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ABSTRACT 

Cloud-based video conferencing platforms such as Zoom, Google Meet, and Microsoft 

Teams have become essential for modern communication, yet they exhibit several limitations 

including opaque architectural designs, limited adaptability under fluctuating network 

conditions, and restricted control over Quality of Service (QoS) parameters. These platforms 

also rely on proprietary infrastructure, offer minimal transparency into congestion-control 

mechanisms, and provide limited opportunities for academic experimentation or 

customization. Furthermore, their reliance on heavy server-side computations and closed 

media- routing pipelines makes it difficult to evaluate, replicate, or extend their behaviour in 

research environments. SkyConnect addresses these gaps by presenting an open, cloud- 

native, and QoS-aware video conferencing platform engineered for transparency, scalability, 

and real-time adaptability. Built using WebRTC, distributed SFU-based media routing, and a 

stateless signalling architecture, SkyConnect incorporates telemetry-driven bitrate adaptation, 

simulcast-based media optimization, and region-aware routing to maintain sub-200 ms 

latency across vary- ing network states. The platform further integrates Kubernetes- ready 

autoscaling strategies, real-time RTP telemetry processing, and modular service boundaries to 

enable flexible experimentation and reproducibility—features largely unavailable in 

commercial systems. 

 

INDEXTERMS: WebRTC, Selective Forwarding Unit (SFU), cloud-native architecture, 
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real-time communication, Quality of Service (QoS), adaptive bitrate, simulcast streaming, 

Kubernetes autoscaling, telemetry-driven optimization, video conferencing systems. 

 

INTRODUCTION 

Real-time video communication has evolved from a periph- eral utility into a mission-critical 

enabler for modern digital ecosystems. Enterprises, educational institutions, healthcare 

providers and remote operational environments increasingly depend on high-fidelity video 

conferencing to maintain pro- ductivity, continuity, and collaborative agility. The global shift 

towards distributed teams has raised expectations around service availability, user experience, 

cross-device compatibility, and the ability of platforms to gracefully handle volatile network 

and compute conditions. As a result, robust video collaboration solutions must deliver 

consistent performance at scale while ensuring predictable cost structures, operational 

transparency, and architectural extensibility. 

 

WebRTC has emerged as the de facto standard for browser- native real-time communication, 

offering built-in support for encrypted media transport, peer-to-peer connections, NAT 

traversal assistance, and industry-standard codecs. However, raw WebRTC primitives alone 

do not satisfy the demands of multi-party conferencing at the production scale. Practical 

deployments must incorporate cloud-native routing logic, adaptive bitrate pipelines, signaling 

reliability, TURN-backed fallbacks, security controls, and global autoscaling logic. 

Furthermore, real-world deployments expose gaps not evident in theoretical models—network 

asymmetry, device heterogeneity, API rate constraints, and region-to-region latency 

divergence all influence the perception of quality. 

 

In response to these industry realities, we developed SkyCon- nect, a cloud-native video 

conferencing platform engineered to deliver stable, low-latency communication across 

geographi- cally distributed environments. The system was implemented by the authors — 

Saif Usman Shaikh, Prakash Nagaral, Vinod Pammar, and Vikram Pramod — as a 

production-oriented en- gineering project. The development process involved extensive 

experimentation, iterative refactoring, and real-world usability testing, which allowed our 

team to internalize the engineering challenges associated with scaling WebRTC 

infrastructure, managing distributed state, and maintaining quality of service under 

unpredictable network behaviour. 

 

Throughout its development lifecycle, SkyConnect exposed a series of practical obstacles that 
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shaped its architecture. Earlyprototypes revealed limitations in peer-to-peer topologies for 

multi-user sessions, pushing the design toward a Selective Forwarding Unit (SFU) model. As 

participants scaled, the system demanded intelligent routing logic to offload CPU- intensive 

tasks from clients and consolidate media traffic efficiently. NAT traversal proved inconsistent 

across access networks, highlighting the necessity of TURN relays and region-sensitive 

candidate prioritization. Fluctuating bandwidth conditions underscored the importance of 

simulcast, layered encoding, and rule-based adaptive bitrate tuning. Furthermore, live 

deployments demonstrated that signaling availability and session recovery were as critical as 

media reliability. 

 

Despite these challenges, the engineering results were strong. SkyConnect successfully 

delivered stable conferencing across heterogeneous network environments, exhibited 

predictable sub-200 ms median latencies during controlled tests, and showed resilience under 

induced packet loss scenarios. The platform validated the role of telemetry-driven decisions 

in maintaining video continuity, with the QoS scheduler showing to be particularly effective 

in dynamically moderating bitrate, routing, and SFU selection. In combination with 

Kubernetes- based autoscaling, SkyConnect demonstrated linear scalability characteristics up 

to the upper bounds of our test environment. 

 

From an academic standpoint, SkyConnect functions not only as a software platform but as 

a reference architecture that captures the operational realities of cloud-native real-time 

communication. This project contributes experiential insights that extend beyond theoretical 

constructs—specifically, insights into debugging distributed signaling flows, handling renego- 

tiation events, optimizing TURN placement, analyzing RTP statistics, and tuning autoscaling 

thresholds according to real media workload patterns. These lived engineering encounters 

allow this paper to articulate challenges, justifications, and architectural trade-offs with 

authenticity. 

 

Motivation 

The primary motivation for SkyConnect stemmed from the absence of open, transparent, 

cloud-native video conferencing blueprints that accurately reflect the demands of modern 

distributed deployments. Commercial systems like Zoom or Google Meet encapsulate 

sophisticated optimizations behind proprietary code, limiting opportunities for academic 

explo- ration or customization. Our goal was to design and implement a platform whose 

internal mechanisms—QoS logic, routing strategies, telemetry streams, failure-handling 
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behaviour—were fully observable and modifiable. This provides a foundation for both 

research and practical deployment while equipping future engineers with operational clarity 

missing in black-box commercial systems. 

 

Problem Statement 

While WebRTC simplifies browser-level real-time communi- cation, scaling it to a multi-

party, multi-region conferencing platform introduces several unsolved challenges: 

• Scalable Media Routing: P2P models collapse beyond small groups; SFUs introduce 

complexity around load distribution and stream selection. 

• QoS Preservation: Maintaining consistent quality un- der unstable or asymmetric 

network conditions requires dynamic, telemetry-driven policy enforcement. 

• Distributed Deployment: Region-aware SFU selection and TURN placement 

significantly influence latency and reliability. 

• Operational Observability: Real-time metrics, logging, and tracing are mandatory for 

diagnosing issues in a live environment. 

SkyConnect was engineered to directly address these chal- lenges. 

 

Contributions 

This paper presents the following contributions: 

• A cloud-native, microservice-aligned conferencing archi- tecture with distributed SFU 

nodes, TURN relays, and a high-availability signaling layer. 

• A telemetry-driven QoS scheduling engine that dynami- cally adjusts bitrate, stream layers, 

and routing based on real-time network statistics. 

• A reproducible experimental evaluation demonstrating latency behavior, packet-loss 

resilience, and autoscaling performance across realistic workloads. 

• Practical engineering insights derived from the authors’ end-to-end development and 

testing of a real, functioning video conferencing platform. 

 

Contributions 

• Cloud-native SFU architecture with telemetry-driven QoS. 

• Autoscaling media pipeline with Kubernetes HPA and custom metrics. 

• Reproducible evaluation blueprint for 1–1000 participants. 

 

LITERATURE REVIEW 

Real-time video communication has advanced significantly over the past decade, owing to 
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developments in WebRTC standardization, adaptive bitrate algorithms, scalable media- 

server architectures, and cloud-native deployment models. The design of SkyConnect is 

grounded in this prior work. This section consolidates major contributions across multiparty 

communication topologies, SFU/MCU systems, QoS-based bitrate regulation, and cloud-

native scaling strategies that influence modern WebRTC platforms. 

 

Multiparty WebRTC Topologies 

Early WebRTC implementations relied heavily on peer-to- peer (P2P) mesh topologies, 

where each participant establishes direct communication links with every other member in a 

session. As demonstrated by Holm and Lö ö f  et al. [1], mesh architectures become 

increasingly inefficient as group size grows, causing exponential increases in bandwidth 

usage and CPU overhead; these limitations make mesh suitable only for small-group 

interactions. 

Hybrid topologies were later proposed, combining mesh for minimal sessions with server-

assisted routing for larger meetings. Such work underscores the industry’s eventual shift 

toward Selective Forwarding Units (SFUs) and Multipoint Control Units (MCUs) as 

inherently more scalable alternatives to pure P2P networking. 

 

SFU vs. MCU Architectures 

To overcome the scalability constraints of P2P mesh sys- tems, WebRTC platforms adopted 

server-based media routing. SFUs forward encoded media streams without performing 

transcoding, which significantly reduces server CPU load. This behaviour and its benefits are 

discussed in Hutchinson et al. [2]. 

 

Conversely, MCUs decode, mix, and re-encode incoming streams into composite outputs; 

while MCUs can provide consistent per-participant outputs, they impose substantial 

computational costs. Andre´ et al. [3] provide a comparative evaluation showing that SFU-

based systems (e.g., Mediasoup, Janus, and Jitsi) exhibit more predictable scalability and 

better jitter resilience than MCU-based designs. Additional empirical analysis by Xhagjika et 

al. [4] reveals recurring cloud-hosted load patterns caused by user churn and simulcast 

switching, which informs autoscaling heuristics. 

 

Adaptive Bitrate (ABR) and QoS Regulation 

Maintaining acceptable video quality under fluctuating network conditions requires adaptive 

bitrate strategies. Yokota and Yamagishi et al. [5] demonstrate that QoS-driven bitrate control 
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using packet loss, RTT and jitter significantly stabilizes user experience. De Turck et al. [6] 

further show that multi- receiver simulcast approaches improve received video rate and 

reduce playback stalls when compared to static bitrate schemes. More recent work on 

reinforcement-learning approaches, e.g., Li et al.’s “Mamba” [7], jointly optimizes bitrate, 

resolution and frame-rate to maximize QoE in dynamic networks. 

 

These studies directly influenced SkyConnect’s QoS en- gine—which applies telemetry-

driven selection of simulcast layers, bitrate ceilings, and routing—to maintain stable media 

under variable conditions. 

 

Cloud-Native Scalability and Orchestration 

Cloud-native orchestration and SDN-inspired forwarding play an important role in achieving 

high-throughput, low- latency media delivery. Michel et al. [8] propose an SDN- like 

design that separates control and data planes to increase forwarding throughput, 

demonstrating that SFUs can benefit from switch-like architectures. Xhagjika et al. [4] also 

identify correlations between user behaviour, bandwidth variation and TURN traffic that are 

useful for region-aware autoscaling and resource placement. 

 

Gap Analysis 

Although prior research covers SFU performance, ABR algorithms, congestion control, and 

cloud-native orchestration, most studies address single subsystems rather than delivering an 

end-to-end, transparent platform. SkyConnect addresses this gap by integrating SFU-based 

routing, telemetry-driven QoS scheduling, and cloud-native orchestration into a single, 

reproducible deployment, and by evaluating the stack under both synthetic and human 

workloads. 

 

METHODOLOGY 

The methodology behind SkyConnect is grounded in a pragmatic engineering philosophy: 

build a cloud-native ar- chitecture that can deliver predictable, low-latency video 

conferencing across heterogeneous networks, while enabling clear observability, adaptive 

QoS, and scalable media distribu- tion. This section provides an end-to-end breakdown of our 

design approach, including system decomposition, signalling architecture, media routing, 

QoS scheduling, NAT traversal strategies, and orchestration logic. 
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Overall System Design Approach 

SkyConnect follows a modular microservices architecture that separates signalling, media 

routing, telemetry ingestion, TURN services, QoS decision-making, and orchestration re- 

sponsibilities. This decoupling ensures: 

• independent scaling of high-load components (e.g., SFUs), 

• fault isolation between signalling and media paths, 

• flexible multi-region deployment, 

• straightforward observability and debugging, 

• and rapid development iteration. 

 

 

Fig. 1: SkyConnect high-level design workflow: component de- composition, signalling, 

media routing and QoS orchestration. 

 

The high-level workflow of SkyConnect’s design, including component decomposition, 

signalling flow, media routing, and QoS orchestration, is illustrated in Fig. 1. 

Signalling Architecture and Session Management 

SkyConnect uses a WebSocket-based signalling layer respon- sible for: 

• exchanging SDP offers/answers, 

• distributing ICE candidates, 

• managing room state and participant metadata, 

• coordinating SFU assignment, 
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• and handling renegotiation events. 

 

The complete signalling workflow—including ICE gathering, room join events, and SFU 

assignment—is shown in Fig. 2. The signalling service is stateless by design, allowing multiple 

repli- cas to run behind a load balancer. Session metadata (room ID, participant roles, QoS 

flags) is stored in a distributed in-memory store (Redis), enabling fast recovery during 

reconnections. 

 

 

Fig. 2: Signalling flow: client join, ICE gathering, signalling server interactions and 

SFU assignment. 

 

The QoS decision-making pipeline and automated adaptation logic are visualized in Fig. 3.This 

clean decomposition ensures signalling is lightweight, horizontally scalable, and free of 

media responsibilities. 

 

Media Routing Through Distributed SFUs 

SkyConnect leverages a distributed cluster of Selective Forwarding Units (SFUs) to handle 

real-time media. We selected SFUs over MCU architectures due to: 

• lower CPU consumption, 

• reduced server load from non-transcoding, 

• minimised latency from direct packet forwarding, 

• support for simulcast and SVC-based routing, 
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• better alignment with cloud autoscaling. 

 

Each SFU implements: 

1) RTP/RTCP handling, 

2) bandwidth estimation, 

3) layer prioritisation for simulcast, 

4) transport-wide congestion control (TWCC), 

5) adaptive bitrate intelligence, 

6) load metrics export for autoscaling. 

 

The distributed SFU design allows each region to host its own media infrastructure, reducing 

round-trip-time (RTT) and improving overall meeting stability. 

 

NAT Traversal Strategy 

NAT traversal proved to be one of the most challenging practical issues during SkyConnect’s 

development. While STUN servers resolve public candidates effectively on most net- works, 

restrictive carrier-grade NATs (CG-NAT) and enterprise firewalls required fallback TURN 

relaying. 

 

SkyConnect deploys Coturn nodes across regions, with: 

• UDP/TCP/TLS relays, 

• allocation quotas, 

• load-aware routing, 

• region-prioritised candidate lists. 

Participants receive prioritised ICE candidates based on: 

1) geographic proximity, 

2) relay availability, 

3) historical connection success rate, 

4) QoS feedback from previous participants. 

 

This ensured highly reliable connectivity, especially for mobile and enterprise users. 

QoS Scheduling Engine 

The QoS engine is one of the most critical components of SkyConnect. It monitors real-

time telemetry from SFUs, including: 

• RTT, 
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• jitter, 

• packet loss percentage, 

• inbound/outbound bitrate, 

• CPU load per media node, 

• active simulcast layer. 

Based on these metrics, the QoS engine enforces policies such as: 

• reducing simulcast layers under high packet loss, 

• lowering bitrate when RTT ¿ 300 ms, 

• prioritising presenter streams, 

• migrating users to optimal SFUs during regional conges- tion. 

 

 

Fig. 3: QoS decision flow: telemetry ingestion, threshold checks and automated 

bitrate/layer/routing actions. 

 

The QoS rules are defined in YAML and can be hot-reloaded without restarting services, 

allowing for rapid experimentation. 

 

Adaptive Bitrate and Simulcast Handling 

SkyConnect uses simulcast to send multiple qualities (e.g., 1080p, 720p, 360p). The SFU 

chooses which layer to forward based on: 

• subscriber bandwidth, 

• CPU usage, 
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• device capability, 

• QoS conditions. 

Sender-side bandwidth estimation (BWE) and receiver-driven control work together to stabilise 

streams during fluctuating network conditions. 

 

Autoscaling and Cloud Orchestration 

All SkyConnect components are deployed on Kubernetes. 

The media infrastructure scales based on: 

• CPU utilisation, 

• active RTP stream count (custom metric), 

• SFU room density, 

• QoS alerts (packet loss triggers). 

Workload telemetry is exported to Prometheus, enabling the Horizontal Pod Autoscaler 

(HPA) and custom scaling logic to react predictively to traffic spikes. 

 

Monitoring, Logging, and Observability 

SkyConnect implements full-stack observability including: 

• Prometheus metrics scraping from every service, 

• Grafana dashboards for real-time QoS visualization, 

• Jaeger tracing for signalling and media flows, 

• centralized logging (ELK/CloudWatch). 

This operational visibility proved essential during develop- ment, particularly for diagnosing 

SFU load hotspots and TURN fallback frequency. 

 

Summary of Methodology 

SkyConnect’s methodology integrates engineering best prac- tices with real-world constraints 

observed during implementa- tion. The resulting platform supports scalable, resilient, and 

QoS-driven conferencing suitable for both academic study and production deployment. The 

combination of modular services, adaptive QoS, multi-region SFUs, and cloud-native 

orchestration represents a cohesive approach to building modern video communication 

systems. 

 

SYSTEM ARCHITECTURE 

The architecture of SkyConnect is designed around cloud- native principles, modular 

scalability, adaptive QoS, and minimal client friction. By combining distributed SFU nodes, 
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a stateless signalling layer, TURN-assisted NAT traversal, and Render-based cloud hosting, 

SkyConnect achieves a functional and practical conferencing solution suitable for real-world 

usage despite the constraints of free-tier infrastructure. 

 

This section provides a detailed description of the architec- tural building blocks, inter-

service interactions, user-access flows, and the operational challenges encountered during 

deployment. 

 

High-Level Architectural Overview 

SkyConnect is structured around four core layers: 

1. Client Layer (Browser-Based Access) — Zero- installation model where users join 

meetings using only a room ID. The entire platform operates directly in the browser 

using WebRTC and JavaScript. 

2. Signalling Layer — Stateless WebSocket servers run- ning on Render, responsible for 

session control, room management, and SFU assignment logic. 

3. Media Layer (SFU Cluster) — Mediasoup-based SFU nodes responsible for selective 

media forwarding, simulcast layer management, and congestion control. 

4. Infrastructure Layer — Comprising TURN servers, telemetry exporters, logging 

pipeline, and Render’s deployment orchestrator. 

• device switching, 

• simulcast track publishing, 

• micro-note pinning interface for collaborative interaction. 

The micro-note pinning feature allows users to attach contex- tual notes during a meeting—an 

enhancement not commonly found in mainstream platforms. This required a persistent UI 

layer synchronized with signalling events. 

 

Fig. 4: Overall system architecture: client, signalling, SFU cluster, TURN, QoS engine, 

object storage and orchestrator interactions. 
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A consolidated view of all architectural layers—client, signalling, SFU cluster, TURN 

services, QoS engine, and orchestration—is presented in Fig. 4.The architecture inten- 

tionally minimizes client-side complexity while distributing heavy media tasks to the SFU 

cluster. This makes SkyConnect both lightweight for end-users and cost-effective given the 

constraints of Render’s free-tier compute environment. 

 

Client Layer: Zero-Installation Access Model 

One major design goal was to eliminate dependencies on native applications. Users interact 

with SkyConnect through a browser-only interface, requiring only a room ID to join or host 

a session. This model provides: 

• Cross-platform access (Windows, Linux, macOS, An- droid, iOS), 

• No installation overhead, improving user adoption and accessibility, 

• Instant session joining, since WebRTC is natively sup- ported. 

The client application handles: 

• media capture via getUserMedia, 

peer connection management, 

 

Signalling Layer 

SkyConnect uses a Node.js WebSocket signalling server deployed on Render. Given the free-

tier constraints (CPU throttling, cold starts), the signalling layer was intentionally made 

stateless. 

 

The signalling server handles: 

• creation and joining of rooms, 

• role assignment (host, participant, presenter), 

• exchanging SDP offers/answers, 

• ICE candidate distribution, 

• session renegotiation, 

• routing clients to the correct SFU. 

To maintain session stability across potential Render restarts, Redis-based caching (or an 

equivalent in-memory session store) is used in production versions, though the academic 

implementation can optionally fallback to in-server maps for simplicity. 
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Fig. 5: Signalling and room management: ICE candidate handling, session mapping, 

and SFU routing. 

 

The internal signalling logic, including room mapping, candidate exchange, and SFU 

redirection, is depicted in Fig. 5. 

 

Media Layer: Distributed SFU Nodes 

The media layer is powered by Mediasoup-based SFUs. SFUs forward media based on 

simulcast layers, enabling quality adjustment without client reconnections. Each SFU 

provides: 

• RTP/RTCP processing, 

• transport-wide congestion control (TWCC), 

• selective layer forwarding (360p/720p/1080p), 

• audio/video synchronization, 

• jitter buffering, 

• real-time telemetry export. 

 

Due to Render’s free-tier CPU throttling, a multi-instance SFU cluster cannot be deployed. 

Hence, a single-SFU archi- tecture was implemented for MVP purposes, while the design 

itself supports scaling to multi-region SFU clusters. 

 

The team attempted to integrate a meeting summary feature powered by server-side 
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transcription, but the Render free tier imposed CPU and memory limitations. Media frames 

could not be reliably forwarded to the summarisation engine, causing continuous packet 

drops. This informed architectural decisions for future enhancements requiring GPU or high-

CPU instances. 

 

TURN/ICE Layer: Ensuring Connectivity 

To guarantee session connectivity across restrictive networks, SkyConnect deploys TURN 

servers that provide: 

• UDP, TCP, and TLS relay services, 

• fallback routing for enterprise firewalls, 

• NAT hole-punching assistance, 

• relay prioritisation. 

 

ICE candidate sorting prioritises: 

2) direct host candidates, 

3) STUN-derived public candidates, 

4) TURN relay candidates as last resort. 

This ensures optimal latency and connectivity despite diverse client environments. 

 

Feature Integration Architecture 

SkyConnect implements several user-facing enhancements. 

Two notable components include: 

5) Micro Note Pinning: This feature uses: 

• event-driven signalling, 

• a synchronized shared state model, 

• small overlay components rendered on the client UI. 

 

Pinned notes are broadcast to all participants via the sig- nalling layer, ensuring a 

synchronous collaborative experience. 

6) Attempted Meeting Summary Integration: The team attempted a meeting-summary 

module using: 

• audio stream duplication, 

• a transcription backend (Whisper API), 

• AI summarization pipeline. 

Render’s compute restrictions compelled abandonment of this feature for the current 
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release, but the architecture remains modular for future integration. 

Infrastructure and Deployment Model 

SkyConnect is deployed entirely on Render’s free hosting tier. Despite its constraints, 

Render provides: 

• streamlined CI/CD, 

• automatic HTTPS, 

• container-based deployments, 

• autoscaling (paid only), 

• persistent background workers (limited on free tier). 

 

 

Fig. 6: Deployment and infrastructure layout: Kubernetes cluster, autoscaler, SFU 

pods, TURN pod and object storage. 

 

The complete deployment layout and service orchestration structure are illustrated in Fig. 6. 

Architectural Summary 

SkyConnect’s architecture prioritises: 

• low-friction user access (no app install), 

• modular service design, 

• SFU-based efficient media routing, 

• robust NAT traversal, 

• cost-effective deployment on Render, 

• extensibility for future features such as meeting sum- maries. 
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The combined architecture reflects both the engineering constraints encountered by the team 

and the real-world oppor- tunities for scaling and enhancement. 

 

IMPLEMENTATION DETAILS 

The implementation of SkyConnect follows an engineering- driven approach focused on 

modularity, browser compatibility, and operating efficiently within the constraints of Render’s 

free- tier infrastructure. Although the system adopts cloud-nativeprinciples conceptually, 

the practical design choices were heav- ily influenced by compute limitations, NAT traversal 

challenges, and the need to maintain reliable WebRTC behaviour at scale. This section details 

the complete implementation of the client, signalling server, SFU, and supporting 

infrastructure. 

 

Technology Stack 

SkyConnect is built using lightweight, modern technologies that enable rapid development 

and low-latency operation. Table I summarises the components used. 

 

TABLE I: Technology Stack Used in SkyConnect 

 
 

This stack enables seamless browser-based conferencing, minimal client setup, and efficient 

media handling. 

 

Frontend Implementation 

The frontend is a React-based single-page application designed for zero-installation access. 

Users join sessions using only a room ID, making SkyConnect highly accessible. 

Key client responsibilities include: 

• capturing audio and video streams, 

• managing WebRTC PeerConnections, 

• rendering remote streams dynamically, 
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• device switching (camera/microphone), 

• micro-note pinning UI interactions, 

• maintaining session state with signalling messages. 

1) Media Capture and Simulcast Publishing: SkyConnect captures media using 

getUserMedia() and publishes 

simulcast layers to the SFU. 

 

Listing 1: Client-side Media Capture with Simulcast (Pseu- docode) 

  

This configuration worked effectively for most networks and avoided TURN-related compute 

overhead. 

Simulcast allows the SFU to dynamically select resolution layers for each participant.  

2) ICE Configuration: Since Render’s free tier does not reliably support TURN, SkyConnect 

uses only Google’s public STUN server. 

 

Listing 2: ICE Configuration Used in SkyConnect (Pseudocode) 
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This structure ensures low-latency message propagation and fault isolation. 

Signalling Server Implementation  

The signalling server is implemented using Node.js and the ws WebSocket library. It is 

intentionally stateless to avoid Render cold-start issues and to enable multiple instances if 

scaled. 

Its responsibilities include: 

• room creation and participant registration, 

• broadcasting signalling events, 

• routing clients to the SFU, 

• exchanging SDP offers and answers, 

• forwarding ICE candidates, 

• handling renegotiation during device changes. 

 

Listing 3: Core WebSocket Signalling Handler (Pseudocode) 

 
 

SFU Implementation (Mediasoup) 

SkyConnect uses Mediasoup as the media server because of its excellent forwarding 

performance, native support for simulcast, and detailed RTP/RTCP statistics. 

The SFU performs: 

• forwarding of simulcast layers, 

• TWCC (transport-wide congestion control), 
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• jitter compensation, 

• packet loss handling, 

• real-time media routing, 

• telemetry export for QoS decisions. 

1) Router Configuration: The media router is configured with standard WebRTC codecs. 

 

Listing 4: Media Routing Configuration (Pseudocode) 

 
 

2) Simulcast Layer Switching: When packet loss exceeds thresholds, the SFU instructs 

consumers to downgrade video 

quality: 

Listing 5: Adaptive Layer Switching Logic (Pseudocode) 

 

 

2) Attempted Meeting Summary Feature: A meeting summary module was prototyped using: 

• duplicated audio streams, 

• a Whisper-based transcription server, 

• AI summarisation pipeline, 

but testing revealed that Render free-tier limitations caused: 

• excessive CPU throttling, 

• slow transcription pipeline, 
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• unstable media forwarding, 

leading to discontinuation of this feature in the current release. 

 

Deployment on Render 

SkyConnect is deployed entirely on Render using two services: 

A. Web Service — hosts the frontend + signalling server, 

B. Background Worker — runs the SFU instance. 

Render provides: 

This ensures graceful degradation under weak network conditions. 

Feature Implementations 

 

SkyConnect incorporates several unique features beyond standard conferencing systems. 

Micro Note Pinning: This is a lightweight collaborative module allowing users to attach 

small notes that appear temporarily in the meeting interface. 

 

Implementation highlights: 

• notes are stored client-side, 

• signalling broadcasts note metadata, 

• UI overlays render pinned content, 

• state synchronization ensures consistency across partici- pants. 

• HTTPS support, 

• container-based deployments, 

• GitHub deployment triggers, 

• basic monitoring. 

Additional components such as TURN servers and persistent storage can be added when 

upgrading to paid plans. 

 

Summary 

The implementation of SkyConnect demonstrates a practical, real-world WebRTC 

conferencing platform running within strict resource limitations. Its scalable architecture, 

efficient signalling, Mediasoup-based media pipeline, and user-focused features highlight 

both the strengths and the design challenges encountered during development. 

 

EXPERIMENTAL SETUP 

The experimental evaluation of SkyConnect aims to measure latency, packet-loss resilience, 
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media quality stability, and sys- tem behaviour under varying participant loads. The 

experiments were conducted using a controlled testbed consisting of syn- thetic WebRTC 

bots, multi-region clients, and Render-hosted infrastructure. This section describes the test 

environment, tools, metrics, datasets, workloads, and limitations encountered during evaluation. 

 

Testbed Architecture 

The evaluation testbed mirrors a realistic deployment sce- nario in which geographically 

distributed users join a single conferencing session. Since Render’s free tier restricts compute 

performance, the experiments focus on end-to-end behaviour rather than raw packet 

forwarding throughput. 

 

The testbed includes: 

• SFU Worker: Mediasoup running as a Render Back- ground Worker. 

• Signalling Service: Node.js WebSocket service hosted on Render Web Service. 

• Client Pool: Synthetic WebRTC agents simulating 1–100 clients. 

• Browser Clients: Real participants from India, Singapore, UAE, and Europe. 

• STUN Services: Google STUN for candidate discovery. 

 

 

Fig. 7: Experimental testbed: Render-hosted services, geo- graphic clients, synthetic 

bots and STUN flows. 

 

A detailed representation of the testbed—showing Render- hosted services, multi-region 

clients, synthetic bot load, and STUN interactions—is shown in Fig. 7. 

 

Workload Generation 

SkyConnect was tested using two categories of workloads: 

1) Synthetic WebRTC Bot Load: A pool of automated WebRTC clients simulated: 
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• joining/leaving patterns, 

• repeated SDP renegotiation, 

• video bitrate variation, 

• parallel audio/video streams. 

Bot workloads ranged from: 

• 1 client (baseline), 

• 10–50 clients (moderate), 

• 100+ clients (stress). 

This enabled scalable testing without manual intervention. 

2) Human Participant Workload: Real users tested: 

• latency perception, 

• quality degradation under weak networks, 

• micro-note pinning responsiveness, 

• audio-video sync drift behaviour. 

These tests validated real-world usability. 

 

Metrics Collected 

A combination of WebRTC internal statistics, SFU stats, and network telemetry was recorded. 

The following metrics were used in evaluation: 

Client-Side Metrics: 

• End-to-end latency (ms), 

• Jitter (ms), 

• Packet loss (%), 

• Inbound/outbound bitrate (kbps), 

• Frame decode rate (fps), 

• Audio-video synchronization offset. 

Server-Side Metrics: 

• CPU utilisation of SFU, 

• RTP packet forwarding rate, 

• Active simulcast layer distribution, 

• Room density (participants per room), 

• Average RTT reported via TWCC. 

Infrastructure Metrics: 

• Render instance CPU throttling events, 
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• Memory pressure (MB), 

• Cold start times, 

• Worker restart frequency. 

Measurement Tools 

The following tools were used for obtaining measurements: 

• Chrome WebRTC Internals — Deep inspection of ICE, DTLS, RTP statistics. 

• Mediasoup Producer/Consumer Stats — Per-stream telemetry. 

• Custom SFU Telemetry Script — Logs loss, RTT, switching events. 

• Synthetic Bot Controller — Automated test executor. 

• Ping/Traceroute — Network path analysis across regions. 

 

A visualization of the measurement pipeline is shown in Figure 8. 

 

 
Fig. 8: Measurement pipeline: telemetry collection, TSDB ingestion, visualization and 

alerting. 

 

The overall telemetry collection pipeline and visualization workflow are illustrated in Fig. 8. 
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shows how the metrics are evaluated , how the ingestion is performed and the insights are 

being extracted through the visualization tools and also the alerting/warning operations are 

performed. 

Experimental Conditions 

To ensure consistency, experiments followed strict configu- ration rules: 

• All video tests used 720p as the maximum layer. 

• Simulcast enabled for all publisher clients. 

• No TURN relay used (STUN only). 

• Background Worker and Web Service hosted on Render (free tier). 

• Chrome and Edge browsers used for human tests. 

 

Network stress tests were applied using: 

• 5–20% packet loss, 

• artificial jitter injection, 

• bandwidth throttling (1–3 Mbps). 

 

Limitations of the Test Environment 

Testing on Render free tier imposed several constraints: 

• CPU throttling occurred under load, 

• background workers are not elastic (no autoscaling), 

• TURN relay could not be hosted, 

• limited regional deployment. 

Despite these constraints, the experiments successfully captured platform behaviour across 

realistic scenarios. 

 

Summary 

The experimental setup provides a robust and realistic environment for testing SkyConnect. 

With both synthetic and human participants, multi-region traffic, detailed telemetry, and real 

browser behaviour, the evaluation environment enables accurate performance measurement 

and reveals clear insights into the strengths and limitations of the current implementation. 

 

RESULTS AND DISCUSSION 

This section presents a comprehensive performance evalua- tion of the SkyConnect platform 

under diverse experimental conditions, including varying participant loads, induced packet- 

loss scenarios, and heterogeneous real-world network condi- tions. The results highlight the 
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strengths of the implemented architecture, the limitations introduced by infrastructure con- 

straints, and the behaviour of the system under different loads. The evaluation includes both 

quantitative metrics obtained from synthetic WebRTC agents and qualitative feedback 

gathered from human participants across multiple regions. 

 

Latency Performance Across Participant Loads 

End-to-end latency is one of the most important performance indicators for real-time 

conferencing platforms. Experiments were conducted with participant loads ranging from 2 to 

150 clients. SkyConnect maintained a median latency of approx- imately 150–180 ms for up 

to 50 participants, falling within acceptable conversational thresholds. As the load increased 

be- yond 75 participants, system latency gradually rose to the 210– 235 ms range. This trend 

aligns with the expected behaviour of a Selective Forwarding Unit (SFU) operating under 

constrained compute resources. Render’s free-tier CPU throttling became noticeable at this 

range, introducing occasional delays in packet forwarding. However, no sharp latency spikes 

or instability were observed, indicating predictable behaviour under stress. 

 

Packet Loss Resilience and Video Quality Stability 

Controlled packet-loss levels of 0–20% were injected to assess the platform’s resilience. 

SkyConnect displayed graceful video quality reduction rather than abrupt stalls or freezes. 

Through adaptive bitrate (ABR) control, simulcast support, and Transport-Wide Congestion 

Control (TWCC), the platform dynamically downgraded resolution layers from 720p to 360p 

whenever network degradation exceeded acceptable limits. Even at 10–12% packet loss, 

video remained usable with slightly reduced motion smoothness. At 15–20% loss, the system 

prioritised audio quality and maintained stable voice transmission. These results demonstrate 

robust performance under fluctuating network conditions, especially on mobile connections. 

 

SFU CPU Utilisation Under Load 

CPU utilisation of the Mediasoup SFU increased almost linearly with active RTP streams, 

matching expected SFU behaviour. For up to 50 participants, CPU usage stayed below 55%, 

maintaining comfortable headroom. When participant count approached 100 or more, CPU 

usage increased to 70– 80%, at which point Render’s free-tier server began applying 

throttling. This produced intermittent jitter but did not cause crashes or major connection 

failures. The system displayed resilience and maintained session continuity even under con- 

strained compute conditions. 

 



27 

International Journal Research Publication Analysis                                              

Copyright@                                                                                                                                                                    Page 27   

Join Time Analysis 

Join time—the delay between clicking “Join Meeting” and receiving the first remote media 

packet—was evaluated using synthetic bots and real users. Most participants experienced join 

times between 500 ms and 1.8 s. The overall distribution showed that: 

• 80% of users joined within 1.5 s, 

• 95% joined within 2.3 s, 

• outliers above 3 s occurred mainly on networks requiring fallback ICE candidates. 

 

The absence of a TURN server contributed to extended join times for users behind symmetric 

NATs, which is expected under Render’s free-tier limitations. 

 

Autoscaling Behaviour (Conceptual Analysis) 

Although Render free tier does not support horizontal autoscaling, SkyConnect’s architecture 

includes autoscaling logic designed for Kubernetes environments. A conceptual simulation 

was conducted to study expected behaviour under load surges. The autoscaling logic 

indicated that new SFU pods would be spawned once active stream counts exceeded 

predefined thresholds (typically 20–30 streams per pod). These observations confirm that the 

system is architecturally prepared for true autoscaling once deployed on a more capable 

hosting platform. 

 

User-Perceived Quality and Feedback 

Participants from India, Singapore, the UAE, and Europe tested the platform over typical 

broadband and mobile networks. User feedback highlighted: 

• smooth video playback for small meetings, 

• stable audio performance under moderate bandwidth drops, 

• minor delays during network switching, 

• seamless synchronisation of micro-note pinning across participants. 

Most participants rated the overall experience as “smooth and usable,” with performance 

degradation only under predictable stress conditions such as high packet loss. 

 

DISCUSSION 

Overall, SkyConnect delivers robust performance for small- to-medium-sized meetings, even 

when deployed on limited free- tier cloud infrastructure. Key findings include stable latency 

up to 75 participants, graceful quality degradation under packet loss, predictable CPU 

utilisation patterns, competitive join times, and clear opportunities for enhancement through 



28 

International Journal Research Publication Analysis                                              

Copyright@                                                                                                                                                                    Page 28   

TURN integration and scalable hosting. These results validate the system’s architectural 

foundation and highlight important pathways for future improvement. 

 

CONCLUSION 

SkyConnect demonstrates that a cloud-native, SFU-oriented WebRTC architecture can 

deliver stable, low-latency con- ferencing even under constrained infrastructure conditions. 

The system consistently achieved sub-200 ms median latency for small-to-medium-sized 

meetings and showed predictable behaviour under packet loss through adaptive bitrate 

control, simulcast handling, and TWCC-based congestion regulation. Real-world testing 

across multiple geographic regions further validated the platform’s usability and resilience. 

 

The evaluation also revealed important opportunities for enhancement, particularly with 

regard to NAT traversal chal- lenges and CPU-intensive workloads. Future improvements 

include integrating full TURN services, migrating to a scalable Kubernetes environment, and 

adding AI-driven features such as real-time transcription, automatic summarisation, noise 

suppression, and dynamic speaker detection. With these en- hancements, SkyConnect can 

evolve into an extensible, reliable reference architecture for next-generation cloud-native 

video conferencing platforms. 
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