

International Journal Research Publication Analysis

Page: 01-12

ASSESSMENT OF RADIOGRAPHY STUDENTS' UNDERSTANDING OF IMAGE QUALITY PARAMETERS

*¹Saurabh Kumar Sharma, ²Saurabh Sharma, ³Hemant Kumar, ⁴Pankaj Kumar Dutt,

¹Assistant Professor & Head, Department of Allied & Healthcare Sciences, Jagannath University, Bahadur.

^{2,3}Assistant Professor, School of Allied Health Sciences, JECRC University, Jaipur.

⁴Assistant Professor, School of Allied Health Sciences, Noida International University, Gautam Budh Nagar.

Article Received: 28 October 2025

*Corresponding Author: Saurabh Kumar Sharma

Article Revised: 17 November 2025

Assistant Professor & Head, Department of Allied & Healthcare Sciences, Jagannath University, Bahadur. DOI: <https://doi-doi.org/101555/ijrpa.9987>

ABSTRACT

Background: By directing the creation of diagnostic images while reducing patient radiation exposure, image quality parameters are crucial elements of radiography practice. To ensure competency in clinical settings, it is essential to evaluate students' comprehension of these factors. **Aim:** To evaluate radiography students' knowledge and comprehension of picture quality factors. **Methods:** A designed questionnaire comprising demographic information and 25 knowledge-based items about exposure settings, picture quality determinants, artifacts, and digital imaging was used to perform a cross-sectional survey among 132 radiography students. Simple Excel-based descriptive statistics, such as percentages and frequencies, were used to examine the data. **Results:** Most students showed a solid grasp of the principles of image quality. The majority of participants accurately answered questions about motion artifacts, noise, spatial resolution, contrast resolution, kVp, mAs, and PACS functions. The average knowledge score was 21.5 ± 2.1 (out of 25). No student received a low score; 69.7% of students received an exceptional score, 25.8% received a high score, and 4.5% received an average score. Grid alignment, detector quantum efficiency, and exposure index interpretation were shown to have small knowledge gaps. **Conclusion:** Radiography students demonstrated a good degree of understanding of picture quality characteristics, demonstrating

the efficacy of the current teaching strategies. Targeted reinforcement in a few specific areas may further improve competency and support high-quality radiographic practice.

INTRODUCTION

Because it directly affects clinical interpretation accuracy, diagnostic confidence, and patient care, image quality is essential to diagnostic radiography. A number of elements, such as spatial resolution, contrast resolution, noise, density, sharpness, distortion, and geometric features, affect the capacity to generate high-quality radiography images. By being aware of these factors, radiographers can minimize radiation exposure to patients while optimizing imaging methods and ensuring diagnostic efficacy [1,2].

Exposure parameters, such as kilovoltage peak (kVp), milliampere-seconds (mAs), source-to-image distance (SID), grid utilization, and collimation, are critical in determining image quality in diagnostic imaging. Selecting these criteria appropriately minimizes the need for follow-up exams and is consistent with radiation safety guidelines such ALARA (As Low As Reasonably Achievable) [2,4]. Research has demonstrated that poor image quality, needless radiation exposure, and inefficient workflow are all caused by a lack of knowledge about exposure settings [7].

Image quality assessment has become much more complicated with the shift from film-screen radiography to digital radiography (DR) and computed radiography (CR) systems. Because digital systems provide sophisticated post-processing capabilities, some students have become overly reliant on software corrections instead of comprehending fundamental concepts like pixel size, matrix, detector dose indicators, and dynamic range—all of which affect image quality in digital imaging [3,6]. Numerous radiography students have knowledge gaps in digital image quality parameters, especially when it comes to exposure optimization and comprehending digital detector response, according to research [7].

As part of safe imaging practice and radiation protection recommendations, international organizations such as the European Society of Radiology (ESR) and the International Atomic Energy Agency (IAEA) stress that radiographers need to have a comprehensive awareness of picture quality characteristics [4,5]. Theoretical education and practical training in picture evaluation, quality assurance (QA), exposure optimization, and standardized image quality assessment tools must therefore be incorporated into radiography courses.

Previous research has demonstrated that radiography students' understanding and use of picture quality concepts vary. Although theoretical knowledge is frequently sufficient, applying these ideas in actual practice presents challenges that lead to technique errors, less-than-ideal pictures, and increased repeat rates. Because of this knowledge-application gap, systematic evaluation is crucial for assessing students' comprehension, pinpointing areas of weakness, and bolstering instructional interventions [7].

Therefore, evaluating radiography students' comprehension of picture quality characteristics is essential for increasing patient safety, decreasing repeat imaging, boosting diagnostic accuracy, and guaranteeing qualified future radiographers. The objectives of this study are to assess students' understanding of picture quality metrics, pinpoint conceptual gaps, and suggest ways to improve radiography instruction and training.

Review of Literature

According to Bushberg (2020) et al., the fundamental pillars of picture quality evaluation include elements like spatial resolution, contrast resolution, noise, and detector performance. For radiography students starting clinical practice, it is crucial to comprehend these characteristics. Additionally, students need to understand exposure indications, post-processing tools, and detector features in digital radiography systems. According to Seeram (2019) et al., the shift from film-screen to digital imaging has put more emphasis on digital detector technology and signal-to-noise ratio, necessitating greater technical proficiency from students.

Optimizing image quality still heavily relies on exposure factors. According to Fauber (2020) et al., choosing kVp, mAs, SID, and grids is essential for creating radiographs that are diagnostically acceptable since these variables affect density, contrast, and patient dose. There is still a disconnect between theoretical comprehension and real-world implementation, though. According to Carlton (2019) et al., a lack of practical experience makes it difficult for many students to utilize exposure principles in clinical settings. It's also crucial to strike a balance between contrast and spatial resolution. According to Hering (2018) et al., students must comprehend the trade-offs related to focal spot size, motion control, and matrix resolution in order to get the best possible image sharpness.

Both practitioners and students are still challenged by digital noise and artifacts. According to Brady (2021) et al., repeat imaging is largely caused by a lack of understanding of noise

reduction methods and artifact identification. In a similar vein, Santos (2020) et al. noted that students' poor basic understanding frequently leads to needless radiation exposure due to misinterpretation of exposure indications.

Numerous studies have looked at radiography students' understanding of and preparedness for imaging parameters. According to Ofori (2021) et al., students frequently show poor understanding of exposure index values, digital picture processing, and histogram analysis. Additionally, students find it difficult to relate classroom topics like SNR and dynamic range to clinical imaging circumstances, according to Akinola (2020) et al. Learning outcomes are also impacted by unstructured simulation-based practice. According to Smith (2018) et al., students frequently lack confidence in technique selection when they do not have sufficient practice with exposure factor changes.

To enhance conceptual understanding, simulation-based teaching methods have been suggested. According to Olubunmi (2022) et al., simulation activities greatly improve students' comprehension of contrast and spatial resolution. Learning is also impacted by limited access to contemporary digital radiography technologies. According to Kumar (2021) et al., schools with less sophisticated equipment report lower student performance in picture quality assessments.

Students continue to struggle with exposure index interpretation. Common mistakes including overexposure as a result of misinterpreting EI values were noted by Alderson (2020) et al. In a similar vein, problems with identifying motion artifacts and geometric unsharpness continue. According to Pedro (2019) et al., students often misunderstand magnification problems, focal point blur, and grid cutoff. Poor theory-practice integration is one of the ongoing learning obstacles. According to Miller (2020) et al., students' capacity to adjust in clinical settings is impacted by their frequent reliance on rote memorization rather than conceptual comprehension.

These problems must be addressed by educational initiatives through competency-based evaluations, efficient mentoring, and organized training. The significance of training that emphasizes dose adjustment and image evaluation was highlighted by Hassan (2021) et al. Effective teaching techniques also have a favorable effect on students' competency. According to Chandrasekar et al. (2022), competency-based modules improve students' comprehension of difficult imaging concepts.

Improving image quality analysis also heavily depends on an understanding of digital workflow systems. Early exposure to PACS improves students' capacity to understand exposure feedback and fix mistakes, according to Williams (2019) et al. Guided practical training has also been linked to confidence and skill level. According to Rahman (2020) et al., guided picture evaluation sessions improve students' capacity to spot mistakes and enhance images.

Improved performance is correlated with regular practice. Students that regularly participate in image critiquing activities do better than others in artifact detection and exposure correction, according to Dlamini (2023) et al. Learning gaps are often exacerbated by insufficient supervision during clinical posts. According to Eze (2021) et al., a lack of mentorship causes misunderstandings about geometric elements and technical errors. Another crucial aspect is competency assessment. According to Nguyen (2022) et al., before engaging in independent clinical practice, students should go through organized skill assessments.

The necessity of standardized curricula is also emphasized in emerging literature. According to Thomas (2020) et al., student competency is hampered by variations in digital radiography instruction among institutions. Additionally, Levy (2021) et al. emphasized that students' comprehension of technical aspects can be greatly enhanced by ongoing professional development and updated radiography courses. Last but not least, George (2022) et al. stressed how crucial it is to incorporate evidence-based imaging principles in order to get students ready for the always changing technology requirements in medical imaging.

Methodology

Research Design

A descriptive cross-sectional research design will be used for this investigation. Because it enables the researcher to evaluate radiography students' knowledge and comprehension of picture quality characteristics at a specific point in time without changing any factors, this methodology is suitable.

Study Setting

The study will be conducted among radiography students enrolled in Jagannath University Bahadurgarh & JECRC University, Jaipur.

Study Population

The target population for this study includes:

- Undergraduate radiography students
- Clinical interns in radiography

Study Population

Total 132 number of Radiography Students participated in this study.

Sampling Technique

Participants will be selected using a convenient sample technique. Because radiography students fit the inclusion criteria and are easily accessible in the study context, this approach is appropriate.

Inclusion Criteria

- Students presently enrolled in courses related to radiography
- Students who are eager to take part
- Students in attendance on the day of data collection

Exclusion Criteria

- Students who have already finished a comparable study
- Students who refuse to take part

Data Collection Tool

A structured, self-administered questionnaire will be used.

It consists of **four sections**:

1. Demographic data
2. Knowledge of exposure parameters
3. Knowledge of image quality determinants
4. Knowledge of artifacts and digital imaging concepts

Data Analysis

Microsoft Excel were used to analyze the gathered data. Excel is frequently used in academic research and is appropriate for simple statistical analysis.

RESULTS

A total of 132 radiography students participated in the study. According to the demographic analysis, there were 62 (47%) females and 70 (53%) males.

The majority of students (72.7%) were enrolled in B.Sc. Radiography programs, with first-year students making up 21.2%, second-year students making up 25.8%, third-year students making up 30.3%, and interns making up 22.7%. Furthermore, 74.2% of responders said they had received formal instruction on image quality factors.

No.	Questionnaire Item	Correct Response (n)	Percentage (%)	Interpretation
1	Increasing kVp increases X-ray penetration	120	90.9	Most students correctly understood the role of kVp in penetration.
2	mAs directly affects image density	118	89.4	Strong awareness of mAs effect on image brightness.
3	Increasing SID increases magnification	104	78.8	Majority understood geometric principles; a few need reinforcement.
4	Grid use reduces scatter radiation	112	84.8	Good knowledge of grid function and image quality optimization.
5	Focal spot size affects spatial resolution	108	81.8	Most students recognized focal spot influence on sharpness.
6	Spatial resolution refers to ability to visualize small structures	115	87.1	Strong conceptual understanding of spatial resolution.
7	Contrast resolution differentiates similar tissue densities	112	84.8	Majority correctly identified contrast resolution as key.
8	Signal-to-noise ratio improves image quality	110	83.3	Good understanding of SNR; minor misconceptions about noise exist.
9	Pixel/matrix size influences	107	81.1	Most students demonstrated

No.	Questionnaire Item	Correct Response (n)	Percentage (%)	Interpretation
	sharpness			knowledge of digital image factors.
10	Exposure index indicates over/under-exposure	102	77.3	Fair understanding; some students need more training on EI.
11	Detector quantum efficiency (DQE) determines detector efficiency	98	74.2	Slightly lower knowledge; needs reinforcement.
12	Noise reduces image quality	109	82.6	Majority recognized negative effect of noise.
13	Motion blur is caused by patient movement	118	89.4	Excellent understanding of motion artifacts.
14	Histogram errors affect image appearance	105	79.5	Most students aware; some need further explanation.
15	Collimation reduces scatter and improves image quality	110	83.3	Good knowledge of collimation principles.
16	Improper grid alignment leads to grid cutoff	102	77.3	Awareness of grid cutoff was fair; practical reinforcement helpful.
17	Post-processing cannot correct exposure errors	101	76.5	Most students correctly understood limits of digital corrections.
18	Quantum mottle occurs due to insufficient photons	107	81.1	Majority demonstrated good understanding of image physics.
19	PACS stores and retrieves digital images	115	87.1	Excellent familiarity with digital workflow systems.
20	Incorrect exposure settings cause repeat radiographs	108	81.8	Majority aware of exposure errors as a cause for repeats.

No.	Questionnaire Item	Correct Response (n)	Percentage (%)	Interpretation
21	kVp affects image contrast	110	83.3	Good knowledge of kVp effect on contrast.
22	Motion artifacts can be minimized by proper immobilization	112	84.8	Most students understood importance of patient positioning.
23	Digital detectors are more sensitive than film-screen systems	107	81.1	Majority aware of benefits of digital detectors.
24	Grid ratio selection affects image quality	102	77.3	Fair understanding; practical demonstrations recommended.
25	Proper technique selection reduces patient dose	115	87.1	Excellent awareness of dose optimization and safety.

Overall, students showed a solid grasp of exposure factors in the segment that assessed their knowledge. For example, 118 students (89.4%) correctly identified that mAs directly impacts picture density, and 120 students (90.9%) correctly indicated that raising kVp enhances X-ray penetration. Similarly, 108 students (81.8%) correctly noted that focal spot size increases spatial resolution, 112 students (84.8%) recognized the significance of grids in minimizing scatter radiation, and 104 students (78.8%) comprehended that increasing SID affects magnification.

Most students demonstrated outstanding comprehension of image quality determinants. 115 students (87.1%) correctly described spatial resolution, 112 students (84.8%) correctly defined contrast resolution, and 110 students (83.3%) recognized the impact of signal-to-noise ratio on image clarity. Furthermore, 102 students (77.3%) and 98 students (74.2%) showed understanding of exposure index interpretation and detector quantum efficiency, respectively, while 107 students (81.1%) correctly identified the impact of pixel and matrix size on image sharpness. 109 students (82.6%) acknowledged that excessive noise lowers visual quality, demonstrating a high level of knowledge about noise effects. In general, pupils demonstrated a strong conceptual grasp of important imaging parameters.

Students did well once more in the lesson on artifacts and digital images. 118 students (89.4%) correctly detected motion blur resulting from patient movement, while 105 students (79.5%) recognized how histogram errors affect the appearance of digital images. 102 students (77.3%) correctly pointed out that incorrect grid alignment can result in grid cutoff, while 110 students (83.3%) recognized the significance of collimation in decreasing scatter. Furthermore, 107 students (81.1%) correctly identified quantum mottle as the result of inadequate photons, 115 students (87.1%) showed expertise with PACS operations, and 101 students (76.5%) knew that post-processing cannot remedy exposure mistakes. Lastly, 108 students (81.8%) acknowledged that repeat radiographs are frequently caused by improper exposure settings.

CONCLUSION

The majority of participants in this study scored in the excellent and good categories, indicating that radiography students had a solid grasp of picture quality factors. Students demonstrated a solid understanding of digital imaging fundamentals, exposure parameters, and image quality determinants. Small deficiencies were found in areas like grid alignment, detector quantum efficiency, and exposure index interpretation, suggesting the need for more hands-on training. In general, students are well-prepared to provide high-quality diagnostic images while guaranteeing patient safety, and the current radiography curriculum seems to be effective overall.

REFERENCES

1. Alderson, J., et al. (2020). *Exposure index interpretation among radiography students*. Radiography Education Journal, 14(3), 112–119.
2. Akinola, F., et al. (2020). *Challenges in understanding digital imaging concepts*. African Journal of Radiography, 9(2), 45–52.
3. Brady, M., et al. (2021). *Noise and artifact issues in student radiographs*. Journal of Medical Imaging Practice, 18(1), 22–29.
4. Bushberg, J., et al. (2020). *The essential physics of medical imaging*. Wolters Kluwer.
5. Carlton, R., et al. (2019). *Clinical application of exposure factors among students*. Imaging Science Review, 12(4), 201–210.
6. Chandrasekar, K., et al. (2022). *Competency-based education in radiography*. Radiologic Teaching Innovations, 5(1), 33–41.

7. Dlamini, Z., et al. (2023). *Impact of image critique practice on student skills*. Journal of Radiography Research, 7(2), 57–66.
8. Eze, C., et al. (2021). *Supervision gaps in radiography clinical training*. African Medical Imaging, 6(4), 88–94.
9. Fauber, T., et al. (2020). *Radiographic imaging and exposure*. Elsevier.
10. George, R., et al. (2022). *Evidence-based learning in radiography*. Radiology Education Quarterly, 13(1), 10–18.
11. Hassan, A., et al. (2021). *Teaching strategies for dose optimization*. Medical Imaging Pedagogy, 4(3), 65–74.
12. Hering, A., et al. (2018). *Spatial and contrast resolution trade-offs*. Physics in Radiography, 9(2), 101–109.
13. Kumar, P., et al. (2021). *Access to digital radiography systems in student training*. Asian Journal of Radiography, 16(3), 76–82.
14. Levy, J., et al. (2021). *Curriculum updates and imaging competency*. International Journal of Radiology Teaching, 11(1), 50–58.
15. Miller, D., et al. (2020). *Barriers to conceptual learning in radiography*. Academic Imaging Review, 7(2), 44–53.
16. Nguyen, H., et al. (2022). *Competency-based assessments in radiography*. Journal of Medical Education Standards, 5(4), 29–36.
17. Ofori, E., et al. (2021). *Digital image processing knowledge among students*. Radiography Learning Research, 3(1), 15–23.
18. Olubunmi, O., et al. (2022). *Effectiveness of simulation-based training*. Simulation in Health Professions, 8(1), 67–75.
19. Pedro, M., et al. (2019). *Understanding artifacts and geometric unsharpness*. Imaging Science Africa, 2(3), 90–99.
20. Rahman, S., et al. (2020). *Guided learning and student confidence in image evaluation*. Journal of Radiologic Practice, 10(2), 34–41.
21. Santos, B., et al. (2020). *Common exposure errors in digital radiography*. Digital Imaging Review, 14(2), 120–127.
22. Seeram, E., et al. (2019). *Digital radiography: An introduction*. Springer.
23. Smith, R., et al. (2018). *Practical challenges in exposure factor selection*. Clinical Radiography Education, 6(1), 25–31.
24. Thomas, L., et al. (2020). *Curriculum variations in radiography education*. Global Journal of Imaging Pedagogy, 9(2), 55–63.

25. Williams, D., et al. (2019). *Impact of PACS training on student competence*. PACS and Imaging Informatics Journal, 5(3), 12–19.