

**IMPLANT OVERDENTURE ATTACHMENTS IN PROSTHODONTICS:
A COMPREHENSIVE REVIEW****Dr. Puvvada Venkata Vaibhav^{*1}, Dr. B. Lakshmana Rao²**¹Oral & Maxillofacial Prosthodontist and Implantologist, Vijayawada, India.²Professor & HOD, Department of Prosthodontics, Lenora Institute of Dental Sciences, Rajahmundry, India.**Received: 26 November 2025*****Corresponding Author: Dr. Puvvada Venkata Vaibhav****Article Revised: 16 December 2025**

Oral & Maxillofacial Prosthodontist and Implantologist, Vijayawada, India.

Published on: 06 January 2026DOI: <https://doi-doi.org/101555/ijrpa.7696>**INTRODUCTION**

Edentulism remains a significant clinical problem affecting function, aesthetics, and quality of life, especially in elderly populations. Conventional complete dentures often suffer from poor retention and stability, particularly in the atrophic mandible, leading to compromised masticatory efficiency and patient satisfaction. Implant-supported overdentures (ISODs) have become a widely accepted treatment option that significantly enhances retention, stability, and overall prosthetic performance compared to conventional dentures. Successful overdenture therapy relies heavily on the attachment system used to connect the overdenture to dental implants, as different attachments influence clinical outcomes, prosthetic maintenance, patient satisfaction, and peri-implant tissue health.

Classification of Attachment Systems

Attachment systems for implant overdentures are broadly classified into:

1. **Stud/Non-Splinted Attachments**
 - o Ball/O-ring attachments
 - o Locator/self-aligning attachments
 - o Magnetic attachments
 - o Equator and other resilient stud systems
2. **Splinted Attachments**
 - o Bar and clip attachments
 - o Telescopic crown attachments

Each category has unique mechanical properties that affect retention, load distribution, hygiene access, and ease of maintenance.

Stud/Non-Splinted Attachments

Ball Attachments

Ball attachments consist of a spherical male abutment on the implant and a corresponding female nylon or elastomeric insert embedded within the overdenture base. They offer simplicity, cost-effectiveness, ease of insertion/removal, and good overall retention in many clinical situations. However, implant parallelism is crucial for optimal function, and O-rings may require regular replacement due to wear.

Locator Attachments

Locator attachments are low-profile stud systems that compensate for moderate implant angulation (up to $\sim 40^\circ$) and allow resilient movement while maintaining retention. They are popular due to ease of use, adjustable retention, and minimal interarch space requirements. Locator systems, however, may require more frequent prosthetic maintenance due to nylon component wear.

Magnetic Attachments

Magnetic attachments use magnetic forces to retain the overdenture. While they provide effortless seating and removal—beneficial for patients with limited dexterity—they generally exhibit lower retention levels and can have greater soft-tissue changes around the implant compared to other systems.

Splinted Attachments

Bar and Clip Attachments

Bar systems splint multiple implants using a custom-fabricated bar with clips embedded in the overdenture framework. The splinting effect distributes occlusal loads across implants and often provides the **highest retention**. However, bar attachments are technique-sensitive, require more interarch space, and can complicate hygiene maintenance beneath the bar.

Telescopic Attachments

Telescopic systems involve primary and secondary crowns that slide together to achieve frictional retention. These provide excellent stability and comfort, especially in complex prosthetic cases, but require precise fabrication and may entail higher laboratory costs.

Clinical Outcomes and Comparison of Systems

Survival and Prosthodontic Performance

Systematic reviews indicate that **implant survival rates do not differ substantially** between attachment types when prosthetic rehabilitation is well planned, with bar and locator systems often showing comparable survival over intermediate follow-up periods. Ball and locator attachments typically show high implant survival rates (~96–100%), while magnetic systems may show slightly lower values in some cohorts.

Retention and Stability

Bar attachments generally provide the **highest retention forces** due to the splinted design, followed by locator and ball attachments. Locator systems perform well in limited interarch space and when implants are not optimally parallel. Ball attachments demonstrate comparatively moderate retention but remain reliable because of their simplicity.

Peri-Implant Tissue Response and Maintenance

Attachment selection influences prosthetic maintenance and soft-tissue effects. Locator attachments often show **lower maintenance needs** compared to ball systems and reduced soft tissue complications, while bar attachments can pose challenges to hygiene, leading to mucosal changes beneath the bar. Magnet systems have higher soft tissue changes due to movement and lower retention.

Patient Satisfaction

Overall patient satisfaction tends to be high across attachment systems, with telescopic and locator attachments often ranking highest due to comfort, ease of use, and stability. Magnetic attachments may have lower satisfaction because of limited retention. Individual patient factors, such as manual dexterity and expectations, significantly influence satisfaction levels.

Factors Influencing Attachment Selection

Selection depends on clinical and patient-specific factors such as:

- Interarch space availability
- Bone quality and quantity
- Implant number and angulation
- Retention level required
- Hygiene capability of the patient
- Economic considerations

Clinicians must balance these determinants to optimize function, comfort, and long-term outcomes.

CONCLUSION

Implant overdenture attachments play a pivotal role in achieving retention, stability, patient satisfaction, and peri-implant health in prosthodontic rehabilitation of edentulous patients. While no single attachment system is universally ideal, each offers unique advantages and limitations based on clinical circumstances. Ball and locator systems are commonly preferred for mandibular overdentures due to ease of use, favorable tissue response, and high survival rates, whereas bar systems are indicated for cases requiring superior retention and load distribution. Continued research, especially long-term randomized clinical trials, will further clarify optimal attachment protocols in diverse patient populations.

REFERENCES

1. Patel S, Vaishnav K. Comparative Evaluation of Various Implant Overdenture Attachment Systems in Terms of Survival Rate, Tissue Response, and Patient Satisfaction: A Systematic Review and Meta-Analysis. *Cureus*. 2025;17(5):889-931.
2. Subahi RH, Al Sultan NA, Hafiz RA, et al. An overview of implant overdenture attachment systems. *Int J Community Med Public Health*. 2023;10(12):5014-5020.
3. Steffen RP, White V, Markowitz NR. The use of ball clip attachments with an implant-supported primary-secondary bar overdenture. *J Oral Implantol*. 2004; 30:234-239.
4. Awad MA, Feine JS. Measuring patient satisfaction with mandibular prostheses. *Community Dent Oral Epidemiol*. 1998; 26:400-405.
5. International Journal of Oral Maxillofacial Implants. Retention of Implant-Supported Overdenture with Bar/Clip and Stud Attachments. *Int J Oral Maxillofac Implants*. 1997; 12:176-185.
6. Feine JS, Carlsson GE, Awad MA, Chehade A, Duncan WJ, Gizani S, et al. The McGill consensus statement on overdentures. *Int J Prosthodont*. 2002;15(4):413-414.
7. Thomason JM, Feine J, Exley C, Moynihan P, Müller F, Naert I, et al. Mandibular two implant-supported overdentures as the first-choice standard of care. *Int J Oral Maxillofac Implants*. 2009; 24:3-10.
8. Burns DR. Mandibular implant overdenture treatment: Consensus and controversy. *J Prosthodont*. 2000;9(1):37-46.
9. Naert I, Gizani S, Vuylsteke M, Van Steenberghe D. A randomized clinical trial on the influence of splinted and unsplinted oral implants in mandibular overdenture therapy. *J Prosthet Dent*. 1998;79(3):311-317.

10. Cehreli MC, Karasoy D, Kökat AM, Akça K. Effect of attachment design on the retention and resistance of implant-supported overdentures. *J Prosthet Dent.* 2010;103(5):303-312.
11. Kleis WK, Kämmerer PW, Hartmann S, Al-Nawas B, Wagner W. A comparison of three different attachment systems for mandibular two-implant overdentures. *Int J Oral Maxillofac Implants.* 2010;25(6):118-126.
12. Tokuhisa M, Matsushita Y, Koyano K. In vitro study of the retention forces of implant overdenture attachments. *Int J Prosthodont.* 2003;16(2):154-158.
13. Alsabeeha NH, Payne AG, Swain MV. Attachment systems for mandibular implant overdentures: A review of in vitro investigations on retention and wear. *J Prosthodont.* 2009;18(2):161-174.
14. Trakas T, Michalakis K, Kang K, Hirayama H. Attachment systems for implant retained overdentures: A literature review. *Implant Dent.* 2006;15(1):24-34.
15. Krennmair G, Weinländer M, Krainhöfner M, Piehslinger E. Implant-supported mandibular overdentures retained with ball or locator attachments: A 3-year prospective study. *Int J Oral Maxillofac Implants.* 2006;21(4):598-604.
16. Payne AG, Solomons YF. The prosthodontic maintenance requirements of mandibular mucosa-implant-supported overdentures. *Clin Oral Implants Res.* 2000;11(1):67-74.
17. Mumcu E, Bilhan H, Geckili O. The effect of attachment type and implant number on satisfaction and quality of life. *Gerodontology.* 2012;29(2):618-623.
18. Bergendal T, Engquist B. Implant-supported overdentures: A longitudinal prospective study. *Int J Oral Maxillofac Implants.* 1998;13(2):253-262.
19. Naert I, Quirynen M, Hooghe M, Van Steenberghe D. A comparative prospective study of splinted and unsplinted implants. *Clin Oral Implants Res.* 1994;5(3):195-201.
20. Van Kampen FM, Van der Bilt A, Cune MS, Fontijn-Tekamp FA, Bosman F. Masticatory function with implant-supported overdentures. *J Dent Res.* 2004;83(9):708-711.
21. Schneider AL. Use of magnetic attachments in implant-supported overdentures. *J Prosthet Dent.* 1989;62(4):427-433.
22. Sadowsky SJ. Mandibular implant-retained overdentures: A literature review. *J Prosthet Dent.* 2001;86(5):468-473.
23. Walton JN, MacEntee MI. Problems with prostheses on implants: A retrospective study. *J Prosthet Dent.* 1994;71(3):283-288.

24. Batenburg RH, Meijer HJ, Raghoebar GM, Vissink A. Treatment concept for mandibular overdentures. *Int J Oral Maxillofac Implants*. 1998;13(4):539-545.
25. Cune MS, Van Kampen FM, Van der Bilt A, Bosman F. Patient satisfaction and functional outcome with implant-retained overdentures. *Int J Oral Maxillofac Implants*. 2005;20(2):261-269.