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ABSTRACT

Cloud-based video conferencing platforms such as Zoom, Google Meet, and Microsoft
Teams have become essential for modern communication, yet they exhibit several limitations
including opaque architectural designs, limited adaptability under fluctuating network
conditions, and restricted control over Quality of Service (QoS) parameters. These platforms
also rely on proprietary infrastructure, offer minimal transparency into congestion-control
mechanisms, and provide limited opportunities for academic experimentation or
customization. Furthermore, their reliance on heavy server-side computations and closed
media- routing pipelines makes it difficult to evaluate, replicate, or extend their behaviour in
research environments. SkyConnect addresses these gaps by presenting an open, cloud-
native, and QoS-aware video conferencing platform engineered for transparency, scalability,
and real-time adaptability. Built using WebRTC, distributed SFU-based media routing, and a
stateless signalling architecture, SkyConnect incorporates telemetry-driven bitrate adaptation,
simulcast-based media optimization, and region-aware routing to maintain sub-200 ms
latency across vary- ing network states. The platform further integrates Kubernetes- ready
autoscaling strategies, real-time RTP telemetry processing, and modular service boundaries to
enable flexible experimentation and reproducibility—features largely unavailable in

commercial systems.

INDEXTERMS: WebRTC, Selective Forwarding Unit (SFU), cloud-native architecture,
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real-time communication, Quality of Service (QoS), adaptive bitrate, simulcast streaming,

Kubernetes autoscaling, telemetry-driven optimization, video conferencing systems.

INTRODUCTION

Real-time video communication has evolved from a periph- eral utility into a mission-critical
enabler for modern digital ecosystems. Enterprises, educational institutions, healthcare
providers and remote operational environments increasingly depend on high-fidelity video
conferencing to maintain pro- ductivity, continuity, and collaborative agility. The global shift
towards distributed teams has raised expectations around service availability, user experience,
cross-device compatibility, and the ability of platforms to gracefully handle volatile network
and compute conditions. As a result, robust video collaboration solutions must deliver
consistent performance at scale while ensuring predictable cost structures, operational

transparency, and architectural extensibility.

WebRTC has emerged as the de facto standard for browser- native real-time communication,
offering built-in support for encrypted media transport, peer-to-peer connections, NAT
traversal assistance, and industry-standard codecs. However, raw WebRTC primitives alone
do not satisfy the demands of multi-party conferencing at the production scale. Practical
deployments must incorporate cloud-native routing logic, adaptive bitrate pipelines, signaling
reliability, TURN-backed fallbacks, security controls, and global autoscaling logic.
Furthermore, real-world deployments expose gaps not evident in theoretical models—network
asymmetry, device heterogeneity, APl rate constraints, and region-to-region latency

divergence all influence the perception of quality.

In response to these industry realities, we developed SkyCon- nect, a cloud-native video
conferencing platform engineered to deliver stable, low-latency communication across
geographi- cally distributed environments. The system was implemented by the authors —
Saif Usman Shaikh, Prakash Nagaral, Vinod Pammar, and Vikram Pramod — as a
production-oriented en- gineering project. The development process involved extensive
experimentation, iterative refactoring, and real-world usability testing, which allowed our
team to internalize the engineering challenges associated with scaling WebRTC
infrastructure, managing distributed state, and maintaining quality of service under

unpredictable network behaviour.

Throughout its development lifecycle, SkyConnect exposed a series of practical obstacles that
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shaped its architecture. Earlyprototypes revealed limitations in peer-to-peer topologies for
multi-user sessions, pushing the design toward a Selective Forwarding Unit (SFU) model. As
participants scaled, the system demanded intelligent routing logic to offload CPU- intensive
tasks from clients and consolidate media traffic efficiently. NAT traversal proved inconsistent
across access networks, highlighting the necessity of TURN relays and region-sensitive
candidate prioritization. Fluctuating bandwidth conditions underscored the importance of
simulcast, layered encoding, and rule-based adaptive bitrate tuning. Furthermore, live
deployments demonstrated that signaling availability and session recovery were as critical as

media reliability.

Despite these challenges, the engineering results were strong. SkyConnect successfully
delivered stable conferencing across heterogeneous network environments, exhibited
predictable sub-200 ms median latencies during controlled tests, and showed resilience under
induced packet loss scenarios. The platform validated the role of telemetry-driven decisions
in maintaining video continuity, with the QoS scheduler showing to be particularly effective
in dynamically moderating bitrate, routing, and SFU selection. In combination with
Kubernetes- based autoscaling, SkyConnect demonstrated linear scalability characteristics up

to the upper bounds of our test environment.

From an academic standpoint, SkyConnect functions not only as a software platform but as
a reference architecture that captures the operational realities of cloud-native real-time
communication. This project contributes experiential insights that extend beyond theoretical
constructs—specifically, insights into debugging distributed signaling flows, handling renego-
tiation events, optimizing TURN placement, analyzing RTP statistics, and tuning autoscaling
thresholds according to real media workload patterns. These lived engineering encounters
allow this paper to articulate challenges, justifications, and architectural trade-offs with

authenticity.

Motivation

The primary motivation for SkyConnect stemmed from the absence of open, transparent,
cloud-native video conferencing blueprints that accurately reflect the demands of modern
distributed deployments. Commercial systems like Zoom or Google Meet encapsulate
sophisticated optimizations behind proprietary code, limiting opportunities for academic
explo- ration or customization. Our goal was to design and implement a platform whose

internal mechanisms—QoS logic, routing strategies, telemetry streams, failure-handling
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behaviour—were fully observable and modifiable. This provides a foundation for both
research and practical deployment while equipping future engineers with operational clarity

missing in black-box commercial systems.

Problem Statement

While WebRTC simplifies browser-level real-time communi- cation, scaling it to a multi-

party, multi-region conferencing platform introduces several unsolved challenges:

- Scalable Media Routing: P2P models collapse beyond small groups; SFUs introduce
complexity around load distribution and stream selection.

- QoS Preservation: Maintaining consistent quality un- der unstable or asymmetric
network conditions requires dynamic, telemetry-driven policy enforcement.

- Distributed Deployment: Region-aware SFU selection and TURN placement
significantly influence latency and reliability.

- Operational Observability: Real-time metrics, logging, and tracing are mandatory for
diagnosing issues in a live environment.

SkyConnect was engineered to directly address these chal- lenges.

Contributions

This paper presents the following contributions:

- A cloud-native, microservice-aligned conferencing archi- tecture with distributed SFU
nodes, TURN relays, and a high-availability signaling layer.

A telemetry-driven QoS scheduling engine that dynami- cally adjusts bitrate, stream layers,

and routing based on real-time network statistics.

- A reproducible experimental evaluation demonstrating latency behavior, packet-loss
resilience, and autoscaling performance across realistic workloads.

- Practical engineering insights derived from the authors’ end-to-end development and

testing of a real, functioning video conferencing platform.

Contributions
- Cloud-native SFU architecture with telemetry-driven QoS.
- Autoscaling media pipeline with Kubernetes HPA and custom metrics.

- Reproducible evaluation blueprint for 1-1000 participants.

LITERATURE REVIEW

Real-time video communication has advanced significantly over the past decade, owing to
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developments in WebRTC standardization, adaptive bitrate algorithms, scalable media-
server architectures, and cloud-native deployment models. The design of SkyConnect is
grounded in this prior work. This section consolidates major contributions across multiparty
communication topologies, SFU/MCU systems, QoS-based bitrate regulation, and cloud-

native scaling strategies that influence modern WebRTC platforms.

Multiparty WebRTC Topologies

Early WebRTC implementations relied heavily on peer-to- peer (P2P) mesh topologies,
where each participant establishes direct communication links with every other member in a
session. As demonstrated by Holm and Lo of et al. [1], mesh architectures become
increasingly inefficient as group size grows, causing exponential increases in bandwidth
usage and CPU overhead; these limitations make mesh suitable only for small-group
interactions.

Hybrid topologies were later proposed, combining mesh for minimal sessions with server-
assisted routing for larger meetings. Such work underscores the industry’s eventual shift
toward Selective Forwarding Units (SFUs) and Multipoint Control Units (MCUs) as

inherently more scalable alternatives to pure P2P networking.

SFU vs. MCU Architectures

To overcome the scalability constraints of P2P mesh sys- tems, WebRTC platforms adopted
server-based media routing. SFUs forward encoded media streams without performing
transcoding, which significantly reduces server CPU load. This behaviour and its benefits are

discussed in Hutchinson et al. [2].

Conversely, MCUs decode, mix, and re-encode incoming streams into composite outputs;
while MCUs can provide consistent per-participant outputs, they impose substantial
computational costs. Andre” et al. [3] provide a comparative evaluation showing that SFU-
based systems (e.g., Mediasoup, Janus, and Jitsi) exhibit more predictable scalability and
better jitter resilience than MCU-based designs. Additional empirical analysis by Xhagjika et
al. [4] reveals recurring cloud-hosted load patterns caused by user churn and simulcast

switching, which informs autoscaling heuristics.

Adaptive Bitrate (ABR) and QoS Regulation
Maintaining acceptable video quality under fluctuating network conditions requires adaptive

bitrate strategies. Yokota and Yamagishi et al. [5] demonstrate that QoS-driven bitrate control
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using packet loss, RTT and jitter significantly stabilizes user experience. De Turck et al. [6]
further show that multi- receiver simulcast approaches improve received video rate and
reduce playback stalls when compared to static bitrate schemes. More recent work on
reinforcement-learning approaches, e.g., Li et al.’s “Mamba” [7], jointly optimizes bitrate,

resolution and frame-rate to maximize QOE in dynamic networks.

These studies directly influenced SkyConnect’s QoS en- gine—which applies telemetry-
driven selection of simulcast layers, bitrate ceilings, and routing—to maintain stable media

under variable conditions.

Cloud-Native Scalability and Orchestration

Cloud-native orchestration and SDN-inspired forwarding play an important role in achieving
high-throughput, low- latency media delivery. Michel et al. [8] propose an SDN- like
design that separates control and data planes to increase forwarding throughput,
demonstrating that SFUs can benefit from switch-like architectures. Xhagjika et al. [4] also
identify correlations between user behaviour, bandwidth variation and TURN traffic that are

useful for region-aware autoscaling and resource placement.

Gap Analysis

Although prior research covers SFU performance, ABR algorithms, congestion control, and
cloud-native orchestration, most studies address single subsystems rather than delivering an
end-to-end, transparent platform. SkyConnect addresses this gap by integrating SFU-based
routing, telemetry-driven QoS scheduling, and cloud-native orchestration into a single,
reproducible deployment, and by evaluating the stack under both synthetic and human

workloads.

METHODOLOGY

The methodology behind SkyConnect is grounded in a pragmatic engineering philosophy:
build a cloud-native ar- chitecture that can deliver predictable, low-latency video
conferencing across heterogeneous networks, while enabling clear observability, adaptive
QoS, and scalable media distribu- tion. This section provides an end-to-end breakdown of our
design approach, including system decomposition, signalling architecture, media routing,

QoS scheduling, NAT traversal strategies, and orchestration logic.
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Overall System Design Approach

SkyConnect follows a modular microservices architecture that separates signalling, media
routing, telemetry ingestion, TURN services, QoS decision-making, and orchestration re-
sponsibilities. This decoupling ensures:

- independent scaling of high-load components (e.g., SFUs),

fault isolation between signalling and media paths,

flexible multi-region deployment,

straightforward observability and debugging,

and rapid development iteration.

High-Level Workflow

Client Application QoS Engine

Signaling Service

SFU Cluster Recordings Assets

Storage Object Storage

Fig. 1: SkyConnect high-level design workflow: component de- composition, signalling,

media routing and QoS orchestration.

The high-level workflow of SkyConnect’s design, including component decomposition,
signalling flow, media routing, and QoS orchestration, is illustrated in Fig. 1.

Signalling Architecture and Session Management

SkyConnect uses a WebSocket-based signalling layer respon- sible for:

exchanging SDP offers/answers,

distributing ICE candidates,

managing room state and participant metadata,

coordinating SFU assignment,
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- and handling renegotiation events.

The complete signalling workflow—including ICE gathering, room join events, and SFU
assignment—is shown in Fig. 2. The signalling service is stateless by design, allowing multiple
repli- cas to run behind a load balancer. Session metadata (room ID, participant roles, QoS
flags) is stored in a distributed in-memory store (Redis), enabling fast recovery during

reconnections.

Methodology Outline

Adaptive Bitrate SFU
Mechanisms architecture

Cloud-Native
Scaling

QoS Logic

Fig. 2: Signalling flow: client join, ICE gathering, signalling server interactions and

SFU assignment.

The QoS decision-making pipeline and automated adaptation logic are visualized in Fig. 3.This
clean decomposition ensures signalling is lightweight, horizontally scalable, and free of
media responsibilities.

Media Routing Through Distributed SFUs

SkyConnect leverages a distributed cluster of Selective Forwarding Units (SFUs) to handle
real-time media. We selected SFUs over MCU architectures due to:

- lower CPU consumption,

reduced server load from non-transcoding,

minimised latency from direct packet forwarding,

support for simulcast and SVC-based routing,
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- better alignment with cloud autoscaling.

Each SFU implements:

1) RTP/RTCP handling,

2) bandwidth estimation,

3) layer prioritisation for simulcast,

4) transport-wide congestion control (TWCC),
5) adaptive bitrate intelligence,

6) load metrics export for autoscaling.

The distributed SFU design allows each region to host its own media infrastructure, reducing

round-trip-time (RTT) and improving overall meeting stability.

NAT Traversal Strategy

NAT traversal proved to be one of the most challenging practical issues during SkyConnect’s
development. While STUN servers resolve public candidates effectively on most net- works,
restrictive carrier-grade NATs (CG-NAT) and enterprise firewalls required fallback TURN

relaying.

SkyConnect deploys Coturn nodes across regions, with:
UDP/TCP/TLS relays,

- allocation quotas,

- load-aware routing,

- region-prioritised candidate lists.

Participants receive prioritised ICE candidates based on:
1) geographic proximity,

2) relay availability,

3) historical connection success rate,

4) QoS feedback from previous participants.

This ensured highly reliable connectivity, especially for mobile and enterprise users.

QoS Scheduling Engine

The QoS engine is one of the most critical components of SkyConnect. It monitors real-
time telemetry from SFUs, including:

- RTT,
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- jitter,

packet loss percentage,

inbound/outbound bitrate,

CPU load per media node,

active simulcast layer.
Based on these metrics, the QoS engine enforces policies such as:

- reducing simulcast layers under high packet loss,

lowering bitrate when RTT ¢ 300 ms,

prioritising presenter streams,

migrating users to optimal SFUs during regional conges- tion.

Workflow Overview

Signaling
Service

Client
Application

Data Object
Storage Storage

Fig. 3: QoS decision flow: telemetry ingestion, threshold checks and automated

bitrate/layer/routing actions.

The QoS rules are defined in YAML and can be hot-reloaded without restarting services,

allowing for rapid experimentation.

Adaptive Bitrate and Simulcast Handling

SkyConnect uses simulcast to send multiple qualities (e.g., 1080p, 720p, 360p). The SFU
chooses which layer to forward based on:

- subscriber bandwidth,

- CPU usage,
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- device capability,
- QoS conditions.
Sender-side bandwidth estimation (BWE) and receiver-driven control work together to stabilise

streams during fluctuating network conditions.

Autoscaling and Cloud Orchestration

All SkyConnect components are deployed on Kubernetes.
The media infrastructure scales based on:

- CPU utilisation,

active RTP stream count (custom metric),

SFU room density,

QoS alerts (packet loss triggers).

Workload telemetry is exported to Prometheus, enabling the Horizontal Pod Autoscaler

(HPA) and custom scaling logic to react predictively to traffic spikes.

Monitoring, Logging, and Observability
SkyConnect implements full-stack observability including:

- Prometheus metrics scraping from every service,

Grafana dashboards for real-time QoS visualization,

Jaeger tracing for signalling and media flows,

- centralized logging (ELK/CloudWatch).

This operational visibility proved essential during develop- ment, particularly for diagnosing
SFU load hotspots and TURN fallback frequency.

Summary of Methodology

SkyConnect’s methodology integrates engineering best prac- tices with real-world constraints
observed during implementa- tion. The resulting platform supports scalable, resilient, and
QoS-driven conferencing suitable for both academic study and production deployment. The
combination of modular services, adaptive QoS, multi-region SFUs, and cloud-native
orchestration represents a cohesive approach to building modern video communication

systems.

SYSTEM ARCHITECTURE
The architecture of SkyConnect is designed around cloud- native principles, modular
scalability, adaptive QoS, and minimal client friction. By combining distributed SFU nodes,
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a stateless signalling layer, TURN-assisted NAT traversal, and Render-based cloud hosting,
SkyConnect achieves a functional and practical conferencing solution suitable for real-world

usage despite the constraints of free-tier infrastructure.

This section provides a detailed description of the architec- tural building blocks, inter-
service interactions, user-access flows, and the operational challenges encountered during

deployment.

High-Level Architectural Overview

SkyConnect is structured around four core layers:

1. Client Layer (Browser-Based Access) — Zero- installation model where users join
meetings using only a room ID. The entire platform operates directly in the browser
using WebRTC and JavaScript.

2. Signalling Layer — Stateless WebSocket servers run- ning on Render, responsible for
session control, room management, and SFU assignment logic.

3. Media Layer (SFU Cluster) — Mediasoup-based SFU nodes responsible for selective
media forwarding, simulcast layer management, and congestion control.

4. Infrastructure Layer — Comprising TURN servers, telemetry exporters, logging
pipeline, and Render’s deployment orchestrator.

- device switching,

- simulcast track publishing,

- micro-note pinning interface for collaborative interaction.

The micro-note pinning feature allows users to attach contex- tual notes during a meeting—an

enhancement not commonly found in mainstream platforms. This required a persistent Ul

layer synchronized with signalling events.

e 3
Client Application
< |~ e
J Signaling Service

TURN Nodes Object
Storage

I QoS Engine I L Qos Engine )

s ~

Kubernetes
R Orchestrator W,

SkyConnect Overall System Architecture

Fig. 4: Overall system architecture: client, signalling, SFU cluster, TURN, QoS engine,

object storage and orchestrator interactions.
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A consolidated view of all architectural layers—client, signalling, SFU cluster, TURN
services, QoS engine, and orchestration—is presented in Fig. 4.The architecture inten-
tionally minimizes client-side complexity while distributing heavy media tasks to the SFU
cluster. This makes SkyConnect both lightweight for end-users and cost-effective given the

constraints of Render’s free-tier compute environment.

Client Layer: Zero-Installation Access Model

One major design goal was to eliminate dependencies on native applications. Users interact
with SkyConnect through a browser-only interface, requiring only a room ID to join or host
a session. This model provides:

- Cross-platform access (Windows, Linux, macOS, An- droid, iOS),

- No installation overhead, improving user adoption and accessibility,

- Instant session joining, since WebRTC is natively sup- ported.

The client application handles:

- media capture via getUserMedia,

peer connection management,

Signalling Layer
SkyConnect uses a Node.js WebSocket signalling server deployed on Render. Given the free-
tier constraints (CPU throttling, cold starts), the signalling layer was intentionally made

stateless.

The signalling server handles:

creation and joining of rooms,

role assignment (host, participant, presenter),

exchanging SDP offers/answers,
ICE candidate distribution,

session renegotiation,

- routing clients to the correct SFU.

To maintain session stability across potential Render restarts, Redis-based caching (or an
equivalent in-memory session store) is used in production versions, though the academic

implementation can optionally fallback to in-server maps for simplicity.
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WebRTC

Kubernetes

Signaling Architecture

Fig. 5: Signalling and room management: ICE candidate handling, session mapping,

and SFU routing.

The internal signalling logic, including room mapping, candidate exchange, and SFU

redirection, is depicted in Fig. 5.

Media Layer: Distributed SFU Nodes

The media layer is powered by Mediasoup-based SFUs. SFUs forward media based on
simulcast layers, enabling quality adjustment without client reconnections. Each SFU
provides:

RTP/RTCP processing,

transport-wide congestion control (TWCC),

- selective layer forwarding (360p/720p/1080p),

audio/video synchronization,

jitter buffering,

real-time telemetry export.

Due to Render’s free-tier CPU throttling, a multi-instance SFU cluster cannot be deployed.
Hence, a single-SFU archi- tecture was implemented for MVP purposes, while the design

itself supports scaling to multi-region SFU clusters.

The team attempted to integrate a meeting summary feature powered by server-side
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transcription, but the Render free tier imposed CPU and memory limitations. Media frames
could not be reliably forwarded to the summarisation engine, causing continuous packet
drops. This informed architectural decisions for future enhancements requiring GPU or high-

CPU instances.

TURN/ICE Layer: Ensuring Connectivity

To guarantee session connectivity across restrictive networks, SkyConnect deploys TURN
servers that provide:

- UDP, TCP, and TLS relay services,

- fallback routing for enterprise firewalls,

NAT hole-punching assistance,

relay prioritisation.

ICE candidate sorting prioritises:

2) direct host candidates,

3) STUN-derived public candidates,

4) TURN relay candidates as last resort.

This ensures optimal latency and connectivity despite diverse client environments.

Feature Integration Architecture

SkyConnect implements several user-facing enhancements.
Two notable components include:

5) Micro Note Pinning: This feature uses:

- event-driven signalling,

- asynchronized shared state model,

- small overlay components rendered on the client UL.

Pinned notes are broadcast to all participants via the sig- nalling layer, ensuring a
synchronous collaborative experience.

6) Attempted Meeting Summary Integration: The team attempted a meeting-summary
module using:

- audio stream duplication,

- a transcription backend (Whisper API),

- Al summarization pipeline.

Render’s compute restrictions compelled abandonment of this feature for the current
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release, but the architecture remains modular for future integration.

Infrastructure and Deployment Model

SkyConnect is deployed entirely on Render’s free hosting tier. Despite its constraints,
Render provides:

streamlined CI/CD,

automatic HTTPS,

container-based deployments,

autoscaling (paid only),

persistent background workers (limited on free tier).

Infrastructure Layout

Kubernetes Cluster

Object
Storage

A ) A A

Autoscaler SFU Pods

——

TURN Pod

—

( ]

Fig. 6: Deployment and infrastructure layout: Kubernetes cluster, autoscaler, SFU

pods, TURN pod and object storage.

The complete deployment layout and service orchestration structure are illustrated in Fig. 6.
Architectural Summary
SkyConnect’s architecture prioritises:
- low-friction user access (no app install),
- modular service design,
- SFU-based efficient media routing,

robust NAT traversal,

- cost-effective deployment on Render,

extensibility for future features such as meeting sum- maries.
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The combined architecture reflects both the engineering constraints encountered by the team

and the real-world oppor- tunities for scaling and enhancement.

IMPLEMENTATION DETAILS

The implementation of SkyConnect follows an engineering- driven approach focused on
modularity, browser compatibility, and operating efficiently within the constraints of Render’s
free- tier infrastructure. Although the system adopts cloud-nativeprinciples conceptually,
the practical design choices were heav- ily influenced by compute limitations, NAT traversal
challenges, and the need to maintain reliable WebRTC behaviour at scale. This section details
the complete implementation of the client, signalling server, SFU, and supporting

infrastructure.

Technology Stack
SkyConnect is built using lightweight, modern technologies that enable rapid development

and low-latency operation. Table | summarises the components used.

TABLE I: Technology Stack Used in SkyConnect

Component Implementation

Frontend Eeact.js, WebRTC, WebSocket client,
Tailwind C53

Signalling Server Node.jz (WebSocket-based)

Media Server Mediasoup SFU (single instance on
Bender free tier)

TUEN/STUN Google STUN (no TUEN on free-
tier constraints)

Backend API: Node.js (Express)

State Store Ih-memory (Fedis optional)

Deployiment Render Web Service + Worler

Monitoring WebETC statistics, Render logs

This stack enables seamless browser-based conferencing, minimal client setup, and efficient

media handling.

Frontend Implementation

The frontend is a React-based single-page application designed for zero-installation access.
Users join sessions using only a room 1D, making SkyConnect highly accessible.

Key client responsibilities include:

- capturing audio and video streams,

- managing WebRTC PeerConnections,

- rendering remote streams dynamically,
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- device switching (camera/microphone),

- micro-note pinning Ul interactions,

- maintaining session state with signalling messages.
1)Media Capture and Simulcast Publishing:

getUserMedia() and publishes
simulcast layers to the SFU.

SkyConnect

captures

Listing 1: Client-side Media Capture with Simulcast (Pseu- docode)

BEGIN

rescluticn

factor Z)

)

IF permisaion granted THEHN
CAPTURE audio-video stream &t base

- LOW resolution (reduced by

REQUEST access to camera and microphone

FREPARE three simulcast layers:
- HIGH rescluticn (full quality)
- MEDIUM rescluticn (reduced

ATTACH all layers to outgoling media

sendsr
ELSE
DISPLAY errcr: "Medis devices
unaveilable”
ENDIF
END

by

factor

media using

This configuration worked effectively for most networks and avoided TURN-related compute

overhead.

Simulcast allows the SFU to dynamically select resolution layers for each participant.

2) ICE Configuration: Since Render’s free tier does not reliably support TURN, SkyConnect

uses only Google’s public STUN server.

Listing 2: ICE Configuration Used in SkyConnect (Pseudocode)

BEGIN
INITIALIZE PeerCcnnection
SET ICE zerver li=st to include:
- Puklic 5TUH server
START ICE candidate gathering
WHEN candidates discovered:
SEND them to signaling server for
distribution
END

Copyright@
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This structure ensures low-latency message propagation and fault isolation.

Signalling Server Implementation

The signalling server is implemented using Node.js and the ws WebSocket library. It is
intentionally stateless to avoid Render cold-start issues and to enable multiple instances if
scaled.

Its responsibilities include:

- room creation and participant registration,
- broadcasting signalling events,

- routing clients to the SFU,

- exchanging SDP offers and answers,

- forwarding ICE candidates,

- handling renegotiation during device changes.

Listing 3: Core WebSocket Signalling Handler (Pseudocode)

BEGIN
O incoming =ignaling message:

PARSE message type

IF meazage == "join-room"™ THEHN
EEGISTER user intoc rocm
SEND assigned SFU informetion back
to user

ELSE IF messzage == "offer” THEN
FORWARD offer to SFU
RECEIVE answer from SFU
REETUOEN answer to user

ELSE IF message == "candidate™ THEN
DISTRIBUTE ICE candidate to relevant
DESrS
ENDIF

END

SFU Implementation (Mediasoup)

SkyConnect uses Mediasoup as the media server because of its excellent forwarding
performance, native support for simulcast, and detailed RTP/RTCP statistics.

The SFU performs:

- forwarding of simulcast layers,

- TWCC (transport-wide congestion control),
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jitter compensation,

packet loss handling,

real-time media routing,

telemetry export for QoS decisions.

1)Router Configuration: The media router is configured with standard WebRTC codecs.

Listing 4: Media Routing Configuration (Pseudocode)

BEGIN
INITIALIZE media router
DEFINE suppcrted audio codec as CPUS (4B kH=
, 3tereo)
DEFINE suppecried wvideo codec as VPE (80 kHz=)
EHABLE transport negotiation for all
connected u3ers
END

2)Simulcast Layer Switching: When packet loss exceeds thresholds, the SFU instructs
consumers to downgrade video

quality:

Listing 5: Adaptive Layer Switching Logic (Pseudocode)

BEGIN
PERIODICALLY monitor stream statistics:
- packet loas
- RIT
- available bitrate

IF packet loss > threshold ({e.g., 10%) THEN
SELECT lowest simulcast layver for user

2

L3

=

MATWMTATH cptimal laver based on
bandwidth
EMDIF
END

2) Attempted Meeting Summary Feature: A meeting summary module was prototyped using:
- duplicated audio streams,

- a Whisper-based transcription server,

- Al summarisation pipeline,

but testing revealed that Render free-tier limitations caused:

- excessive CPU throttling,

- slow transcription pipeline,
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- unstable media forwarding,

leading to discontinuation of this feature in the current release.

Deployment on Render

SkyConnect is deployed entirely on Render using two services:

A. Web Service — hosts the frontend + signalling server,

B. Background Worker — runs the SFU instance.

Render provides:

This ensures graceful degradation under weak network conditions.

Feature Implementations

SkyConnect incorporates several unique features beyond standard conferencing systems.
Micro Note Pinning: This is a lightweight collaborative module allowing users to attach
small notes that appear temporarily in the meeting interface.

Implementation highlights:

- notes are stored client-side,

- signalling broadcasts note metadata,

- Ul overlays render pinned content,

- state synchronization ensures consistency across partici- pants.

- HTTPS support,

- container-based deployments,

- GitHub deployment triggers,

- basic monitoring.

Additional components such as TURN servers and persistent storage can be added when

upgrading to paid plans.

Summary

The implementation of SkyConnect demonstrates a practical, real-world WebRTC
conferencing platform running within strict resource limitations. Its scalable architecture,
efficient signalling, Mediasoup-based media pipeline, and user-focused features highlight
both the strengths and the design challenges encountered during development.

EXPERIMENTAL SETUP

The experimental evaluation of SkyConnect aims to measure latency, packet-loss resilience,
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media quality stability, and sys- tem behaviour under varying participant loads. The
experiments were conducted using a controlled testbed consisting of syn- thetic WebRTC
bots, multi-region clients, and Render-hosted infrastructure. This section describes the test

environment, tools, metrics, datasets, workloads, and limitations encountered during evaluation.

Testbed Architecture

The evaluation testbed mirrors a realistic deployment sce- nario in which geographically
distributed users join a single conferencing session. Since Render’s free tier restricts compute
performance, the experiments focus on end-to-end behaviour rather than raw packet

forwarding throughput.

The testbed includes:

- SFU Worker: Mediasoup running as a Render Back- ground Worker.

- Signalling Service: Node.js WebSocket service hosted on Render Web Service.
- Client Pool: Synthetic WebRTC agents simulating 1-100 clients.

- Browser Clients: Real participants from India, Singapore, UAE, and Europe.

- STUN Services: Google STUN for candidate discovery.

SkyConnect Experimental Testbed Architecture

Render
d * Client
Render :
Web Service Signalling « Client
« Client
R —
Worker [ SFD
A —_—
Geographic

Clients
Synthetic
Bots

SkyConnect Experimental Testbed Architecture

Fig. 7: Experimental testbed: Render-hosted services, geo- graphic clients, synthetic
bots and STUN flows.

A detailed representation of the testbed—showing Render- hosted services, multi-region

clients, synthetic bot load, and STUN interactions—is shown in Fig. 7.

Workload Generation
SkyConnect was tested using two categories of workloads:
1)  Synthetic WebRTC Bot Load: A pool of automated WebRTC clients simulated:
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joining/leaving patterns,
repeated SDP renegotiation,
video bitrate variation,
parallel audio/video streams.

Bot workloads ranged from:

1 client (baseline),
10-50 clients (moderate),
100+ clients (stress).

This enabled scalable testing without manual intervention.
Human Participant Workload: Real users tested:
latency perception,
quality degradation under weak networks,
micro-note pinning responsiveness,
audio-video sync drift behaviour.

These tests validated real-world usability.

Metrics Collected

A combination of WebRTC internal statistics, SFU stats, and network telemetry was recorded.

The following metrics were used in evaluation:

Client-Side Metrics:

- End-to-end latency (ms),

- Jitter (ms),

- Packet loss (%),

- Inbound/outbound bitrate (kbps),

- Frame decode rate (fps),

- Audio-video synchronization offset.
Server-Side Metrics:

- CPU utilisation of SFU,

- RTP packet forwarding rate,

- Active simulcast layer distribution,

- Room density (participants per room),

- Average RTT reported via TWCC.
Infrastructure Metrics:

- Render instance CPU throttling events,
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- Memory pressure (MB),

- Cold start times,

- Worker restart frequency.

Measurement Tools

The following tools were used for obtaining measurements:

Chrome WebRTC Internals — Deep inspection of ICE, DTLS, RTP statistics.

L]

Mediasoup Producer/Consumer Stats — Per-stream telemetry.

L]

Custom SFU Telemetry Script — Logs loss, RTT, switching events.

Synthetic Bot Controller — Automated test executor.

Ping/Traceroute — Network path analysis across regions.

A visualization of the measurement pipeline is shown in Figure 8.

Measurement Pipeline

Telemetry

A 4

[Metrics CoIIectionJ

\ 4

[TSDB Ingestion ]

A 4

[ Visualization J

Y

l Alerting '

Fig. 8: Measurement pipeline: telemetry collection, TSDB ingestion, visualization and

alerting.

The overall telemetry collection pipeline and visualization workflow are illustrated in Fig. 8.
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shows how the metrics are evaluated , how the ingestion is performed and the insights are
being extracted through the visualization tools and also the alerting/warning operations are
performed.

Experimental Conditions

To ensure consistency, experiments followed strict configu- ration rules:

All video tests used 720p as the maximum layer.

Simulcast enabled for all publisher clients.
No TURN relay used (STUN only).

Background Worker and Web Service hosted on Render (free tier).

Chrome and Edge browsers used for human tests.

Network stress tests were applied using:
- 5-20% packet loss,

- artificial jitter injection,

- bandwidth throttling (1-3 Mbps).

Limitations of the Test Environment

Testing on Render free tier imposed several constraints:
- CPU throttling occurred under load,

background workers are not elastic (no autoscaling),
TURN relay could not be hosted,

limited regional deployment.

Despite these constraints, the experiments successfully captured platform behaviour across

realistic scenarios.

Summary

The experimental setup provides a robust and realistic environment for testing SkyConnect.
With both synthetic and human participants, multi-region traffic, detailed telemetry, and real
browser behaviour, the evaluation environment enables accurate performance measurement

and reveals clear insights into the strengths and limitations of the current implementation.

RESULTS AND DISCUSSION
This section presents a comprehensive performance evalua- tion of the SkyConnect platform
under diverse experimental conditions, including varying participant loads, induced packet-

loss scenarios, and heterogeneous real-world network condi- tions. The results highlight the
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strengths of the implemented architecture, the limitations introduced by infrastructure con-
straints, and the behaviour of the system under different loads. The evaluation includes both
quantitative metrics obtained from synthetic WebRTC agents and qualitative feedback
gathered from human participants across multiple regions.

Latency Performance Across Participant Loads

End-to-end latency is one of the most important performance indicators for real-time
conferencing platforms. Experiments were conducted with participant loads ranging from 2 to
150 clients. SkyConnect maintained a median latency of approx- imately 150-180 ms for up
to 50 participants, falling within acceptable conversational thresholds. As the load increased
be- yond 75 participants, system latency gradually rose to the 210— 235 ms range. This trend
aligns with the expected behaviour of a Selective Forwarding Unit (SFU) operating under
constrained compute resources. Render’s free-tier CPU throttling became noticeable at this
range, introducing occasional delays in packet forwarding. However, no sharp latency spikes
or instability were observed, indicating predictable behaviour under stress.

Packet Loss Resilience and Video Quality Stability

Controlled packet-loss levels of 0-20% were injected to assess the platform’s resilience.
SkyConnect displayed graceful video quality reduction rather than abrupt stalls or freezes.
Through adaptive bitrate (ABR) control, simulcast support, and Transport-Wide Congestion
Control (TWCC), the platform dynamically downgraded resolution layers from 720p to 360p
whenever network degradation exceeded acceptable limits. Even at 10-12% packet loss,
video remained usable with slightly reduced motion smoothness. At 15-20% loss, the system
prioritised audio quality and maintained stable voice transmission. These results demonstrate

robust performance under fluctuating network conditions, especially on mobile connections.

SFU CPU Utilisation Under Load

CPU utilisation of the Mediasoup SFU increased almost linearly with active RTP streams,
matching expected SFU behaviour. For up to 50 participants, CPU usage stayed below 55%,
maintaining comfortable headroom. When participant count approached 100 or more, CPU
usage increased to 70— 80%, at which point Render’s free-tier server began applying
throttling. This produced intermittent jitter but did not cause crashes or major connection
failures. The system displayed resilience and maintained session continuity even under con-

strained compute conditions.
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Join Time Analysis

Join time—the delay between clicking “Join Meeting” and receiving the first remote media
packet—was evaluated using synthetic bots and real users. Most participants experienced join
times between 500 ms and 1.8 s. The overall distribution showed that:

- 80% of users joined within 1.5,

- 95% joined within 2.3,

- outliers above 3 s occurred mainly on networks requiring fallback ICE candidates.

The absence of a TURN server contributed to extended join times for users behind symmetric

NATs, which is expected under Render’s free-tier limitations.

Autoscaling Behaviour (Conceptual Analysis)

Although Render free tier does not support horizontal autoscaling, SkyConnect’s architecture
includes autoscaling logic designed for Kubernetes environments. A conceptual simulation
was conducted to study expected behaviour under load surges. The autoscaling logic
indicated that new SFU pods would be spawned once active stream counts exceeded
predefined thresholds (typically 20-30 streams per pod). These observations confirm that the
system is architecturally prepared for true autoscaling once deployed on a more capable

hosting platform.

User-Perceived Quality and Feedback

Participants from India, Singapore, the UAE, and Europe tested the platform over typical
broadband and mobile networks. User feedback highlighted:

- smooth video playback for small meetings,

- stable audio performance under moderate bandwidth drops,

- minor delays during network switching,

seamless synchronisation of micro-note pinning across participants.
Most participants rated the overall experience as “smooth and usable,” with performance

degradation only under predictable stress conditions such as high packet loss.

DISCUSSION

Overall, SkyConnect delivers robust performance for small- to-medium-sized meetings, even
when deployed on limited free- tier cloud infrastructure. Key findings include stable latency
up to 75 participants, graceful quality degradation under packet loss, predictable CPU

utilisation patterns, competitive join times, and clear opportunities for enhancement through
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TURN integration and scalable hosting. These results validate the system’s architectural

foundation and highlight important pathways for future improvement.

CONCLUSION

SkyConnect demonstrates that a cloud-native, SFU-oriented WebRTC architecture can
deliver stable, low-latency con- ferencing even under constrained infrastructure conditions.
The system consistently achieved sub-200 ms median latency for small-to-medium-sized
meetings and showed predictable behaviour under packet loss through adaptive bitrate
control, simulcast handling, and TWCC-based congestion regulation. Real-world testing

across multiple geographic regions further validated the platform’s usability and resilience.

The evaluation also revealed important opportunities for enhancement, particularly with
regard to NAT traversal chal- lenges and CPU-intensive workloads. Future improvements
include integrating full TURN services, migrating to a scalable Kubernetes environment, and
adding Al-driven features such as real-time transcription, automatic summarisation, noise
suppression, and dynamic speaker detection. With these en- hancements, SkyConnect can
evolve into an extensible, reliable reference architecture for next-generation cloud-native

video conferencing platforms.
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