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ABSTRACT

Graph Neural Networks (GNNs) have been widely adopted for learning from non-Euclidean
data structures, particularly graphs. Numerous studies have sought to enhance training
efficiency and reduce computational complexity when dealing with large-scale graph
datasets. This paper surveys convolution-based GNN approaches developed for graph
classification and prediction tasks on large graphs. Each method is critically examined with
respect to its claimed efficiency gains and complexity reductions, and their limitations are
systematically discussed. In addition, the reviewed techniques are evaluated from the
perspective of graph dataset characteristics, providing insights into their practical

applicability and constraints.

KEYWORDS: Graph Neural Networks, Graph Convolutional Networks, Graph

Representation Learning, Large Graph Dataset.

1. INTRODUCTION
Graph-structured data differs fundamentally from grid-based or sequential data because

relationships between entities are irregular, heterogeneous, and often dynamic. In such
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settings, the influence of a node is governed not by spatial proximity or fixed ordering, but by
the topology of the graph itself and the nature of its connections. Capturing these relational
patterns requires models that can aggregate and propagate information across connected
nodes while preserving structural dependencies. Graph Neural Networks are specifically
designed for this purpose, enabling the learning of node, edge, and graph-level
representations through message passing mechanisms. By directly operating on graph
topology, GNNs overcome the limitations of conventional neural architectures and provide a
scalable framework for learning complex, non-Euclidean relationships inherent in real-world

graph data.

Graph Neural Networks are broadly divided into Recurrent Graph Neural Networks
(RecGNNs) and Convolutional Graph Neural Networks (ConvGNNs). RecGNNs rely on
iterative message-passing mechanisms in which nodes repeatedly exchange information with
their neighbors until a stable state is reached. In contrast, ConvGNNs learn node
representations by aggregating features from local neighborhoods through convolution-like
operations. ConvGNNSs can be further categorized into spectral-based methods, which draw
on spectral graph theory, and spatial-based methods, which perform direct neighborhood
aggregation in the graph domain. Since spectral approaches require eigenvalue
decomposition of adjacency or Laplacian matrices—leading to high computational
overhead—spatial-based methods have become more widely adopted. These approaches also
form the foundation of many spatio-temporal GNN models designed to capture the evolution
of dynamic graphs over time. Despite significant progress in GNN research for unstructured
data, efficiently handling large-scale and highly connected graphs remains a major challenge.
Real-world graph datasets often contain millions of nodes and edges, making computation
and memory management difficult. To address these scalability issues, several techniques
such as neighborhood sampling, graph partitioning, and clustering have been proposed. This
work aims to systematically examine and critically analyze these existing methods to better

understand their effectiveness and limitations in processing complex, large-scale graphs.
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2. RELATED WORKS

The first notable survey of Graph Neural Networks was presented , which provided an
overview of early graph convolutional models. Subsequent studies narrowed their focus to
specific aspects of graph learning, with examining network embedding techniques and
concentrating exclusively on attention-based architectures. A more holistic treatment of
GNNs was later attempted , though the analysis was limited to relational reasoning and
combinatorial generalization. Broader surveys were introduced, offering a systematic
classification of GNNs based on their core learning paradigms. An even more extensive
review was conducted, which expanded the scope to include reinforcement learning—based

and adversarial GNN frameworks.

While these surveys provided valuable comparisons and organizational frameworks for
existing GNN models, they largely overlooked the challenges associated with scaling GNNs
to large and dense datasets. Their primary objective was to categorize models and present a
unified taxonomy rather than to critically evaluate performance and practicality in real-world,
large-scale scenarios. In contrast, this work focuses specifically on GNN architectures
designed for large graph analysis and offers a critical assessment of their methodologies,

scalability claims, and empirical effectiveness.

2.1. CRITICAL REVIEW
This work not merely discusses working and results of existing models for learning large
datasets, but does a thorough critical analysis of the same to learn their effectiveness and

shortcomings in learning and reducing its complexity.

Hisdams Layer Hidden Lawsr

2.2. DATASET-WISE ANALYSIS

This study also examines the datasets employed in existing literature and evaluates their
relevance and adequacy for representing complex, large-scale graphs. Detailed dataset
statistics are presented, and the reported performance of various approaches is critically
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discussed in the context of their applicability to real-world graph data. By contrasting
experimental results with the structural characteristics of practical datasets, this work

highlights gaps between claimed effectiveness and real-world suitability.

The remainder of the paper is organized as follows. Section introduces fundamental graph
and dataset concepts, traces the evolution of Graph Neural Networks, and outlines commonly
used notations. Section reviews models that primarily aim to reduce computational and
learning complexity, detailing their underlying algorithms, proposed solutions to earlier
limitations, as well as their advantages, computational costs, and drawbacks. Section
explores approaches that enhance learning effectiveness without explicitly targeting
complexity reduction, noting how these techniques may still be applicable to large-scale
graphs. Section identifies common limitations across existing methods and analyzes their
performance using dataset statistics to assess real-world effectiveness. Finally, Section 6

concludes the review.

3.DEFINITIONS
Graph: A graph G = (V, E))is defined by a set of vertices V' = {v,,1,,... }, where each

element represents a node, and a set of edges E = {e;, &5, ... }, where each edge denotes a

connection between one or more vertices in the graph.

Receptive Field: In the context of Graph Neural Networks, the receptive field of a node
refers to the collection of neighboring and multi-hop nodes whose features influence the
computation of that node’s final representation.

Seed Node: A seed node is the initial or reference node from which the neighborhood
sampling process is initiated, and for which the learned embedding or representation is the
primary objective.

4. EVOLUTION OF GRAPH NEURAL NETWORKS

The earliest attempt to model graph-structured data can be traced, which focused on learning
representations for directed acyclic graphs. The formal notion of Graph Neural Networks was
later introduced and subsequently extended , both of which employed recurrent architectures
for iterative information propagation. The first convolution-based GNN model appeared and
relied on spectral graph theory. This approach was further refined, which demonstrated that

both graph dimensionality and the computational cost of Fourier transformations could be
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reduced through simple mean or max pooling operations. Pooling strategies were later

enhanced by optimizing max—min aggregation techniques.

Subsequent developments included, which proposed a semi-supervised framework for node
classification, which introduced advanced spectral filters based on Cayley polynomials to
improve representational capacity. A major conceptual breakthrough was achieved, which
established the message-passing paradigm as a core mechanism for convolutional GNNSs.
Building on this foundation, numerous models have since been proposed that integrate
convolution with diffusion processes, attention mechanisms, and other enhancements to

further improve learning performance on graph-structured data.
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5.NOTATIONS

Notation |Description

A graph

The vertex set of G

Nodes belonging to V

The number of nodes, n = |V|

The edge set of G

Anedgee € E

The number of edges, m = |E|

The neighbourhood set of v

The dimension of a node feature vector.

The dimension of a hidden node feature vector.
Number of layers in GNN

The dimension of an edge feature vector.

The layer index

The time step/iteration index

The batch size

The number of neighbors sampled for each node
The sigmoid activation function

oh(-) The tangent hyperbolic activation function

A The graph adjacency matrix.
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AT The transpose of the matrix A.

A" n€zZ [Then"™ power of A

D The degree matrix of A

X ern*d [The feature matrix of a graph.

X ER" The feature vector of a graph in the case of d = 1.

Xy ERM The feature vector of the node v.
X€ ern*c [The edge feature matrix of a graph.

X €R°® [The edge feature vector of the edge (v, u).

(v,u)
X (t) ern>dThe feature matrix of a graph at time step t

H ernNxb [The node hidden feature matrix

hy €RP The hidden feature vector of node v
W, ©,w, 6 |Learnable model parameters.

6. INDUCTIVE REPRESENTATION LEARNING ON LARGE GRAPHS
(GRAPHSAGE)

The Graph Convolutional Network (GCN) employs full-batch gradient descent for graph
convolution, requiring all nodes in the graph to be loaded into memory simultaneously. This
design makes GCNs impractical for large-scale graphs due to high memory consumption. To
address this limitation, GraphSAGE was proposed, introducing a mini-batch training strategy
that significantly reduces memory overhead. By enabling multiple parameter updates within a
single epoch, GraphSAGE also achieves faster and more efficient convergence compared to

full-batch approaches.

GraphSAGE is an inductive, spatial-based convolutional GNN that learns node
representations by sampling a fixed-size subset of a seed node’s neighborhood. At each
training iteration, it uniformly selects neighbors from the local vicinity of the target node and
aggregates their features to generate embeddings. This neighborhood sampling mechanism
allows GraphSAGE to scale to large graphs while maintaining the ability to generalize to

unseen nodes.

6.1. FAST LEARNING WITH GRAPH CONVOLUTIONAL NETWORK VIA
IMPORTANCE SAMPLING (FASTGCN)

FastGCN is graph convolution approach that learns features representations on graph's
vertices and interpret convolutions as integral transformation of vertex embedding functions.
FastGCN samples using importance-based sampling, unlike in GraphSAGE, a fixed number

of vertices and not neighbours for each graph convolutional layer; it samples layer- wise. As
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the sampling is importance-based, the nodes which influence the seed node majorly, are

selected. The model can be represented as in EQ.:

H(+1) = g(AHDwW(D))

6.2. GATED ATTENTION NETWORKS FOR LEARNING ON LARGE AND
SPATIOTEMPORAL GRAPHS (GAAN)

GaAN is a gated attention based convolutional GNN, modelled, performs sampling like
GraphSAGE, however, with two major differences. At each sampling step it samples
minimum of number of neighbouring nodes or, certain maximum number of nodes determined
by a hyperparameter. It also merges any repeatedly sample node for a different seed node but
of the same mini-batch. The gated attention, which is the main modification to previous
models, can modulate the amount of attended content via the introduced gates. The model
also involves transforming graph aggregators into Gated Graph Recurrent Unit (GGRU)

which can be used for spatial-temporal learning.

6.3.ADAPTIVE SAMPLING TOWARDS FAST GRAPH REPRESENTATION
LEARNING (ADAPT)

A variant of FastGCN, this general framework is an inductive top-down layer-wise sampling-
based convolution framework that approximates optimal sampling by conditionally selecting
lower layer nodes based on upper layer nodes. The approach is based on the premises of
common neighbourhood for nodes across a layer, i.e., all parent nodes have same sampled
neighbours. The effect is of having similar sampling flow for neighbourhood of nodes of a

layer which intends to reduce learning complexity.

6.4.STOCHASTIC TRAINING OF GRAPH CONVOLUTIONAL NETWORKS WITH
VARIANCE REDUCTION (STOGCN)

StoGCN is a stochastic approximation based convolutional GNN which improvises by
employing the historical representation of nodes’ activations to reduce variance in the
sampled nodes in order to reduce the receptive-field size. Instead of recursively calculating a
node’s activation representation every time using its neighbours’ activations at previous
layers, it maintains an approximated representation for each node which is updated at every
layer with newly learned representations. The model estimator has a zero variance and is

referred to as control variate
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6.5. GRAPH CONVOLUTIONAL NEURAL NETWORKS

PinSage is GCN based recommender algorithm that performs low-latency random walks on
graphs for importance- based neighbourhood sampling of nodes. Here, the importance- based
sampling is performed by selecting nodes with highest normalized count visits of multiple
random walks. The model applies multiple convolutions in a localized set-up of small
neighbourhood nodes to learn embeddings of each node for multiple features. The
information gain in each convolution with respect to feature-type is stacked to get more
comprehensive embeddings. The algorithm uses max-margin based loss function with an
intent to maximize the inner product of embedding of the query item and the corresponding

related item and minimize the inner product of the query item and an unrelated item.

46. LARGE-SCALE LEARNABLE GRAPH CONVOLUTIONAL NETWORK
(LGCN)

LGCN [28] is a spatial based GCN that transforms generic graphs into grid-structure to apply
standard one-dimensional CNN convolution for feature learning of graph nodes. It learns
representations of neighbourhood nodes for the seed node and arranges them in matrix with
features forming the columns and rows populated with feature-values for each neighbourhood
node. The rows are then sorted based on the feature-values and top few rows and
correspondingly nodes are selected for defining representation of the seed node.

5. GEOMETRIC GRAPH NEURAL NETWORKS

Geometric Graph Convolutional Networks (Geom-GCN) were proposed to address two key
limitations of message-passing neural networks (MPNNSs): the loss of structural information
caused by indiscriminate neighborhood aggregation and the difficulty of capturing long-range
dependencies in disassortative graphs. In such graphs, influential nodes may be several hops
away, and conventional aggregation mechanisms often fail to account for their impact,
leading to suboptimal representations. To overcome this, Geom-GCN introduces a geometric
aggregation framework that projects nodes into a continuous latent embedding space and
constructs structural neighborhoods based on geometric relationships within that space. A bi-
level aggregation mechanism is then applied over these structurally informed neighborhoods
to effectively update node feature representations, enabling improved learning of both local

and long-range dependencies.
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6. PERFORMANCE EVALUATION

Based on the preceding analysis, it is clear that most existing methods rely heavily on
neighborhood sampling to perform convolution over large-scale graphs in order to reduce
computational complexity. However, a key limitation of conventional sampling strategies is
their tendency to overlook influential or informative nodes during the sampling process. The
omission of such critical nodes can lead to incomplete neighborhood representations,
ultimately degrading the quality of learned embeddings and adversely impacting model

performance.

7. DATASETS REVIEW

It is observed that different data-statistics have been reported by the existing works for the
same datasets. While where FastGCN, LCGN and StoGCN reported same n of 2,708 and
19,717 for Cora and PubMed datasets respectively; StoGCN reported higher m for both the
datasets.

8. CONCLUSION

In this review, we have detailed the approaches to model large graphs. We have critically
analysed each of these approaches and their claims of learning and reducing complexity in
large graphs. It is observed that Adapt gives the best micro-F1 accuracy for comparatively
smaller datasets Cora, CiteSeer and PubMed while GaAN has the best score in case of larger
Reddit dataset. It is to be noted that Adapt’s Cora and PubMed datasets has lesser edges then
the same datasets used by StoGCN; but StoGCN has reported only accuracy scores and not
micro-F1 scores. Cluster-GCN has reported the best processing time with best memory and
time complexity. However, they have processed only highly sparse datasets and not

performed learning in dense graphs.

In the final analysis, it cannot be definitely stated that any of the existing approaches does

quality learning along with substantially reduction of complexity in true real-world graphs.
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