-based BCI

even with increased potential distractions due to the live image of appliances.

In this study, we developed a set of real-time BCls for controlling home appliances, including
a TV set (BCITV), a digital door-lock (DL) (BCIDL), and an electric light (EL) (BCIEL).
The developed BCIs harnessed both P300 and N200 to overcome visual distractions. For
BCITV, we developed a Ul based on the Multiview TV function showing four different
preview channels simultaneously along with a main channel to which the BCI user
attended. For both BCIDL and BCIEL, we developed a see-through Ul on the tablet screen
that captured a live image of the appliances while displaying appliance control icons on top
of the live image. The control commands for BCIDL included lock and unlock, whereas
those for BCIEL included the degrees of brightness. We evaluated the applicability of our

online BClIs for controlling diverse home appliances in an unshielded environment.

Materials and Methods

Participants

Sixty healthy subjects participated in the study (14 females, mean age of 21.7 + 2.3 years
old). Subjects had no history of neurological disease or injury and reportedly a good
sleep over seven hours (7.4 £ 1.6 hours) the day before the experiment. Among them, thirty
subjects participated in the experiment of BCITV, fifteen participated in that of BCIDL and
fifteen in BCIEL. In previous studies, the number of subjects were from 5 to 18
[5,6,8,12,15,17,19,20,22,24-26], so we set the number of subjects at a level similar to this
range. All subjects gave informed consent for this study, approved by the Ulsan National
Institutes of Science and Technology, Institutional Review Board (IRB: UNISTIRB-18-
08-A).

EEG Recordings

The scalp EEG of subjects was recorded from 31 active wet electrodes (FP1, FPz, FP2,
F7, F3, Fz, F4, F8, FC5, FC1, FCz, FC2, FC6, T7, C3, Cz, C4, CP5, T8, CP1, CPz, CP2,
CP6, P7, P3, Pz, P4, P8, 01, Oz, and O2) using a standard EEG cap following the 10-20
system of American Clinical Neurophysiology Society Guideline 2 (actiCHamp, Brain
Products GmbH, Germany). Reference and ground electrodes were placed on linked
mastoids of the left and right ears, respectively. Impedances of all electrodes were
reduced to <5 kQ. EEG signals were digitized at 500 Hz and band-pass filtered between 0.01
and 50 Hz.
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Experiment Setup

To build a BCI for controlling TV channels, we developed an emulated Multiview TV
platform that displayed four preview channels simultaneously at four quadrants from the
screen center (see Figure 1). The video clips in each channel provided the information about
channel previews, but at the same time played as visual distractors. The video clips were
presented on a 50 inch TV with a refresh rate of 60 Hz and a 1920 x 1080 resolution
(commercial Ultra-high-definition television (UHD TV), LG Electronics Co., Ltd., Republic
of Korea). The corner parts of the video clip windows were surrounded by additional red
stimuli. Each of these four stimuli flickered with a frequency of 8 Hz. The flickering
period (125 ms) was divided into 62.5 ms flash and 62.5 ms dark phases [33].

A trial block began with a gaze fixation at the center of the screen. Then, the instruction
about a target channel was given in a manner that the boundary of the target channel turned
to red. Following the instruction, the four video clips were simultaneously displayed together
with the four surrounding stimuli that flickered one at a time in a random order, each for
10 times (Figure 1). Subjects were instructed to gaze at the stimulus surrounding the
target channel while being seated comfortably on an armchair placed at the distance of 2.5
m from the TV screen. Then, the video clip of the channel selected by either the system
software (during training) or the BCI (during testing) was presented for 1000 ms on full
screen as feedback. The locations of the video clips were shuffled across the trial blocks. The
BCI experiments to control the DL or the EL also employed the same paradigm as the
TV experiment, except that the stimuli were presented on the tablet PC screen.
Furthermore, instead of showing additional flickering stimuli along with the video clips
in the case of BCITV, the designed control icons, located at four corners on the screen,
directly flickered. Subjects were instructed to select one of the two control icons for BCIDL
(lock/unlock) or three for BCIEL (on/off/xbrightness). However, to maintain the ratio of the
target versus non-target stimuli as 1:3 for all types of the BCIs developed here, we added
two or one dummy stimuli (that also flickered) to BCIDL or BCIEL, respectively.
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Figure 1. Experimental paradigm and stimulus sequence for each device control.
(Top panel) Task protocol for each block. One block implies selecting one target at

once. (Bottom panel) Stimulus sequence for each device; TV, DL (door lock), and
EL (electric light).

EEG Preprocessing and Online BCI

EEG signal preprocessing in our analysis included bad channel removal, re-referencing,
and artifact removal [11-13,33,34]. The “bad” channels were detected by cross-
correlation of low-pass filtered oscillations between neighboring channels (<2 Hz) [34]. In
our case, a channel showing average correlation with all other neighboring channels less
than 0.4 was deemed to be a bad channel and removed from the analysis. The noise
components from the reference source were eliminated by the common average re-
reference (CAR) [5]. This reference-free EEG was band-pass filtered through 0.5-12 Hz
with an infinite impulse response filter (Butterworth filter, the fourth order). Artifacts were
removed by the artifact subspace reconstruction (ASR) method [35]. ERPs were extracted by
segmenting and averaging EEG signals in the epochs that were time-locked to the stimuli,
where segmentation extracted EEG signals 200 ms before and 600 ms after the stimulus
onset. Finally, we applied the matched filter to enhance ERP waveforms [5].

In each experiment, the training took 50 trial blocks while the testing was performed over 30
trial blocks. During the training session, the user gazed at a randomly displayed target.
The feedback provided the actual, not to be decoded, channel. From the acquired
training data, we extracted distinguishable amplitude features between the target and non-
target ERPs by the two-sample t-test (p < 0.01). Then, we reduced the dimensionality of
the feature space using the principal component analysis (PCA) with the number of
principal components determined by the amount of variance of the features the principal
components explained (>90% in our study). Next, we built a classifier for identifying the
target from ERP features based on the support vector machine (SVM) with the linear

kernel. During the testing session, subjects controlled the given home appliance following
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the target instruction using the trained BCI. The classifier trained in the previous session
predicted an intended target command from ERPs and the prediction outcome was

displayed as feedback.

Evalutation

To evaluate the discriminability of ERPs between the target and non-target stimuli, we

calculated the proportion of the EEG signal variance explained by stimuli (r2), which

represents the degree of a difference between the target and non-target ERPs [36]. Hence,

the magnitude of r2 is likely to be associated with BCI performance. r2 at time t was

defined as a ratio of an explained sum of squares (Ess) to a total sum of squares (Tss):

. Eg T s ’
;i o858 _ T & (1)
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where gt is the magnitude of grand average of all ERPs for both target and nontarget stimuli,
providing a baseline ERP magnitude. g: is the magnitude of a single ERP, also for either
target or non-target stimuli. f; is a modeled ERP, which represents the magnitude of average
target ERP or averaged non-target ERP.
The modeled ERP means a representative target or non-target ERP estimated by averaging
single-trial target or non-target ERPs, respectively. More blocks with clear ERP components

would lead to higher re, being close to 1. If some blocks do not show a clear ERP
component, the magnitude of the average target ERP would be smaller than that of the

single ERP, resulting in smaller re,
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where K and KJ indicate the number of presentations of target and non-target stimuli,

respectively.

With the ERPs that showed high r2 (i.e., r2 > 0.8), we measured the peak latencies of P300
and N200 components. The peak latency of each component could reflect characteristics of
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cognitive processes in controlling different home appliance devices.

To assess BCI performance, we first measured accuracy and the information transfer rate
(ITR).

Accuracy was calculated as

0 100(%) (5)
N

where n denotes the number of times a correct target was selected by a BCI, and N
denotes a total number of trial blocks (i.e., 30 in our testing scenario). ITR was
calculated as

ITR=log C+Plog P+(L—P)log +=F ©)

2 2 2 c_1

where P denotes measured accuracy and C denotes the number of classes. We also
assessed the efficiency of BCI control by measuring changes of accuracy and ITR
according to the number of the repetitions of stimulus presentation. The number of
repetitions varied from 1 to 10 in this analysis. To verify performance reliability, we
determined the chance level of each device control by constructing the distribution of
surrogate data, which were generated by randomly shuffling the class labels. In other words,
we repeated a procedure 1000 times in which a classifier was randomly built and tested using
the surrogate data. Then, we regarded the upper bound of a 95% interval of accuracy as the
chance level. Finally, we analyzed potential differences in ERPs between a good
performance group (Good PG) and a poor performance group (Poor PG). Here, each
subject was assigned to Good PG if his/her performance (i.e., accuracy) was higher than
the mean of all the subjects, or to Poor PG otherwise. Then, we quantified the distinctness
of ERP features between classes (i.e., target vs. non-target) using the Fisher’s ratio (FR),
which represents the degree of separation between classes, for each subject:

2

FR=_", . )
w

where an? is between-class variance and ow? is within-class variance.

Statistical Tests

Statistical tests were conducted on three hypotheses about results from our online BCI
experiment for controlling home appliances. One of the hypotheses was established for
ERP peak latency to compare the ERP patterns of BCITV, BCIDL, and BCIEL. In this
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case, the null hypothesis was formed as follows [37]:
Ho: There is no difference in the average of peak latency between appliances.

The other hypotheses were established to compare the performance metrics between
appliances, with the null hypotheses given by:

Ho: There is no difference in the average accuracy between appliances.
Ho: There is no difference in the average ITR between appliances.

For these hypotheses, the independent variable was the appliance (TV, DL, or EL)
controlled by BCIs, and one-way analysis of variance (ANOVA) was used to test the
hypotheses. The sample size was the same as the number of subjects, 30 for BCITV and
15 for BCIDL and BCIEL, respectively. The significance level (o) was set as 0.05.
Another statistical test was performed to compare the Fisher’s ratio between performance-
based
groups (i.e., Good PG and Bad PG). The null hypothesis was set as:

Ho: There is no difference in the Fisher’s ratio between Good PG and Bad PG.
This hypothesis was tested for each appliance respectively using the Mann—Whitney U
test.

The sample size was equal to the number of subjects included in each group and o = 0.05.

RESULTS

We examined the ERP patterns generated during the BCI control of each home appliance.
Figure 2 depicts the grand average of ERPs in response to the target and non-target stimuli at
all the EEG channels. It is clearly shown that the target stimuli elicited large deflections with
locally distributed ERP components, whereas the non-target stimuli did not. The target
stimuli apparently elicited more prominent P300 and N200 components in BCITV than in
BCIDL and BCIEL. Spatiotemporal patterns of ERPs were seemingly different between the
BCls for each appliance. In BCITV, a positive component was dominantly observed over the
frontocentral area 300 ms after stimulus onset (i.e., P300), along with a negative component
mostly observed over the occipitoparietal area 338 ms after onset (i.e., N2pc, pc denotes
posterior contralateral scalp distribution). In BCIDL, on the contrary, P300 was
predominantly observed over the occipitoparietal area, whereas N2pc was found on the frontal
area. Unlike frontocentral P300 shown in BCITV, P300 for BCIDL appeared right after a
smaller negative component. In BCIEL, ERP components were shorter than those in other
BCls, without clear observation of P300 or N2pc. The most dominant component over

the frontal area was a positive component appearing earlier than P300 in other BCls,
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preceded and followed by smaller negative components, and the dominant component over
the occipitoparietal area was a negative component, preceded and followed by smaller

positive components.

Statistical evaluation of ERP patterns could more clearly reveal appliance-specific
spatiotemporal ERP patterns. Figure 3a depicts the time—channel maps of the ERP
amplitudes that were significantly different from baseline in response to the target stimuli
(one-way analysis of variance test on a sample-by-sample basis, p < 0.01). The maps for
each BCI showed that significant ERP components appeared predominantly in a time
window between 150 and 450 ms. Hence, we set the window of ERP analysis to this period
and generated a series of topological maps at every 25 ms within the window.
Spatiotemporal ERPs in the time window above in response to the stimuli for each home
appliance showed dissimilar patterns, as illustrated in Figure 3b. In BCITV, a small positive
deflection began to appear at 200 ms in the occipital area and spread forward over parietal
and frontal areas. This positive deflection (i.e., positivity) became pronounced in anterior
areas after 300 ms, and at the same time, a negative deflection (i.e., negativity) generated at
the occipital area before 300 ms became pronounced in posterior areas, showing a clear
contrast with anterior positivity. In BCIDL, a spatial pattern of anterior positivity together
with posterior negativity, similar to the pattern shown after 350 ms in BCITV, appeared earlier
at 200 ms. Then, posterior negativity faded out and anterior positivity moved backward over
posterior areas. Around 300 ms, negative deflections replaced the previous positivity with
wider coverage of lateral areas. At the same time, posterior negativity migrated from
anterior areas became larger and wider over lateral areas. This pattern of anterior negativity
together with posterior positivity gradually disappeared until 400 ms. In BCIEL,
spatiotemporal ERP patterns changed more rapidly than in the cases of other BCls. A
spatial pattern of weaker anterior negativity and stronger posterior positivity began to
appear after 150 ms, which was flipped over after 200 ms. Then, a pronounced pattern of
anterior positivity along with posterior negativity, which was similar to the spatial pattern
shown at 300 ms in BCITV, appeared briefly. Then, an opposite pattern of anterior
negativity and posterior positivity emerged after 300 ms, which was similar to that in
BCIDL.
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Figure 2. Grand average event-related potentials (ERPs) across all subjects of all
electroencephalography (EEG) channels for TV, DL, and EL. Solid red lines indicate
the target ERP and solid dark lines denote average of three non-target ERPs..
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Figure 3. (a) Time-channel ERP maps and (b) topological map of scalp. Color scale
denotes significantly different ERP amplitude by the two-sample t-test on a sample-by-
sample basis (p < 0.01). (a) The vertical solid dark lines denote the window of analysis
from 150 to 450 ms. (b) An individual topological map indicates a time instant within

the window of analysis, which is represented as the interval of 25 ms.

We also examined the latency of the ERP components observed within the time window
above. Table 1 shows the latencies of the most predominant positive and negative ERP
amplitudes showing the greatest t-values (through the paired t-test). On average, BCITV
yielded the slowest ERP components for both positive and negative deflections (the positive
peak latency: 312.26 + 66.02 ms and the negative peak latency: 271.81 + 97.46 ms), whereas
the BCIEL revealed the fastest ERP components (the positive
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peak latency: 235.03 £ 104.52 ms and the negative peak latency: 226.26 = 102.75 ms). A
one-way analysis of variance (ANOVA) of latency dependent upon home appliances showed
a significant difference in latency between the three appliances for both positive deflection (F
=9.91, p <0.01) and negative deflection (F = 21.18, p < 0.01).

Table 1. Latencies of the positive and negative component during each device control.

FP1 FPz FP2 F7 F3 Fz F4 F8 FT® FC5 FCl FC2 FC6 FT10 T7 C3
2 TV 336 334 335 326 338 362 356 334 320 322 3TE 382 342 320 280 358
¢ DL 200 202 200 198 208 206 206 204 182 450 220 206 210 102 250 4132
o EL 102 102 102 214 236 238 236 220 196 226 236 228 432 216 102 352
o ™ 102 102 102 212 21s 228 214 206 436 200 238 220 200 446 37B 220
'E_I DL 332 328 324 330 324 324 328 288 318 328 330 332 278 330 102 128
- EL 16 180 154 102 180 158 166 334 346 158 156 162 344 350 318 102
Cz C4 T8 CP5 CFlL CP2 CP& P7 F3 Pz P4 FE 01 Oz o2 Ave
& TV 376 368 278 262 380 380 258 232 200 450 222 232 198 196 206 31238
¢ DL 230 2386 450 342 334 332 330 324 328 336 316 322 338 356 328 2836
o EL 228 435 450 182 350 356 152 156 338 346 342 155 102 170 104  Z35.03
o TV 224 206 402 362 220 150 326 380 350 334 335 384 348 336 348 IZTLBL
E_I DL 12¢ 102 268 208 118 102 208 20+ 202 102 196 206 210 222 216 Z39.10
- EL 156 102 3562 225 102 102 206 232 228 226 220 424 238 430 430 22626

Next, we tested the online BCI control performance for each appliance. Figure 4 shows the
online accuracy of each appliance control. BCITV, BCIDL, and BCIEL achieved average
(minimum~maximum) accuracy across subjects as 83.0% + 17.9% (40.0%~100%), 78.7% =
16.2% (43.3%~96.7%), and 80.0% * 15.6% (43.3%~96.7%), respectively. One-way ANOVA
showed no significant difference in accuracy between the BCls (p = 0.69). The chance level
of classification, obtained by the surrogate data, was 41.17% for BCITV, 40.35% for BCIDL,
and 41.02% for BCIEL, respectively (see Section 2.5). The averaged ITR was 12.06 + 6.19,
3.44 +2.78, and 7.27 = 3.71 bits/min for BCITV, BCIDL, and BCIEL, respectively. One-way
ANOVA showed a significant difference in ITR (F =16.67, p <0.001).

Copyright@ Page 12



International Journal Research Publication Analysis

100

o
=1

Accuracy (%)
w
o

HH

100 ‘ ) —

50 —’ Clof 95 %
0

Subject # 2> Avg

Figure 4. Online performance of three types of brain—computer interfaces (BCIs) to
control TV, DL, and EL. The horizontal labels denote subject IDs. The grey bars show
average accuracy. The dotted dark line of each device indicates the chance level of

classification.

In a post hoc analysis, we examined the effect of the number of stimulus repetitions on
BCI performance. Figure 5 depicts BCI performance as a function of the number of
stimulus repetitions calculated offline after online BCI experiments. Two performance
measures, accuracy and information transfer rate (ITR) [38], increased with the number of
repetitions but saturated at some points after which no increase in performance was
achieved (paired t-test, p < 0.05). The result shows that BCITV required the most
repetitions (nine repetitions), followed by BCIEL (six) and BCIDL (Six).
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Figure 5. Performance changes depending on the number of stimulation repetitions.
(Left panel) Shows the curves of classification accuracy of each type of BCls. (Right

panel) shows those of the information transfer rate (ITR).
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Figure 6. (a) ERP amplitude distribution of the good performance group (Good
PG) and the poor performance group (Poor PG). (b) Examples of the feature spaces of
the best performing subject (in Good PG, subject 2) and the worst performing subject
(in Poor PG, subject 28). Red triangles denote feature vectors in the target class, and
dark inverted triangles denote those in the non-target class. Blue squares indicate the
mean of each class. Dotted blue lines denote the distance between the means of two
classes. Solid red or dark ellipses represent a contour of the multivariate normal
distribution of each class. (c) The normal distribution of Fisher’s ratios per group. P
indicates probability in the distribution. Red and dark triangles denote subjects in

Good PG and Poor PG, respectively.

Finally, we investigated differences in neural activity between the Good PG and
Poor PG (see Section 2 for defining a performance group (PG)). Figure 6a depicts the
topological maps of the ERP amplitudes at latency described in Table 1. It demonstrates that
the Good PG elicited more evident ERP components than the Poor PG did. We further
analyzed the feature space of each group where the classifiers discriminated a target
command for BCls. Figure 6b shows the examples of the feature space of the Good PG and
the Poor PG. Features 1 and 2 denote the first and second principal components of the
ERPs, although more features were actually used in classification. Apparently, the feature
vectors of two classes (i.e., target vs. non-target) were better separated in the Good PG
than in the Poor PG. The overall Fisher ratio (FR) in each group showed that the ERP
features were more distinguishable between the classes in the Good PG than in the Poor PG

(Figure 6¢). The Mann—Whitney U test showed a significant difference between Good PG
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and Poor PG in FR of BCITV (U = 32.0, p < 0.01) and a marginal difference of FR in
BCIEL (U =12.0, p=0.08), but not in BCIDL (U =17.0, p=0.27).

DISCUSSION

This study examined the plausibility of using EEG-BCIs for controlling home appliances
in real time, including TV, door lock, and electric light. The developed BCls generated
an appliance control command in real time by detecting the EEG features elicited when the
user recognized the appearance of a stimulus associated with an intended command.
Healthy participants in the study could control the appliances via BCls with an accuracy
ranging from 78.7% to 83.0% on average. No difference in online performance among
the appliances was found. Such controllability drew upon differential spatiotemporal ERP
patterns between the target and non-target stimuli. Interestingly, the ERP patterns in response
to the target for individual appliances appeared to be distinct from each other, even though the
same oddball paradigm was employed. This implies that the ERP components traditionally
exploited in BCls based on the oddball paradigm, such as P300 and N200 [5,6,11,13], could
be further individualized to a particular appliance when an ERP-based BCI is practically

applied for home environments.

ERP waveforms involving various components were distinctively observed during the
control of each appliance. It is likely that different background distraction could
influence the recognition of a visual stimulus in different ways. In BCITV, visual
stimulation elicited frontocentral N200 as well as occipitoparietal P200 and N300 besides
typical frontocentral P300. The appearance of these ERP components might be associated
with various cognitive processes in the presence of visual distraction. For instance, visual
distraction by video clips could make a viewer emotionally responsive to video while
concentrating on its adjacent target stimulus to select the channel. This might be
reflected in N200 as a previous study revealed that N200 is induced by affective processing
in decision-making [39]. Moreover, the Multiview TV could lead to prospective memory
(PM) retrieval as the user anticipated viewing a target channel, which could elicit
occipital N300 associated with PM retrieval [40]. In the design of BCITV, the clamp-like
shape of a stimulus was attached to the corner of a rectangular TV channel window.
Accordingly, highlighting of the stimulus could generate a mismatch among the four
corners of the window, which might lead to an incongruence effect. This incongruence

effect could increase occipitoparietal P200 [41].
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On the contrary, visual stimulation in both BCIDL and BCIEL elicited frontocentral P200
and N300 as well as occipitoparietal N200 and P300. Particularly, occipitoparietal N200
here can be regarded as N2pc (pc denotes posterior contralateral scalp distribution)
preceding P300. N2pc is known to be associated with the focusing of attention [42].
Since the stimuli in BCIDL and BCIEL did not involve much visual distraction, as was
the case of BCITV, and were clearer than those in BCITV, the user might focus more
readily on a target stimulus, as reflected in N2pc. However, it remains unclear what
cognitive processes were possibly associated with frontocentral P200 and N300 in BCIDL
and BCIEL. Based on our results, we speculate that different visual distractions
associated with each appliance might lead to differences in spatiotemporal ERP patterns,

but further investigations should follow.

If the usage context of TV was designed similar to that of BCIDL and BCIEL, where a user
selected an icon representing a specific function, the resulting ERP components in BCITV
would be similar to those in BCIDL and BCIEL. Yet, here, we designed BCITV in the form
of Multiview TV to effectively make use of an existing display and investigate whether this
type of BCI causes different results from BCls that uses a separate screen presenting icons
and appliances controlled. In terms of accuracy, there was no significant difference between
types of BCI, but ERP components were different. This result could be useful for the

design of a BCI for controlling home appliances mainly used on a screen.

According to our results, BCITV required more repetitions of stimuli than others.
Generally, visual distraction and working memory are known to involve more cognitive
loads [43]. That is, TV with complicated visual distractions could lead to slow latency
through more demanding cognitive processes [44]. Therefore, BCITV might require a
considerable number of repetitions to capture pronounced ERP components. Meanwhile,
an individual difference among subjects in the online BCI control performance could be
caused by several factors such as user age, physical, and psychological conditions, and
information processing capacity [33,45,46]. Particularly, the stimulus types designed in this
study, accompanying various ambient visual distractions, could lead to individual differences
in information processing loads. Additionally, differences in motivation might be related.
For example, the user who used BCITV could be more motivated to choose a preferred
channel than the users of BCIDL or BCIEL with simpler control objectives. The Ul of

BCIEL and BCIDL displayed live images of devices together with visual stimuli to show
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a user the real-time feedback of the operation of devices. We envision that this can be
further developed to create BCls integrated with augmented reality (AR) using a see-
through display, which will more effectively allow a user to see target appliances and
visual stimuli at the same time [47]. In sum, the present study demonstrated that a BCI
based on spatiotemporal ERP patterns can help users control home appliances along with
advances in the Internet of things (IoT) and AR, to which the in-depth understanding of brain

activity patterns for controlling different appliances will be essential.
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