

International Journal Research Publication Analysis

Page: 01-06

“FUNDAMENTAL PROPERTIES OF CONNECTED METRIC SPACES”

*Dr. Amrish Kumar Srivastav

Assistant Professor, Department of Mathematics, Araria College, Araria.

Article Received: 13 November 2025

*Corresponding Author: Dr. Amrish Kumar Srivastav

Article Revised: 03 December 2025

Assistant Professor, Department of Mathematics, Araria College, Araria.

Published on: 23 December 2025

DOI: <https://doi-doi.org/101555/ijrpa.8859>

ABSTRACT

Connectedness is a core topological attribute that defines spaces which cannot be divided into separate nonempty open sets. When integrated with the framework of a metric, connectedness gains further characterizations and significant implications. This article introduces the notion of connected metric spaces, essential definitions, illustrative examples, notable theorems, and practical applications. Connectedness is a generalization of a property of all intervals in Real number, namely that of being all in "one piece". So loosely, a space is connected if it does not consist of two or more separate pieces. For a subspace M of Euclidean space R_2 , there is another notion of connectedness which may seem more natural, the property that each pair of its points can be joined by a path in the subspace M . Path connectedness for metric spaces, which results from formalization of this idea,

KEYWORDS: Topological, Connectedness, Euclidean.

INTRODUCTION AND CONCEPT:

Metric spaces offer a foundation for examining distance and convergence, whereas topology emphasizes continuity and structure. A connected metric space represents the convergence of these concepts, embodying the intuitive idea of a space being 'entirely whole.' The concept of connectedness is vital in the fields of analysis, geometry and applied mathematics.

Definition: (Connected space): Let (X, d) be a metric space. We say that X is connected if there do not exist two nonempty and disjoint open sets A and B in X such that

$$X = A \cup B.$$

If there exists two disjoint non-empty open sets A and B such that $X = A \cup B$, then X is called disconnected and the pair {A, B} is called a disconnection of X.

That is, the subsets must be nonempty, together they must constitute the whole space and neither may contain a point of the closure of the other. If no such subsets exist, then (X, d) is said to be connected; this means that if we do split X into two nonempty parts A and B having no points in common, then at least one of the subsets contains a limit point of the other.

A nonempty subset Y of a metric space (X, d) is said to be connected if the subspace (Y, d_Y) with the metric induced from X is connected.

Remark: From the definition of a disconnection {A, B} of a metric space X it is clear that such A and B are both open and closed. Thus a space X is connected if and only if the only sets which are both open and closed are empty set or the whole set X. It is easy to see that a metric space having only one element is connected. To understand the concept we shall first look at metric spaces that are subspaces of \mathbb{R} with the usual metric.

Let us see some examples.

Example: Let $X = \mathbb{R} \setminus \{0\}$ be the metric space of all non-zero real numbers with the usual metric

$$d(x, y) = |x - y|$$

If $A = \{x \in X : x > 0\}$ and $B = \{x \in X : x < 0\}$, then the pair {A, B} is a disconnection of X.

Example: Let us consider \mathbb{Q} , the metric space of all rational numbers with the usual metric

$$d(x, y) = |x - y|$$

Let r be any irrational number.

If $A = \{x \in X : x > r\}$, $B = \{x \in X : x < r\}$, then the pair {A, B} is a disconnection of X.

Theorem: Let (X, d) be a metric space. Then the following statements are equivalent:

(i)- (X, d) is disconnected;

(ii)- There exist two non empty disjoint subsets A and B, both open in X, such that

$$X = A \cup B;$$

(iii)- There exist two nonempty disjoint subsets A and B, both closed in X, such that

$$X = A \cup B$$

(iv)- There exists a proper subset of X that is both open and closed in X.

Proof: (i) \Rightarrow (ii)

Let $X = A \cup B$, where A and B are nonempty and

$$A \cap \bar{B} = \emptyset, \bar{A} \cap B = \emptyset.$$

Then $A = X \setminus \bar{B}$. In fact, $A \subseteq X \setminus \bar{B} \subseteq X \setminus B = A$

So A is open in X. Similarly, B is open in X. Since A and B are disjoint, which proves (ii).

That (ii) and (iii) are equivalent is trivial.

$$(iii) \Rightarrow (iv)$$

Since $A = X \setminus B$, A is open. Thus A is both a closed and open proper subset of X, and so (iv) is proved.

$$(iv) \Rightarrow (i)$$

Let A be a proper subset of X that is both open and closed in X and let $B = X \setminus A$

Then

$$X = A \cup B, A \cap B = \emptyset.$$

Since $A = \bar{A}$ (A being closed), it follows that $\bar{A} \cap B = \emptyset$.

Similarly, $A \cap \bar{B} = \emptyset$. This completes the proof.

The following theorem characterizes connected subsets of R.

Theorem: Let (R, d) be the space of real numbers with the usual metric. A subset $I \subseteq R$ is connected if and only if I is an interval, i.e., I is of one of the following forms:

$$(a, b), [a, b), (a, b], [a, b], (-\infty, b), (-\infty, b], (a, \infty), [a, \infty), (-\infty, \infty):$$

Proof: Let I be a connected subset of real numbers and suppose, if possible, that I is not an interval. Then there exist real numbers x, y, z with $x < z < y$ and $x, y \in I$ but $z \notin I$. Then I may be expressed as $I = A \cup B$, where

$$A = (-\infty, z) \cap I \text{ and } B = (z, \infty) \cap I:$$

Since $x \in A$ and $y \in B$, therefore, A and B are nonempty; also, they are clearly disjoint and open in I. Thus, I is disconnected.

To prove the converse, suppose I is an interval but is not connected. Then there are nonempty subsets A and B such that

$$I = A \cup B, A \cap \bar{B} = \emptyset, \bar{A} \cap B = \emptyset:$$

Pick $x \in A$ and $y \in B$ and assume (without loss of generality) that $x < y$. Observe that $[x, y] \subseteq I$, for I is an interval. Define

$$z = \sup(A \cap [x, y])$$

The supremum exists since $A \cap [x, y]$ is bounded above by y and it is nonempty, as x is in it. Then $z \in A$. (We shall show that if $z \notin A$, then z is a limit point of A . Let $\epsilon > 0$ be arbitrary. By the definition of supremum, there exists some element $a \in A$ such that $z - \epsilon < a < z$, i.e., every neighborhood of z contains a point of A .)

Hence, $z \notin B$, for, $\bar{A} \cap B = \emptyset$: in particular, $x \leq z < y$.

If $z \notin A$, then $x < z < y$ and $z \notin I$. This contradicts the fact that $[x, y] \subseteq I$.

Theorem: Let (X, d) be a metric space. Then the following statements are equivalent:

- (i) (X, d) is disconnected;
- (ii) There exists a continuous mapping of (X, d) onto the discrete two element space (X_0, d_0) .

Proof: (i) \Rightarrow (ii)

Let $X = A \cup B$, where A and B are disjoint nonempty open subsets. Define a mapping

$f : X \rightarrow X_0$ by

$$f(x) = \begin{cases} 0 & \text{If } x \in A \\ 1 & \text{If } x \in B \end{cases}$$

The mapping f is clearly onto. It remains to show that f is continuous from (X, d) to (X_0, d_0) .

The open subsets of the discrete metric space are precisely $\emptyset, \{0\}, \{1\}$ and $\{0,1\}$.

Observe that $f^{-1}(\emptyset) = \emptyset, f^{-1}(\{0,1\}) = X$ and the subsets \emptyset, X are open in (X, d) .

Moreover, $f^{-1}(0) = A, f^{-1}(1) = B$, which are open subsets of (X, d) .

Hence, f is continuous and thus (ii) is proved.

(ii) \Rightarrow (i)

Let $f : (X, d) \rightarrow (X_0, d_0)$ be continuous and onto.

Let $A = f^{-1}(0)$ and $B = f^{-1}(1)$. Then A and B are nonempty disjoint subsets of X , both open and such that $X = A \cup B$. It follows upon using Theorem state earlier that X is disconnected.

Corollary: Let (X, d) be a metric space. Then the following statements are equivalent:

- (i) (X, d) is connected;
- (ii) The only continuous mappings of (X, d) into (X_0, d_0) are the constant mappings, namely, the mappings $f(x) = 1$ for every $x \in X, g(x) = 0$ for every $x \in X$.

The continuous image of a connected space is connected. More precisely, we have the following theorem.

Theorem: Let (X, d_X) be a connected metric space and

$f : (X, d_X) \rightarrow (Y, d_Y)$

be a continuous mapping. Then the space $f(X)$ with the metric induced from Y is connected.

Proof: The map $f: X \rightarrow f(X)$ is continuous. If $f(X)$ were not connected, then there would be, by Theorem state earlier a continuous mapping, g says, of $f(X)$ onto the discrete two element space (X_0, d_0) . Then $g \circ f: X \rightarrow X_0$ would also be a continuous map ping of X onto X_0 , contradicting the connectedness of X .

Intermediate Value Theorem:

If $f: [a, b] \rightarrow \mathbb{R}$

is continuous over $[a, b]$, then for every y such that $f(a) \leq y \leq f(b)$ or $f(b) \leq y \leq f(a)$ there exists $x \in [a, b]$ for which $f(x) = y$.

Proof: We need consider only the case when $f(a) \neq y \neq f(b)$.

Let y be any real number such that $f(a) < y < f(b)$. By Theorem state earlier $[a, b]$ is a connected subset of \mathbb{R} . Hence, $f([a, b])$ is an interval by Theorems state earlier Therefore, there exists an $x \in [a, b]$ such that $f(x) = y$. The case where $f(b) < y < f(a)$ is dealt with in a similar way.

The following converse of the intermediate value theorem also holds.

Theorem: Let $I = [1, 1]$ and let $f: I \rightarrow I$ be continuous. Then there exists a point $c \in I$ such that $f(c) = c$

Proof: If $f(-1) = -1$ or $f(1) = 1$, the required conclusion follows; hence, we can assume that $f(-1) > -1$ and $f(1) < 1$. Define

$g(x) = f(x) - x$, $x \in I$:

Note that g is continuous, being the difference of continuous functions, and that it satisfies the inequalities $g(-1) = f(-1) + 1 > 0$ and $g(1) = f(1) - 1 < 0$. Hence, by the Weierstrass intermediate value theorem, there exists $c \in (1, 1)$ such that $g(c) = 0$, that is, $f(c) = c$.

Definition: The union $C(x)$ of all connected subsets containing the point x is called the connected component of x in (X, d) . Clearly, $C(x)$ is a maximal connected subset of X .

Examples:

(i) Let Q be the set of rationals in (\mathbb{R}, d) . The component of each $x \in Q$ containing more than one point is disconnected. Indeed, if $x, y \in A$, $x < y$, then $(-\infty, a) \cap A$ and $(a, \infty) \cap A$ provide a disconnection of A , when $x < a < y$ and a is irrational.

(ii) Let $Y \subseteq \mathbb{R}^2$ be the subspace consisting of the segments joining the origin to the points $\{(1, 1/n): n \in \mathbb{N}\}$ together with the segment $(1/2, 1]$. The line joining $(0, 0)$ and $(1, 1/n)$ is the image of the connected set $[0, 1]$ under the continuous map $y = x/n$ and, therefore, connected.

If Z denotes the union of these lines, then Z is connected since the origin is common to all the line segments. Finally, Y is such that

$Z \subset Y \subset \bar{Z}$, where $\bar{Z} = Z \cup [(0,1]$, and so Y is connected, However, $Y \setminus \{(0, 0)\}$ is not connected. In $Y \setminus \{(0, 0)\}$, the component of each point is the segment containing it.

CONCLUSION

Connected metric spaces serve as a link between geometry and topology, providing profound understanding of the structure of spaces found in mathematics. Their characteristics guarantee that continuity operates in a predictable manner, rendering connectedness a crucial concept in both theoretical and practical applications. Applications of connected metric space in different branches of Mathematics are such as -

In Real Analysis: Explanation of the Intermediate Value Theorem

In Topology: Categorization of spaces and their invariants

In Geometry: Comprehension of curves and surfaces

In Applied Mathematics: Representation of continuous physical systems

The examination of connected metric spaces remains pivotal in the fields of topology and analysis, with applications that span functional analysis to geometric group theory. Future research may concentrate on exploring the intricate relationships between connectedness and other metric characteristics, including curvature, uniform structures, or fractal metrics, thus broadening the comprehension of how connectivity affects both local and global geometries of space.

REFERENCES:

1. Eck, David J. "Connected Sets" (PDF). Department of Mathematics and Computer Science. Hobart and William Smith Colleges. Archived (PDF) from the original on 1 September 2024. Retrieved 17 March 2025
2. Marek (February 13, 2013). "How to prove this result about connectedness?"
3. Bredon, G.E., 2013. Topology and geometry (Vol.139) Springer Science & Business Media.
4. Munkres, James Raymond (2000). Topology (PDF) (2nd Ed.). Upper Saddle River (N.J.): Prentice Hall. ISBN 0-13-181629-2. Retrieved 24 March 2025