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ABSTRACT 

Graph Neural Networks (GNNs) have been widely adopted for learning from non-Euclidean 

data structures, particularly graphs. Numerous studies have sought to enhance training 

efficiency and reduce computational complexity when dealing with large-scale graph 

datasets. This paper surveys convolution-based GNN approaches developed for graph 

classification and prediction tasks on large graphs. Each method is critically examined with 

respect to its claimed efficiency gains and complexity reductions, and their limitations are 

systematically discussed. In addition, the reviewed techniques are evaluated from the 

perspective of graph dataset characteristics, providing insights into their practical 

applicability and constraints. 

 

KEYWORDS: Graph Neural Networks, Graph Convolutional Networks, Graph 

Representation Learning, Large Graph Dataset. 

 

1. INTRODUCTION 

Graph-structured data differs fundamentally from grid-based or sequential data because 

relationships between entities are irregular, heterogeneous, and often dynamic. In such 
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settings, the influence of a node is governed not by spatial proximity or fixed ordering, but by 

the topology of the graph itself and the nature of its connections. Capturing these relational 

patterns requires models that can aggregate and propagate information across connected 

nodes while preserving structural dependencies. Graph Neural Networks are specifically 

designed for this purpose, enabling the learning of node, edge, and graph-level 

representations through message passing mechanisms. By directly operating on graph 

topology, GNNs overcome the limitations of conventional neural architectures and provide a 

scalable framework for learning complex, non-Euclidean relationships inherent in real-world 

graph data. 

 

Graph Neural Networks are broadly divided into Recurrent Graph Neural Networks 

(RecGNNs) and Convolutional Graph Neural Networks (ConvGNNs). RecGNNs rely on 

iterative message-passing mechanisms in which nodes repeatedly exchange information with 

their neighbors until a stable state is reached. In contrast, ConvGNNs learn node 

representations by aggregating features from local neighborhoods through convolution-like 

operations. ConvGNNs can be further categorized into spectral-based methods, which draw 

on spectral graph theory, and spatial-based methods, which perform direct neighborhood 

aggregation in the graph domain. Since spectral approaches require eigenvalue 

decomposition of adjacency or Laplacian matrices—leading to high computational 

overhead—spatial-based methods have become more widely adopted. These approaches also 

form the foundation of many spatio-temporal GNN models designed to capture the evolution 

of dynamic graphs over time. Despite significant progress in GNN research for unstructured 

data, efficiently handling large-scale and highly connected graphs remains a major challenge. 

Real-world graph datasets often contain millions of nodes and edges, making computation 

and memory management difficult. To address these scalability issues, several techniques 

such as neighborhood sampling, graph partitioning, and clustering have been proposed. This 

work aims to systematically examine and critically analyze these existing methods to better 

understand their effectiveness and limitations in processing complex, large-scale graphs. 
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2. RELATED WORKS 

The first notable survey of Graph Neural Networks was presented , which provided an 

overview of early graph convolutional models. Subsequent studies narrowed their focus to 

specific aspects of graph learning, with  examining network embedding techniques and  

concentrating exclusively on attention-based architectures. A more holistic treatment of 

GNNs was later attempted , though the analysis was limited to relational reasoning and 

combinatorial generalization. Broader surveys were introduced, offering a systematic 

classification of GNNs based on their core learning paradigms. An even more extensive 

review was conducted, which expanded the scope to include reinforcement learning–based 

and adversarial GNN frameworks. 

 

While these surveys provided valuable comparisons and organizational frameworks for 

existing GNN models, they largely overlooked the challenges associated with scaling GNNs 

to large and dense datasets. Their primary objective was to categorize models and present a 

unified taxonomy rather than to critically evaluate performance and practicality in real-world, 

large-scale scenarios. In contrast, this work focuses specifically on GNN architectures 

designed for large graph analysis and offers a critical assessment of their methodologies, 

scalability claims, and empirical effectiveness. 

 

2.1. CRITICAL REVIEW 

This work not merely discusses working and results of existing models for learning large 

datasets, but does a thorough critical analysis of the same to learn their effectiveness and 

shortcomings in learning and reducing its complexity. 

 

 

 

2.2. DATASET-WISE ANALYSIS 

This study also examines the datasets employed in existing literature and evaluates their 

relevance and adequacy for representing complex, large-scale graphs. Detailed dataset 

statistics are presented, and the reported performance of various approaches is critically 
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discussed in the context of their applicability to real-world graph data. By contrasting 

experimental results with the structural characteristics of practical datasets, this work 

highlights gaps between claimed effectiveness and real-world suitability. 

 

The remainder of the paper is organized as follows. Section  introduces fundamental graph 

and dataset concepts, traces the evolution of Graph Neural Networks, and outlines commonly 

used notations. Section  reviews models that primarily aim to reduce computational and 

learning complexity, detailing their underlying algorithms, proposed solutions to earlier 

limitations, as well as their advantages, computational costs, and drawbacks. Section  

explores approaches that enhance learning effectiveness without explicitly targeting 

complexity reduction, noting how these techniques may still be applicable to large-scale 

graphs. Section  identifies common limitations across existing methods and analyzes their 

performance using dataset statistics to assess real-world effectiveness. Finally, Section 6 

concludes the review. 

 

3.DEFINITIONS 

Graph: A graph is defined by a set of vertices , where each 

element represents a node, and a set of edges , where each edge denotes a 

connection between one or more vertices in the graph. 

Receptive Field: In the context of Graph Neural Networks, the receptive field of a node 

refers to the collection of neighboring and multi-hop nodes whose features influence the 

computation of that node’s final representation. 

Seed Node: A seed node is the initial or reference node from which the neighborhood 

sampling process is initiated, and for which the learned embedding or representation is the 

primary objective. 

 

4.EVOLUTION OF GRAPH NEURAL NETWORKS 

The earliest attempt to model graph-structured data can be traced, which focused on learning 

representations for directed acyclic graphs. The formal notion of Graph Neural Networks was 

later introduced  and subsequently extended , both of which employed recurrent architectures 

for iterative information propagation. The first convolution-based GNN model appeared  and 

relied on spectral graph theory. This approach was further refined, which demonstrated that 

both graph dimensionality and the computational cost of Fourier transformations could be 



 

International Journal Research Publication Analysis                                                

Copyright@                                                                                                                                                 Page 5 

 

reduced through simple mean or max pooling operations. Pooling strategies were later 

enhanced  by optimizing max–min aggregation techniques. 

 

Subsequent developments included, which proposed a semi-supervised framework for node 

classification, which introduced advanced spectral filters based on Cayley polynomials to 

improve representational capacity. A major conceptual breakthrough was achieved, which 

established the message-passing paradigm as a core mechanism for convolutional GNNs. 

Building on this foundation, numerous models have since been proposed that integrate 

convolution with diffusion processes, attention mechanisms, and other enhancements to 

further improve learning performance on graph-structured data. 

 

 

 

5.NOTATIONS 

Notation Description 

G A graph 

V The vertex set of G 

v, u Nodes belonging to V 

n The number of nodes, n = |V| 

E The edge set of G 

e An edge e ∈ E 

m The number of edges, m = |E| 

N(v) The neighbourhood set of v 

d The dimension of a node feature vector. 

b The dimension of a hidden node feature vector. 

K Number of layers in GNN 

c The dimension of an edge feature vector. 

k, l The layer index 

t The time step/iteration index 

s The batch size 

r The number of neighbors sampled for each node 

σ(·) The sigmoid activation function 

σh(·) The tangent hyperbolic activation function 

A The graph adjacency matrix. 
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AT The transpose of the matrix A. 

An, n ∈Z The nth power of A 

D The degree matrix of A 

X ∈Rn×d The feature matrix of a graph. 

x ∈Rn The feature vector of a graph in the case of d = 1. 

xv ∈Rd The feature vector of the node v. 

Xe ∈Rn×c The edge feature matrix of a graph. 

xe ∈Rc 

(v,u) 

The edge feature vector of the edge (v, u). 

X(t) ∈Rn×d The feature matrix of a graph at time step t 

H ∈Rn×b The node hidden feature matrix 

hv ∈Rb The hidden feature vector of node v 

W, Θ, w, θ Learnable model parameters. 

 

6. INDUCTIVE REPRESENTATION LEARNING ON LARGE GRAPHS 

  (GRAPHSAGE) 

The Graph Convolutional Network (GCN) employs full-batch gradient descent for graph 

convolution, requiring all nodes in the graph to be loaded into memory simultaneously. This 

design makes GCNs impractical for large-scale graphs due to high memory consumption. To 

address this limitation, GraphSAGE  was proposed, introducing a mini-batch training strategy 

that significantly reduces memory overhead. By enabling multiple parameter updates within a 

single epoch, GraphSAGE also achieves faster and more efficient convergence compared to 

full-batch approaches. 

 

GraphSAGE is an inductive, spatial-based convolutional GNN that learns node 

representations by sampling a fixed-size subset of a seed node’s neighborhood. At each 

training iteration, it uniformly selects neighbors from the local vicinity of the target node and 

aggregates their features to generate embeddings. This neighborhood sampling mechanism 

allows GraphSAGE to scale to large graphs while maintaining the ability to generalize to 

unseen nodes. 

 

6.1. FAST LEARNING WITH GRAPH CONVOLUTIONAL NETWORK VIA 

IMPORTANCE SAMPLING (FASTGCN) 

FastGCN is graph convolution approach that learns features representations on graph's 

vertices and interpret convolutions as integral transformation of vertex embedding functions. 

FastGCN samples using importance-based sampling, unlike in GraphSAGE, a fixed number 

of vertices and not neighbours for each graph convolutional layer; it samples layer- wise. As 
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the sampling is importance-based, the nodes which influence the seed node majorly, are 

selected. The model can be represented as in Eq.: 

H(l+1) = σ(ÂH(l)W(l)) 

  

6.2. GATED ATTENTION NETWORKS FOR LEARNING ON LARGE AND 

SPATIOTEMPORAL GRAPHS  (GAAN) 

GaAN  is a gated attention based convolutional GNN, modelled, performs sampling like 

GraphSAGE, however, with two major differences. At each sampling step it samples 

minimum of number of neighbouring nodes or, certain maximum number of nodes determined 

by a hyperparameter. It also merges any repeatedly sample node for a different seed node but 

of the same mini-batch. The gated attention, which is the main modification to previous 

models, can modulate the amount of attended content via the introduced gates. The model 

also involves transforming graph aggregators into Gated Graph Recurrent Unit (GGRU) 

which can be used for spatial-temporal learning. 

 

6.3.ADAPTIVE SAMPLING TOWARDS FAST GRAPH REPRESENTATION 

LEARNING (ADAPT) 

A variant of FastGCN, this general framework is an inductive top-down layer-wise sampling-

based convolution framework that approximates optimal sampling by conditionally selecting 

lower layer nodes based on upper layer nodes. The approach is based on the premises of 

common neighbourhood for nodes across a layer, i.e., all parent nodes have same sampled 

neighbours. The effect is of having similar sampling flow for neighbourhood of nodes of a 

layer which intends to reduce learning complexity. 

 

6.4.STOCHASTIC TRAINING OF GRAPH CONVOLUTIONAL NETWORKS WITH 

VARIANCE REDUCTION (STOGCN) 

StoGCN is a stochastic approximation based convolutional GNN which improvises by 

employing the historical representation of nodes’ activations to reduce variance in the 

sampled nodes in order to reduce the receptive-field size. Instead of recursively calculating a 

node’s activation representation every time using its neighbours’ activations at previous 

layers, it maintains an approximated representation for each node which is updated at every 

layer with newly learned representations. The model estimator has a zero variance and is 

referred to as control variate 



 

International Journal Research Publication Analysis                                                

Copyright@                                                                                                                                                 Page 8 

 

6.5. GRAPH CONVOLUTIONAL NEURAL NETWORKS FOR WEB-SCALE RECOMMENDER SYSTEMS (PINSAGE) 

PinSage  is GCN based recommender algorithm that performs low-latency random walks on 

graphs for importance- based neighbourhood sampling of nodes. Here, the importance- based 

sampling is performed by selecting nodes with highest normalized count visits of multiple 

random walks. The model applies multiple convolutions in a localized set-up of small 

neighbourhood nodes to learn embeddings of each node for multiple features. The 

information gain in each convolution with respect to feature-type is stacked to get more 

comprehensive embeddings. The algorithm uses max-margin based loss function with an 

intent to maximize the inner product of embedding of the query item and the corresponding 

related item and minimize the inner product of the query item and an unrelated item. 

 

4.6. LARGE-SCALE LEARNABLE GRAPH CONVOLUTIONAL NETWORK 

(LGCN) 

LGCN [28] is a spatial based GCN that transforms generic graphs into grid-structure to apply 

standard one-dimensional CNN convolution for feature learning of graph nodes. It learns 

representations of neighbourhood nodes for the seed node and arranges them in matrix with 

features forming the columns and rows populated with feature-values for each neighbourhood 

node. The rows are then sorted based on the feature-values and top few rows and 

correspondingly nodes are selected for defining representation of the seed node. 

 

5. GEOMETRIC  GRAPH NEURAL NETWORKS 

Geometric Graph Convolutional Networks (Geom-GCN) were proposed to address two key 

limitations of message-passing neural networks (MPNNs): the loss of structural information 

caused by indiscriminate neighborhood aggregation and the difficulty of capturing long-range 

dependencies in disassortative graphs. In such graphs, influential nodes may be several hops 

away, and conventional aggregation mechanisms often fail to account for their impact, 

leading to suboptimal representations. To overcome this, Geom-GCN introduces a geometric 

aggregation framework that projects nodes into a continuous latent embedding space and 

constructs structural neighborhoods based on geometric relationships within that space. A bi-

level aggregation mechanism is then applied over these structurally informed neighborhoods 

to effectively update node feature representations, enabling improved learning of both local 

and long-range dependencies. 
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6. PERFORMANCE EVALUATION 

Based on the preceding analysis, it is clear that most existing methods rely heavily on 

neighborhood sampling to perform convolution over large-scale graphs in order to reduce 

computational complexity. However, a key limitation of conventional sampling strategies is 

their tendency to overlook influential or informative nodes during the sampling process. The 

omission of such critical nodes can lead to incomplete neighborhood representations, 

ultimately degrading the quality of learned embeddings and adversely impacting model 

performance. 

 

7. DATASETS REVIEW 

It is observed that different data-statistics have been reported by the existing works for the 

same datasets. While where FastGCN, LCGN and StoGCN reported same n of 2,708 and 

19,717 for Cora and PubMed datasets respectively; StoGCN reported higher m for both the 

datasets. 

 

8. CONCLUSION 

In this review, we have detailed the approaches to model large graphs. We have critically 

analysed each of these approaches and their claims of learning and reducing complexity in 

large graphs. It is observed that Adapt gives the best micro-F1 accuracy for comparatively 

smaller datasets Cora, CiteSeer and PubMed while GaAN has the best score in case of larger 

Reddit dataset. It is to be noted that Adapt’s Cora and PubMed datasets has lesser edges then 

the same datasets used by StoGCN; but StoGCN has reported only accuracy scores and not 

micro-F1 scores. Cluster-GCN has reported the best processing time with best memory and 

time complexity. However, they have processed only highly sparse datasets and not 

performed learning in dense graphs. 

 

In the final analysis, it cannot be definitely stated that any of the existing approaches does 

quality learning along with substantially reduction of complexity in true real-world graphs. 
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