esearch
o"\“ 0

AA

A —
UL

2026 Volume: 02 Issue: 02 www.ijrpa.com ISSN 2456-9995 Review Article

‘

s, o>
’SAle uy wow

O
=
<

)
E:
o
s
2
b2

International Journal Research Publication Analysis

Page: 01-17

SECURITY ANALYSIS AND BEST PRACTICES FOR STORING
SENSITIVE USER DATA IN ANDROID APPS

*Kavisha Jain, Prof. (Dr.) Vishal Shrivastava, Prof. (Dr.) Akhil Pandey

Computer Science, Arya College of Engineering & I.T. Jaipur, India.

Avrticle Received: 28 December 2025 *Corresponding Author: Kavisha Jain

Article Revised: 17 January 2026 Computer Science, Arya College of Engineering & I.T. Jaipur, India.
Published on: 06 February 2026 DOI: https://doi-doi.org/101555/ijrpa.7564
ABSTRACT

This paper presents a comprehensive security analysis of data storage mechanisms within the
Android operating system. It begins by establishing a multi-faceted definition of sensitive
user data, drawing from prominent legal frameworks such as GDPR and CCPA. A detailed
architectural review of Android's storage options—including internal storage, external
storage, SharedPreferences, and SQLite databases—is conducted, followed by an in-depth
vulnerability analysis of each. Common attack vectors, such as plaintext data exposure, SQL
injection, and "Man-in-the-Disk" attacks, are dissected with reference to real-world case
studies and vulnerability reports. The core of this paper is a prescriptive guide to best
practices, focusing on a defense-in-depth strategy. This includes the correct implementation
of modern cryptographic APIs, the foundational role of the hardware-backed Android
Keystore system for secure key management, database encryption using SQLCipher, and the
critical adoption of the Scoped Storage model. Finally, the paper looks toward the future,
analyzing emerging threats and the applicability of advanced security paradigms like Zero
Trust Architecture (ZTA) in the mobile context. The primary contribution of this work is a
holistic, actionable framework for developers and security professionals to design,
implement, and audit secure data storage in Android applications, thereby mitigating the risk

of data breaches and ensuring user privacy.

KEYWORDS: LITERATURE REVIEW, METHODOLOGY, RESULTS, DISCUSSION,
IMPLICATIONS, LIMITATIONS, FUTURE WORK, DATA ANALYSIS, MODEL,
ALGORITHM, EVALUATION, CASE STUDY, BENCHMARKING

Copyright@ Page 1

https://doi-doi.org/101555/ijrpa.7564
http://www.ijrpa.com/

International Journal Research Publication Analysis

1. Executive Summary

Despite the robust security features of the Android operating system, insecure data storage
remains a critical and widespread vulnerability in mobile applications, frequently leading to
data breaches, financial loss, and erosion of user trust. This paper provides a comprehensive
analysis of this persistent challenge and offers an actionable framework for developers to

secure sensitive user data at rest.

The analysis begins by defining the scope of sensitive data, guided by legal frameworks like
GDPR and CCPA, and examines the architecture of Android's storage mechanisms, including
internal/external storage, SharedPreferences, and SQLite databases. It then conducts a
vulnerability deep dive, dissecting common attack vectors such as plaintext data exposure on
rooted devices, SQL injection, and "Man-in-the- Disk" attacks on legacy external storage,

supported by real- world case studies.

The core of this research is a prescriptive guide to a multi- layered, defense-in-depth security
strategy. The central recommendation is the adoption of the hardware-backed Android
Keystore system as the root of trust for all cryptographic key management, which prevents
key extraction even if the operating system is compromised. Building on this foundation, the

paper outlines best practices including:

e Encryption of all sensitive data using industry- standard algorithms like AES-256-
GCM, simplified through the use of the Jetpack Security library
(EncryptedSharedPreferencesand EncryptedFile).

e Full database encryption for SQLite using libraries like SQLCipher, with secure
passphrase management tied to the Android Keystore.

e Prevention of SQL injection through the mandatory use of parameterized queries, as
facilitated by the Room persistence library.

« Strict adherence to the Scoped Storage model to enforce the principle of least privilege
and mitigate risks associated with shared storage.

Finally, the paper addresses the evolving threat landscape, including sophisticated malware
and runtime attacks, and advocates for the adoption of forward-looking security paradigms
such as Zero Trust Architecture (ZTA) and Runtime Application Self-Protection (RASP).
By presenting a holistic security checklist, this paper serves as a vital resource for developers

and security professionals to design, implement, and audit applications that effectively protect

Copyright@ Page 2

International Journal Research Publication Analysis

user privacy and data integrity in the modern mobile ecosystem.

INTRODUCTION: The Criticality of Sensitive Data Protection on Android

The proliferation of mobile devices has fundamentally altered the digital landscape, with
Android serving as the dominant operating system globally. These devices have become
intimate extensions of their users, processing and storing an unprecedented volume of
personal and confidential information. This concentration of data makes Android applications
a high-value target for malicious actors, rendering the security of on-device data storage a
matter of paramount importance. This section establishes the foundational concepts necessary
for a rigorous security analysis. It defines the scope of "sensitive user data” through the lens
of both technical risk and legal mandate, provides an overview of Android's core security
architecture, and frames the persistent problem of insecure data storage as a critical

vulnerability that undermines user trust and organizational integrity.

The Expanding Definition of Sensitive User Data

The term “sensitive data" encompasses any information that, if disclosed, misused, or
accessed without authorization, could result in significant harm, discrimination, or adverse
consequences for the individual to whom it pertains. This definition extends beyond basic
personally identifiable information (PII) to include more intimate details that could facilitate
fraud, identity theft, or other forms of harm. To develop secure applications, it is essential to
operate with a clear and comprehensive understanding of what constitutes sensitive data, an
understanding that is shaped by both technical risk and stringent legal frameworks.

Legal Frameworks: GDPR and CCPA/CPRA

Modern data privacy regulations have codified the definition of sensitive data, imposing
strict requirements on its collection, processing, and storage. Two of the most influential
legal frameworks are the European Union's General Data Protection Regulation (GDPR) and
the California Consumer Privacy Act (CCPA), as amended by the California Privacy Rights
Act (CPRA).

The GDPR, in Article 9, establishes a special, highly protected class of information termed
"special categories of personal data." The processing of this data is, by default, prohibited
unless specific, explicit conditions are met, such as obtaining explicit consent from the data
subject. This category includes data that reveals:

Copyright@ Page 3

International Journal Research Publication Analysis

« Racial or ethnic origin

« Political opinions

« Religious or philosophical beliefs

« Trade union membership

e Genetic data

o Biometric data used for the purpose of uniquely identifying a natural person
« Data concerning health

« Data concerning a person's sex life or sexual orientation

The GDPR's high standard for consent—requiring a clear, affirmative action like ticking an
opt-in checkbox—and its default prohibition on processing these data types fundamentally
shift the developer's responsibility. The legal framework compels a security-first approach,
where the collection and storage of sensitive data must be meticulously justified and
architected with robust security controls from the outset, rather than being treated as a
secondary compliance task. This legal mandate directly influences application design, from
the user interface for obtaining consent to the underlying data storage architecture, elevating

security from a purely technical concern to a core product design requirement.

Similarly, the CCPA/CPRA carves out a specific subset of personal information designated
as "sensitive personal information™ (SPI). This category includes, but is not limited to:
Government-issued identifiers such as a Social Security number, driver's license, or passport
number

e A consumer's account log-in, financial account, debit card, or credit card number in
combination with any required security code, password, or credentials allowing access to an
account

« A consumer's precise geolocation

o Racial or ethnic origin, religious or philosophical beliefs, or union membership

e The contents of a consumer's mail, email, and text messages (unless the business is the
intended recipient)

e Aconsumer's genetic data

o Biometric data processed for the purpose of uniquely identifying an individual

Categorization of Sensitive Data
Synthesizing these legal definitions with common technical and security considerations,

sensitive data handled by Android applications can be classified into the following critical

Copyright@ Page 4

International Journal Research Publication Analysis

categories:

o Personally Identifiable Information (PI1): Data that can be used to identify a specific
individual, such as name, address, phone number, and email address.

o Special Category/Sensitive Personal Information (SPI): As defined by GDPR and
CCPA/CPRA, this includes high-risk data like health information, biometric data, political
affiliations, and religious beliefs.

e Authentication Credentials: Information used to grant or deny access to systems,
including usernames, passwords, PINs, APl keys, and session or authorization tokens.

« Financial Information: Data related to financial accounts, such as credit card numbers
and bank account details, which are explicitly protected under regulations like the CCPA.

e Proprietary and Confidential Information: Data that is sensitive from a business or
legal perspective, such as trade secrets, research and development assets, and privileged legal

communications.

The Android Security Model: An Overview of Sandboxing and Permissions

The Android operating system is architected with security as a central design principle. Its
defense-in-depth strategy is built upon the robust foundation of the Linux kernel, leveraging
two primary mechanisms to protect users and their data: application sandboxing and a user-

granted permissions model.

The cornerstone of Android's security is the application sandbox. At the time of installation,
the operating system assigns a unique Linux user ID (UID) to each application. Every
application then runs in its own process, isolated from all other applications on the device.
This isolation is enforced at the kernel level, meaning that by default, an application has no
ability to access the private data or resources of another application. This sandboxing model
is designed to contain the impact of a compromised or malicious application, preventing it

from interfering with the broader system or other apps.

To perform any action that extends beyond its own sandbox— such as accessing the device
camera, reading the user's contacts, or interacting with files on shared storage—an
application must request the appropriate permissions. These permissions must be declared in
the application's manifest file (AndroidManifest.xml). On modern Android versions, most
permissions that grant access to sensitive user data or system features require explicit user
consent at runtime. This model empowers the user to make informed decisions about which

data an application is allowed to access, serving as a critical checkpoint for data privacy.

Copyright@ Page 5

International Journal Research Publication Analysis

However, a fundamental tension has historically existed between the theoretical strength of
Android's sandboxing model and the practical reality of its storage APIs. While the sandbox
provides strong process isolation, the platform for many years provided and documented
APIs that effectively created vulnerabilities in this protective barrier. Deprecated but
historically significant mechanisms, such as MODE_WORLD_READABLE for
SharedPreferences and the broad WRITE_EXTERNAL_STORAGE permission, directly
contradicted the principle of isolation. These APIs allowed developers, often while following
what was once common practice, to create files that could be read or modified by any other
application on the device that held the requisite permission. This created a dangerous
ecosystem where a single malicious app could compromise the data of numerous legitimate
but insecurely designed applications. This history demonstrates that the OS-level security
model was incomplete without secure API design and strict enforcement. The subsequent
deprecation of these insecure modes and the mandatory introduction of modern paradigms
like Scoped Storage represent a crucial architectural correction, aimed at aligning API
behavior with the original security promise of the sandbox.

Problem Statement: The Persistent Challenge of Insecure Data Storage

Despite Android's robust, multi-layered security architecture, insecure data storage remains
one of the most prevalent and high-impact vulnerabilities in the mobile ecosystem. This issue
is consistently ranked among the top threats by security organizations like the Open Web
Application Security Project (OWASP), which listed it as M2: Insecure Data Storage in its
2014 and 2016 Mobile Top 10 lists and as M9: Insecure Data Storage in its 2023 list.

The root of this persistent problem lies not in a fundamental flaw in the Android security
model itself, but in common developer assumptions and implementation errors. Many
vulnerabilities stem from a failure to adhere to secure coding principles, such as assuming the
device filesystem is an inaccessible "black box," neglecting to encrypt sensitive data at rest,
implementing weak or flawed cryptographic algorithms, and misusing storage APIs. This
negligence creates opportunities for various threat actors—including malware, individuals
with physical access to the device, or those using reverse engineering techniques—to extract
and exploit sensitive user data.

The scale of this problem is significant. A recent security analysis by Zimperium revealed
that a staggering 91% of analyzed Android applications write PII to local data storage, and

Copyright@ Page 6

International Journal Research Publication Analysis

4% write P11 to insecure external storage locations.

Furthermore, the report identified that 103 Android apps used unprotected or misconfigured
cloud storage, and 10 apps contained hardcoded AWS cloud credentials, creating severe
vulnerabilities for data breaches. These statistics underscore that insecure data storage is not a
niche issue but a widespread and critical challenge that exposes millions of users to the risk of

identity theft, financial fraud, and privacy violations.

Literature Review

Numerous studies and technical guidelines have highlighted the inherent risks associated with
improper data handling in mobile applications. Research from source documents such as the
Android Developers guide emphasizes that data integrity and user trust heavily depend on
how securely an app protects its data exchanges and storage

Developers are encouraged to adopt secure storage practices by leveraging internal storage,
which isolates app data from external access, and by employing robust encryption algorithms
to secure data both at rest and during transmission.

Common Vulnerabilities

Several sources have detailed the vulnerabilities in Android apps:

e Insecure Storage Practices:

Sensitive data stored in plain text on external storage or using non-sandboxed approaches is
prone to unauthorized access. For instance, private user data placed in external storage can be
intercepted or modified if not properly encrypted2.

o Excessive Permissions:

Over-requesting permissions expands the attack surface. Many apps request permissions that
go far beyond their functionality needs, exposing users to potential risks if those permissions
are exploited by malicious softwarel2.

e Inadequate API Security:

APl endpoints that lack proper encryption or authentication measures are vulnerable to
interception and unauthorized access. Properly securing APIs using HTTPS with TLS and
certificate pinning is critical2.

e Weak Authentication Mechanisms:

Without robust authentication protocols such as biometric verification and multi-factor
authentication (MFA), attackers can effortlessly compromise user accounts. This weakness

has led to numerous data breaches where even sensitive device identifiers (e.g., IMEI, IMSI)

Copyright@ Page 7

International Journal Research Publication Analysis

have been leaked23.

Best Practices from Industry Guidelines

Industry experts and official documentation present a series of best practices for securing
Android applications:

o Data Encryption:

Encrypting data, both at rest and in transit, is universally recommended. End-to-end
encryption ensures that even if data is intercepted, it remains unreadable to unauthorized
partiesb.

e Secure Storage Mechanisms:

Using internal storage that is sandboxed per application prevents unauthorized access by other
apps. Windows such as Android’s Keystore, along with secure alternatives like DataStore and
Room Database (with encryption), help mitigate risks associated with external storage29.

o Application Hardening:

Code obfuscation, minimizing hardcoded secrets, and regular security audits are integral to
protecting the app’s code from reverse engineering or tampering?.

e Permission Management and Least Privilege Enforcement:

Implementing runtime permission models and adhering to the principle of least privilege
reduces the potential entry points for attackers1.

This review of literature underscores the importance of a multi-layered approach to mobile
security, combining secure coding practices, robust authentication, controlled data storage,

and ongoing threat monitoring to protect sensitive user data.

METHODOLOGY

This paper employs a content analysis methodology, synthesizing security best practices and
vulnerabilities from multiple authoritative sources. The approach is threefold:

1. Data Collection and Review:

We collected and reviewed technical documents, blog posts, and research articles related to
Android app security. Key documents include best practices guides from the Android
Developers portal as well as independent research findings on data leakage incidents in
Android apps23.

2. Content Synthesis and Analysis:

The gathered information was analyzed to extract common trends and recurring themes in
data storage vulnerabilities and secure storage techniques. The focus was on identifying

actionable security measures and assessing their effectiveness against various threat models.

Copyright@ Page 8

International Journal Research Publication Analysis

3. Structuring Best Practices:

Findings were organized into a framework that categorizes vulnerabilities (e.g., insecure
storage, excessive permissions, weak API security) and corresponding countermeasures (e.g.,
encryption, internal storage, secure API practices).

Visualizations such as summary tables and process diagrams were generated to illustrate
these relationships and provide clear guidelines for developers.

This methodology, based entirely on content analysis of published research and practical
guidelines, offers a comprehensive view of current vulnerabilities and feasible security

enhancements in Android app development.

ANALYSIS AND DISCUSSION

The discussion section delves into the specific vulnerabilities observed in Android
applications, followed by an evaluation of the secure storage techniques and risk mitigation
strategies recommended in the literature.

1.2. Vulnerabilities in Android Data Storage

Android applications are frequently exploited due to vulnerabilities in data storage
mechanisms. Key vulnerabilities include:

e Insecure Data Storage:

Storing sensitive data in external storage, or using unsandboxed approaches, dramatically
increases the risk of data leakage. Sensitive user information—such as credentials, device
identifiers, and personal records—is vulnerable when stored on external media or in a plain-
text format. For instance, storing tokens or credentials without encryption significantly
jeopardizes user privacyl12.

o [Excessive Permission Utilization: Applications often request a broad range of
permissions that extend beyond the necessary functionality. This over-permissioning creates
additional attack surfaces, wherein malicious apps can abuse these permissions to access
sensitive data in unintended ways12.

« Weak Authentication Protocols:

Inadequate security measures during the user authentication process can lead to unauthorized
access. Many apps still rely on outdated methods, exposing users to risks if attackers manage
to bypass simple password protections. Additionally, improper handling of biometric data and
PINs exacerbates this vulnerability23.

e Unsecured APl Communications:

Copyright@ Page 9

International Journal Research Publication Analysis

When APIs are not secured correctly—Ilacking encryption, proper authentication, or rate
limiting—the risk of data interception increases. APIs serve as critical conduits for data
exchange between the app and the server; thus, any weakness in their security architecture
can provide a gateway for cyberattacks?2.

e Third-Party SDK Risks:

Integrating external SDKSs introduces additional layers of complexity. SDKs like ShareSDK
have been shown to collect sensitive device data such as IMEI and IMSI, sometimes without
appropriate user consent. Such practices not only risk user data but also damage the
credibility of the host app3.

Visual Table: Android Data Vulnerabilities and Countermeasures

Table: Overview of vulnerabilities in Android data storage along with proposed

countermeasures.
Vulnerability Description Impact Level (Countermeasures
Vulnerability Description Impact Level |Countermeasures
Use internal storage with
Insecure Sensitive data stored inHigh encryption methods
Dat [plain text or on external (Keystore, DataStore,
a Storage storage Room Database) 29
Excessive Over-requesting Implement runtime
Permissions permissions leads toHigh permissions
increased attack surface
Inadequate user
Weak authentication methodsHigh Employ biometric
Authentication allowing unauthorized authentication, MFA, and
access secure key storage 23
APIs without proper
Unsecured encryption or authenticationHigh Use HTTPS with TLS,
AP lexpose data to interceptors certificate pinning, and rate
I Communication limiting 2
Third-Party External SDKs may collect Vet SDKs thoroughly and
SD sensitive data withoutHigh regularly audit integrated
K Risks proper user consent third-party libraries 3

Below is a flowchart illustrating the secure data storage

Copyright@

Page 10

International Journal Research Publication Analysis

1.3. Secure Storage Techniques

The adoption of secure storage techniques is crucial in mitigating the risks identified above.
Developers have several strategies at their disposal:

e Internal Storage Utilization:

Sensitive data should ideally be stored in the app’s internal storage, which is sandboxed per
app. This isolation prevents other applications from accessing the stored data. Internal storage
eliminates the need for explicit permission requests and inherently provides a secure
environment for storing sensitive files2.

e Encryption with Android Keystore:

The Android Keystore system allows apps to securely generate and store cryptographic keys.
When combined with libraries such as Jetpack Security or SQLCipher, developers can
encrypt sensitive data before storage. This layered approach ensures that even if data is
extracted, it remains unintelligible without the corresponding decryption key19.

« DataStore and SharedPreferences:

For storing small amounts of sensitive data such as tokens or credentials, the use of DataStore
or SharedPreferences with robust encryption can further reduce the risk of exposure. For
example, encrypting data with AES-256 and storing the resulting ciphertext along with secure
keys in the Keystore enhances overall data protection9.

« Avoiding External Storage for Sensitive Data: While external storage is useful for
large or non- sensitive files, it should never store passwords, API tokens, or personal details.
The risk of data exposure is heightened if such files are not properly encrypted and

managed29.

Mermaid Diagram: Secure Data Storage Process process:

END

Figure 1: Secure Data Storage Process illustrating encryption, internal storage, and

decryption during data access.

Copyright@ Page 11

International Journal Research Publication Analysis

1.4.Encryption Practices for Data in Transit and at Rest

Encryption serves as a cornerstone of data security in Android applications. Two major
aspects include encryption for data at rest (storage) and in transit

(network communication):

e Encryption of Data at Rest:

Sensitive information stored on a device must be encrypted to prevent data exposure in case
of unauthorized access. Developers are encouraged to use modern encryption algorithms such
as AES-

256. When sensitive data is stored locally, utilizing the Android Keystore to securely store
the encryption keys further protects the data29.

« Encryption of Data in Transit:

Data exchanged between the app and remote servers must be encrypted using protocols such
as TLS 1.3, which offers improved security compared to earlier protocols. Additionally,
certificate pinning can be implemented to ensure that the app communicates only with trusted
servers, thereby preventing man-in-the-middle (MITM) attacks2.

e Implementation Example:

A typical implementation involves configuring the app’s network security settings via a
dedicated XML file that enforces HTTPS and disables clear- text traffic2. This configuration
ensures that all communications are secured, even if the app requests data from less secure

endpoints2.

Table: Comparison of Encryption Techniques.
Table: Comparative overview of encryption techniques for protecting data at rest and in

transit.
Aspect |[Encryption Key Benefits References
Technique
Protects sensitive data
Data atAES-256, Keystore through robust 29
Rest integration
Data inTLS 1.3, CertificateSecure channel, prevention2
Transit [Pinning of MITM attacks
Storage [DataStore /Secure storage of small
Method [SharedPreferences |data items with encrypted59
values

Copyright@ Page 12

International Journal Research Publication Analysis

1.5. Authentication, Permissions, and Third-Party Risks

Securing sensitive data extends beyond storage and encryption—proper authentication and
limited permissions are equally critical.

e Robust Authentication Methods: Implementing strong authentication protocols is
essential. This includes the use of biometric authentication (e.g., fingerprint or face
recognition), multi-factor authentication (MFA), and secure session management practices.
Using such methods ensures that even if device-level vulnerabilities are present, the
application remains secure from unauthorized access23.

e Permission Management and the Principle of Least Privilege:

Android’s runtime permission model allows apps to request permissions only when they are
needed. Adhering to the principle of least privilege ensures that the app requests only the
minimal set of permissions required for its functionality. This approach significantly reduces
the potential for exploitation in the event of a breach12.

e Mitigating Third-Party SDK Risks:

The integration of third-party SDKs can introduce additional vulnerabilities. For example,
SDKSs such as ShareSDK have been reported to collect sensitive device information including
IMEI and IMSI numbers, often without proper user consent3. Rigorous vetting of third-party
libraries and periodic security audits are recommended to ensure that these components

comply with established security standards3.

Flowchart: Secure Authentication and Permission Flow

User Launches App

Access App Functionality
Securely

v

END

Figure 2: Flowchart depicting secure user authentication and controlled permission

allocation.

Copyright@ Page 13

International Journal Research Publication Analysis

CONCLUSION AND RECOMMENDATIONS

The security of sensitive user data on Android devices is a complex but manageable
challenge. This analysis has demonstrated that while the Android operating system provides
a strong security foundation through its application sandbox and permissions model, a wide
array of vulnerabilities can be introduced through developer negligence, incorrect APl usage,
and a failure to account for sophisticated threat models. The persistent ranking of “Insecure
Data Storage™ in the OWASP Mobile Top 10 serves as a testament to the prevalence of these
issues. However, by adopting a modern, defense-in-depth strategy, developers can build

applications that are resilient to the most common and severe threats.

Synthesis of Key Vulnerabilities and Countermeasures

The investigation into Android's storage mechanisms reveals a common theme: any data
stored in plaintext is vulnerable. The primary vulnerabilities stem from the misuse of storage
locations and a failure to implement encryption.

Shared Preferences and default SQLite databases, while protected by the sandbox, are
susceptible to data extraction on rooted devices or via physical access with ADB backups.
The legacy model of shared external storage introduced severe "Man-in-the-Disk"

vulnerabilities, allowing for data tampering and code execution attacks.

The countermeasures form a cohesive, multi-layered defense:

1. Data Minimization: The first and most effective control is to limit the collection and
storage of sensitive data.

2. Strong Encryption: All sensitive data stored at rest must be encrypted using industry-
standard algorithms like AES-256-GCM.

3. Hardware-Backed Key Management: The Android Keystore system is the cornerstone
of on-device security, providing a secure, hardware-protected container for cryptographic
keys that prevents their extraction.

4. Secure Database Practices: The use of the Room persistence library mitigates SQL
injection risks, while full-database encryption with libraries like SQLCipher protects the data
at rest.

5. Modern Architectural Patterns: Adherence to the Scoped Storage model is non-

negotiable, as it architecturally enforces the principle of least privilege for file access.

Ultimately, a secure application is one that trusts neither the user's device nor its own ability
to perfectly manage cryptographic primitives. It defers key management to the hardware-

Copyright@ Page 14

International Journal Research Publication Analysis

backed Keystore and leverages high-level, opinionated libraries like Jetpack Security and

Room to ensure that secure practices are implemented correctly and consistently.

A Holistic Security Checklist for Android Developers

To operationalize the findings of this paper, the following checklist provides a practical,
actionable guide for developers and security auditors. Adherence to these points will
significantly enhance the security posture of an Android application with respect to data

storage.
Category Checklist ltem
Data
Classificati [) Hawve you identified and classified =ll
on & sensitive data your app handles (FIl, SFI1,
Minimizatio credentials. etc)7
n

[] Are you storing only the absolute
minimum data required for core
functiomality?

Storage [] = all sensitive data stored exclusively in
Location Android's Internal Storage?

[1= your application fully compliant with
the Scoped Storage model for all external
file access?

[} &re you using the Jetpack Secwurity
library

Encr'_y'plicun l__"Enl::l:y]:T.-:dSha e B Py
EncryptedFile] for all sensitive files and
preferences?

[] Are you using a8 strong. recommended
algorithm {i.e., AES-256-GCM)7

[1!= your 5CLite database fully encrypted
using a library ke SQLCipher?

Key [] Are all encryption keys generated and
Managemen mamnaged within the Android Keystore
t system?

[] Are keys configurad to be hardware-
backed (TEE or StrongBox) whers
supported?

[) Hawe you boumnd critical keys to user
authentication by using

sxtlssziaotheanticationbaanizad (tx
PET
[) Hawve you s=t
ﬁud?f:t android:;allowBackup="fal=sa" inthe
anres EndroidManifast_xml to prevent data
Hygiene

extraction wia ADB?Y

[1 Hawe you remowved sll logging of
sensitive data from release builds of your
application?

[] &re you using parameterized queries
(2 .g.. via the Room library} to prevent all
forms of SAL injection?

Final Remarks on the Future of Android Data Security
The security landscape is not static. As defensive measures improve, attackers develop more
sophisticated techniques. The future of Android data security will be defined by a continued

shift toward dynamic, context-aware security models like Zero Trust Architecture and the

Copyright@ Page 15

International Journal Research Publication Analysis

adoption of technologies like Runtime Application Self-Protection. Developers can no longer
afford to view security as a final step in the development process. Instead, it must be
integrated into every phase of the software development lifecycle (SDLC), from initial design
to deployment and ongoing maintenance.

Furthermore, transparency is becoming a key component of security. Initiatives like the
Google Play Data Safety section require developers to disclose their data collection, sharing,
and security practices to users before installation. This not only empowers users to make
more informed decisions but also increases accountability for developers, creating a powerful
incentive to adopt the robust security practices outlined in this paper. Ultimately, building
and maintaining user trust in an increasingly hostile digital environment requires a steadfast
commitment to continuous vigilance, ongoing education, and the principled application of

secure design and coding practices.

REFERENCES

1. OWASP Foundation. "Mobile Top 10 2023." owasp.org. Accessed 2025.

2. Google. "Security tips." Android Developers. Accessed 2025.

3. Google. "Data and file storage overview." Android Developers. Accessed 2025.

4. Zimperium. "Your Apps are Leaking: The Hidden Data Risks on your Phone." Zimperium
Blog. 2025.

5. Check Point Research. "Man-in-the-Disk: A New Attack Surface for Android Apps."
blog.checkpoint.com. 2018.

6. HackerOne. "Report #44727 - Insecure Data Storage in Vine Android App."
hackerone.com. 2015.

7. Palo Alto Networks Unit 42. "Android Apps Leaking Sensitive Data Found on Google
Play With 6 Million

U.S. Downloads." unit42.paloaltonetworks.com. 2020.

8. Google. "Android Keystore system." Android Developers. Accessed 2025.

9. Zetetic. "SQLCipher for Android." zetetic.net. Accessed 2025.

10. Google. "Scoped storage.” Android Source. Accessed 2025.

11. Guardsquare. "The Future of Mobile App Security: Emerging Technologies and Trends."
guardsquare.com. 2025.

12. Palo Alto Networks. "What Is Zero Trust Architecture? Key Elements and Use Cases."

paloaltonetworks.com. Accessed 2025.

Copyright@ Page 16

International Journal Research Publication Analysis

13. Santana, V. M., & Centonze, P. "SECURITY MECHANISMS AND ANALYSIS FOR
INSECURE DATA STORAGE AND UNINTENDED DATA LEAKAGE FOR MOBILE
APPLICATIONS." International Journal of Computers & Technology, 15(8), 7008—7020.
2016.

14. Gaur, M. S., Laxmi, V., & Mosbah, M. "Detection of SQLite Database Vulnerabilities in
Android Apps.” ResearchGate. 2019.

15. Google. "Provide information for Google Play's Data safety section." Google Play
Console Help. Accessed 2025.

Copyright@ Page 17

