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ABSTRACT:
The non-homogeneous ternary  fifth  degree  Diophantine  equation  given
byw? +2z* —2wx—4zx =6x>—3x%is analyzed for its patterns of non-zero distinct

integral solutions.

KEYWORDS: Ternary quintic equation ,Non- Homogeneous quintic equation , Integral

solutions.

INTRODUCTION:

The Diophantine equation offers an unlimited field for research due to their variety [1-4]. In
particular, one may refer [5-11] for quintic equations with two ,three and five unknowns.
This ~ communication  concerns  with  yet  another  interesting  equation

w?+2z2-2wx—4zx=6 x®—3x2representing non-homogeneous quintic with three

unknowns for determining its infinitely many non-zero integral points.

METHOD OF ANALYSIS:
The given non-homogeneous ternary quintic Diophantine equation is

W?+222 —2wx—4zx=6x>-3x> 1)
On completing the squares,(1) is written as

P2 4+ 202 = 6X° @)
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where
P=w-x,Q=z-X 3)
By scrutiny , observe that (2) is satisfied by
P=2a°,Q=0a’,x=0a’
From (3) , one obtains
w=a’2a’+1),z=0a’(a’+1)
The above values of x, z, w satisfy (1) . However , there are other sets of integer solutions

satisfying (1). We illustrate below the process of obtaining different sets of integer

solutions to (1):

Set 1:
After some algebra, it is observed that (2) is satisfied by
P=6°m (m?+2n?)?,Q=6%n (m? +2n?)? (4)
and
X =6(m” +2n?) (5)
From (4) and (3) ,we have
W=6[6"m (m*+2n?)+1](m*+2n?),z=6[6°n (M* +2n?) +1](m” +2n?) (6)
Thus,(5) and (6) represent the integer solutions to (1).
Set 2:
Assume
X =m?+2n? (7
Write the integer 6 on the R.H.S. of (2) as
6=(2+i2) (2-i~/2) (8)
Assuming (7) & (8) in (2) and employing the method of factorization , consider
P+iv2Q = (2+i/2) (m+iv2n)° 9)

On equating the real and imaginary parts , we have
P=2f(m,n)—2g(m,n),Q=Ff(m,n)+2g(m,n) (10)
where
f(m,n)=m°>-20m%n*+20mn*,
g(m,n) =5m*n-20m?n®+4n°
Using (10) in (3), note that

z=m’+2n* +f(m,n)+2g(m,n),w=m?+2n°+2f(m,n)=2 g(m,n)  (11)
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Thus,(7) and (11) represent the integer solutions to (1).
Set 3:
Write (2) as
P2 + 2Q2 = 6X5 *1 (12)
Consider 1 as

_(F(r,9)+iv2 G(r,5)) (F(r,s)—iv2 G(r,5))

1 13
[H(r,9)]° ()
where
F(r,s)=2r>-s*,G(r,s) = 2rs,H(r,s) = 2r* +s?
Using (7) ,(8) and (13) in (12) and employing the method of factorization, one has
p+iv20 = (2+iv2) [(F1S) +Hi(£)6 (1) 5 (m +iv/2n)®
’ (14)

(F(r,s)+iv2 G(r,9)) ]

=(2+i\/§) [f(m,n)+i\/§g(m,n)][ H(r,s)

Equating the real and imaginary parts in (14) and replacing m by H(r,s)M and n by
H(r,s)N ,we get

P=[H(r,s)]*[{2f (M,N) =2 g(M, N)}F(r,s) — 2{f (M, N) + 2 g(M, N)} G(r,s)]

Q=[H(r,s)"[{2f (M,N)—29(M, N) G(r,s) +{f (M, N) + 2g(M, N)} F(r,s)] (12)
Also ,from (7) ,we have
x =[H(r,5)]* (M* +2N?) (16)
Substituting (15) and (16) in (3) ,one obtains the corresponding values of z,w
satisfying (1) .
Set4:
The option
Q=kx? (17)
in (2) leads to
P? =x* (6 x—2k?) (18)

which is satisfied by
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X = (6s* —8s+3)k? (19)
and
P=(6s—4) (6s*°—8s+3)*k° (20)
Using (19) in (17) , we have
Q=(6s*-8s+3)°k® (21)
Substituting (19) , (20) and (21) in (3) , it is seen that
W= (6s* —8x+3)k*[(6s—4) (6s° —8s+3)k® +1] 22)
z= (65 —8s+3)k*[(6s* —8s+3)k® +1]
Thus, (19) and (22) satisfy (1).
Note 1
It is to be noted that (18) is also satisfied by
X = (6s® —4s+1)k? (23)
and
P=(6s—-2) (6s*—4s+1)°k® (24)
Using (23) in (17) , we have
Q=(6s"—-4s+1)°k® (25)
Substituting (23) , (24) and (25) in (3), it is seen that
W= (6s* —4x+1)k*[(6s—2) (6s* —4s+1)k® +1] 26)
z=(6s®—4s+1D)k?[(6s® —4s+1)k® +1]
Thus, (23) and (26) satisfy (1).
Set5:
The option
P=2x’ (27)
in (2) leads to
2Q° =x"(6x—4
:>QQ2 = x“((3x—;) (28)
which is satisfied by
x = (3k? = 2k+1) (29)
and
Q=(k-1) (3k* -2k +1)* (30)
Using (29) in (27) , we have
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P=2(3k?-2k+1)

Substituting (29) ,(30) and (31) in (3) , it is seen that
w = (3k* =2k +1)(6k* —4k+3)
z=(3k*-2k+1)[(Bk-1) 3k* -2k +1)+1]

Thus, (29) and (32) satisfy (1).

Note 2

It is to be noted that (28) is also satisfied by
x = (3k? —4k+2)
and
Q=(8k-2) (3k* —4k+2)?
Using (33) in (27) , we have
P=2 (3k*-4k+2)?

Substituting (33) ,(34) and (35) in (3) , it is seen that
w = (3k* —4k +2) (6k* —8k+5)
z=(3k*-4k+2)[(Bk—-2) B3k* —4k+2)+1]

Thus, (33) and (36) satisfy (1).

Set6:

The choice
P=kQ
in (2) gives
(k* +2) Q* =6x°
which is satisfied by
Q=6%(k*+2)*a™
and
X =6(k*+2) a®
From (37) ,it is seen that
P=6°k(k*+2)*a™
Using (38) ,(39) and (40) in (3), we have
w=6k(k*+2)?a” +6(k*+2) a*
z2=6°k*+2)°a>* +6 (k®+2) a*
Thus, (1) is satisfied by (39) and (41).

31)

(32)

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41)
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Set7:
The choice
Q=kP (42)
in (2) gives
(2k? +1) P2 =6 x°
which is satisfied by

P=6°(2k?* +1)2 o (43)
and

X =602k*+1) a® (44)
From (42) ,it is seen that

Q=6’k(2k* +1)*a” (45)

Using (43) ,(44) and (45) in (3), we have
w=6>2k*+1)*a> +6 2k’ +1) o*
z=6°k(2k* +1)*a® +6 (2k* +1) o**

Thus, (1) is satisfied by (44) and (46).

(46)

CONCLUSION:
In this paper, we have made an attempt to obtain all integer solutions to (1). To conclude, one
may search for integer solutions to other choices of homogeneous or non-homogeneous

quintic equations with multiple variables.
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