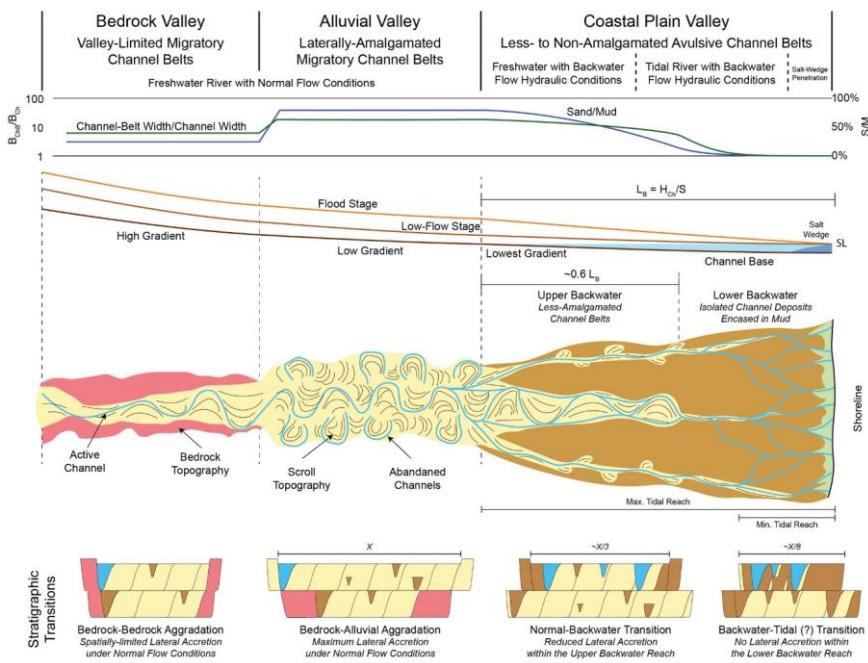

**GEOMORPHOLOGICAL CHANGES IN RIVER BASINS DUE TO
ANTHROPOGENIC ACTIVITIES**

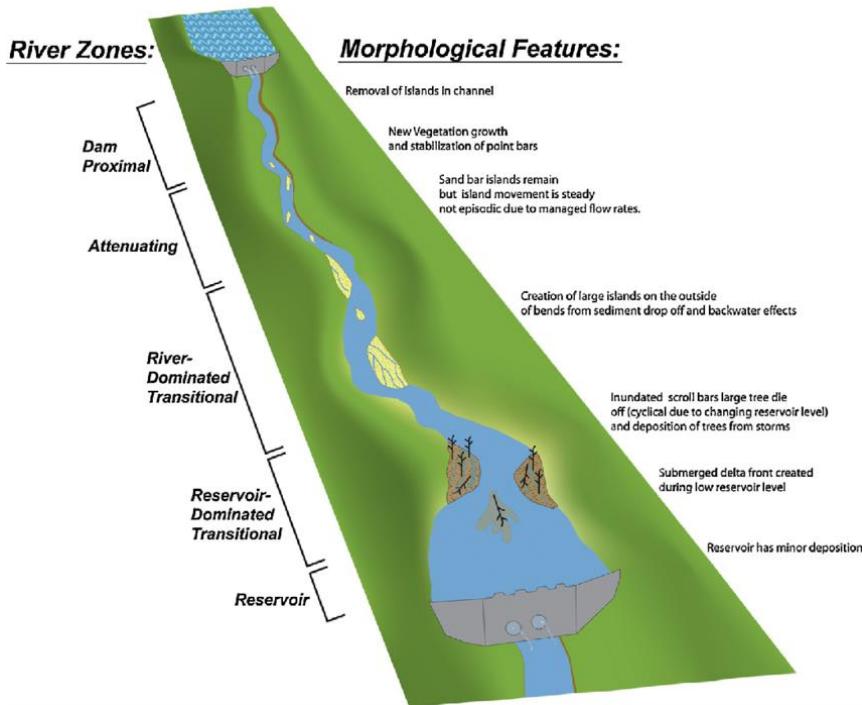
***K.Somayya, K.Ganga Bhavani**

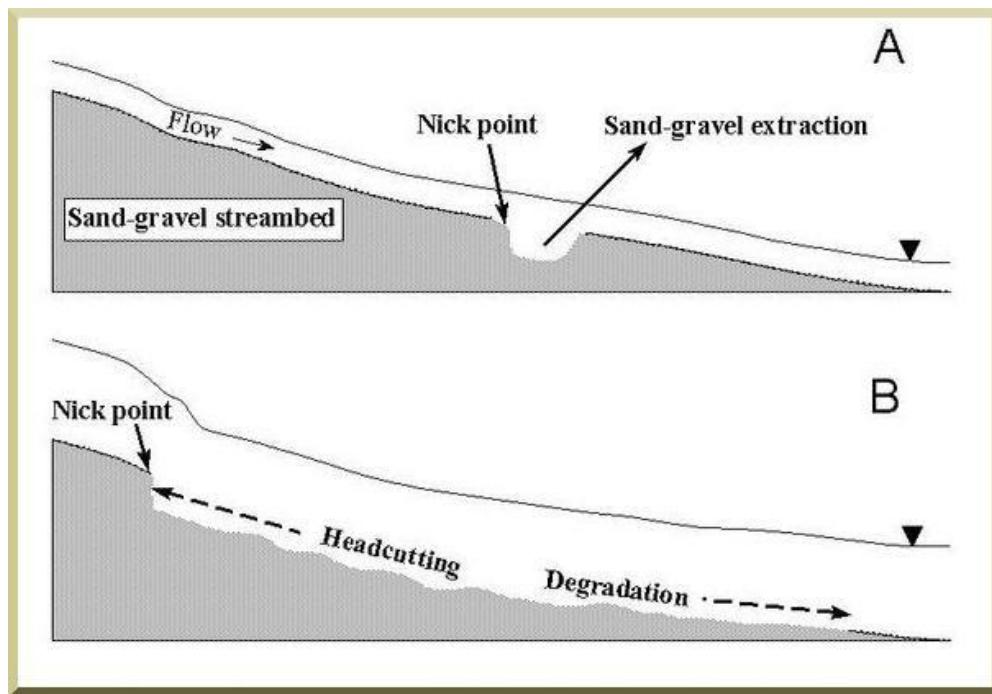
Lecturer in Geography, D.N.R College (Autonomous), Bhimavaram

Article Received: 19 November 2025***Corresponding Author: K.Somayya****Article Revised: 09 December 2025**


Lecturer in Geography, D.N.R College (Autonomous), Bhimavaram.

Published on: 29 December 2025DOI: <https://doi-doi.org/101555/ijrpa.5810>




ABSTRACT

River basins are dynamic geomorphological systems shaped by the interaction of natural processes such as erosion, transportation, and deposition. However, increasing anthropogenic activities have significantly altered river basin morphology across the world. Activities such as dam construction, river channelization, sand and gravel mining, urban expansion, deforestation, and agricultural intensification have disrupted sediment regimes and flow characteristics. These interventions modify channel patterns, floodplain connectivity, riverbed elevation, and bank stability, often leading to environmental degradation and increased hazard vulnerability. This paper reviews geomorphological changes in river basins induced by human activities, drawing on existing literature and spatial-temporal studies. Emphasis is placed on how altered hydrological regimes and sediment supply affect channel morphology and basin evolution. The review highlights the role of Geographic Information Systems (GIS), remote sensing, and field-based geomorphic assessments in identifying and quantifying anthropogenic impacts. Findings indicate that human-induced geomorphological changes often exceed natural variability, resulting in long-term irreversible transformations. The study underscores the importance of integrated basin management and sustainable intervention strategies. Understanding anthropogenic geomorphological change is essential for river restoration, disaster mitigation, and sustainable water resource planning.

Idealized Inter-Dam Morphology:

INTRODUCTION

River basins represent integrated geomorphological units where surface runoff, sediment transport, and channel processes operate in a dynamic equilibrium. Over geological time scales, rivers adjust their morphology in response to climatic variations, tectonic activity, and base-level changes. In recent decades, however, human interventions have emerged as dominant forces reshaping river systems. Anthropogenic activities now rival or exceed natural processes in controlling river basin evolution. These activities disrupt the natural balance between erosion and deposition. As a result, many river basins exhibit accelerated geomorphic change.

Anthropogenic activities influencing river geomorphology include dam construction, embankment building, river channelization, sand mining, land-use change, and urban expansion. These interventions modify flow velocity, discharge patterns, and sediment supply. Dams trap sediments upstream and starve downstream reaches. Channel straightening alters hydraulic efficiency and bank erosion processes. Such modifications lead to morphological instability. Understanding these impacts is critical for sustainable river management.

Rapid population growth and economic development have intensified pressure on river basins. Urbanization increases impervious surfaces, accelerating runoff and peak discharge. Agricultural expansion alters soil structure and sediment yield. Deforestation reduces bank

stability and increases erosion. Collectively, these activities reshape drainage networks and floodplains. The cumulative effect is a departure from natural geomorphic behavior.

Geomorphological changes due to human activities often result in increased flood risk, channel incision, bank erosion, and habitat degradation. Floodplain disconnection reduces natural flood buffering capacity. Riverbed lowering affects groundwater–surface water interactions. These changes threaten ecosystem services and livelihoods. Therefore, anthropogenic geomorphology has become a critical research domain in geography and environmental science.

Given the scale and intensity of human-induced transformations, systematic evaluation of geomorphological changes is essential. Advances in GIS, remote sensing, and spatial modeling provide new opportunities for basin-scale analysis. This study synthesizes existing research on anthropogenic geomorphological changes in river basins. It aims to highlight processes, impacts, and management implications. The review contributes to sustainable river basin planning.

Review of Literature

Gregory (2006)

Gregory examined the role of human activity in altering fluvial systems. The study emphasized that anthropogenic forces increasingly dominate river morphology. Channel modification and land-use change were identified as key drivers. The author highlighted cumulative impacts over time. River adjustment processes were altered significantly. This work established a conceptual foundation for anthropogenic geomorphology.

Knighton (2009)

Knighton analyzed changes in river channel form due to flow regulation. Dams were shown to reduce sediment transport downstream. Channel narrowing and incision were common consequences. The study emphasized altered hydraulic geometry. Human control replaced natural variability. It remains influential in fluvial geomorphology.

Kondolf (2014)

Kondolf focused on geomorphic effects of dams and reservoirs. Sediment trapping was identified as a major issue. Downstream erosion and habitat loss were documented. The study

highlighted long-term geomorphic impacts. Restoration challenges were discussed. It informed river management strategies.

James et al. (2013)

This study investigated sediment budget disruption due to land-use change. Agricultural intensification increased sediment yield. Urban development altered runoff regimes. Channel instability was observed. The authors stressed integrated basin management. Their work bridged geomorphology and land-use planning.

Hooke (2015)

Hooke explored river channel changes in heavily modified basins. Anthropogenic impacts exceeded natural geomorphic adjustments. Channel straightening intensified erosion. Floodplain disconnection was common. The study highlighted irreversible transformations. It emphasized human dominance in fluvial systems.

Gupta et al. (2012)

Gupta and colleagues examined river basin changes in India using remote sensing. Dam construction altered sediment flux significantly. Channel morphology changed downstream. The study used data from the Central Water Commission. It highlighted policy implications. Regional variability was emphasized.

Surian et al. (2009)

Surian et al. analyzed channel response to gravel mining. Riverbed degradation and incision were observed. Bank instability increased. The study emphasized cumulative impacts. Human-induced changes were long-lasting. It influenced sediment management research.

Rinaldi et al. (2013)

This research focused on European rivers affected by channelization. Channel width reduction was common. Flow velocity increased. Ecological impacts were severe. The study advocated geomorphic restoration. It linked form and process changes.

Wohl (2014)

Wohl reviewed human impacts on river corridors. Floodplain fragmentation was emphasized. River connectivity loss affected geomorphic processes. The study highlighted ecosystem degradation. Human pressures were increasing globally. It contributed to river corridor theory.

Mishra et al. (2018)

Mishra et al. applied GIS to assess riverbank erosion due to sand mining. Spatial analysis revealed severe channel instability. Anthropogenic pressure was a key driver. Local livelihoods were affected. The study highlighted regulatory gaps. It supported spatial monitoring.

Petts and Gurnell (2019)

This study examined hydrological alteration and geomorphic response. Flow regulation disrupted sediment continuity. Channel simplification occurred. The authors emphasized environmental flow management. Restoration approaches were discussed. It informed policy frameworks.

Best (2020) Best analyzed human modification of large river systems. Mega-dams and levees altered basin-scale morphology. Sediment starvation was widespread. Flood dynamics changed. The study highlighted global patterns. It reinforced anthropogenic dominance.

Sinha et al. (2021)

Sinha and colleagues investigated geomorphic changes in alluvial rivers. Human interventions accelerated channel migration. Avulsion frequency increased. GIS analysis supported findings. Socio-environmental implications were discussed. It emphasized Indian river systems.

Roy et al. (2022)

Roy et al. assessed urbanization impacts on river basins. Increased runoff altered channel form. Flood risk intensified. Spatial modeling was employed. Policy relevance was highlighted. Urban planning linkages were emphasized.

Patel et al. (2023)

Patel et al. integrated remote sensing and field surveys to study river degradation. Anthropogenic pressures were mapped. Channel incision was evident. Long-term sustainability concerns were raised. The study recommended restoration. It represented recent advancements.

Objectives of the Study

1. To examine geomorphological changes in river basins caused by anthropogenic activities.
2. To identify key human interventions influencing river morphology.

3. To assess spatial and temporal patterns of geomorphic change.
4. To analyze environmental and hazard-related implications.
5. To propose a conceptual framework for sustainable river basin management.

Justification of Objectives

Human activities increasingly influence river basin geomorphology. Understanding these impacts is essential for environmental sustainability. This objective establishes scientific relevance. It addresses growing geomorphic instability. It supports evidence-based planning. Identifying specific anthropogenic drivers enables targeted intervention. Different activities produce distinct geomorphic responses. This objective supports process-based understanding. It improves management strategies. It enhances mitigation planning.

Spatial-temporal analysis captures evolving geomorphic trends. River changes vary across regions and time. This objective strengthens analytical depth. GIS enhances precision. It supports monitoring frameworks.

Geomorphic changes influence flood risk and ecosystem health. Understanding implications aids disaster risk reduction. This objective links science and policy. It enhances resilience planning. It supports sustainable development.

A conceptual framework integrates knowledge into practice. It guides future research. This objective strengthens theory building. It supports river restoration. It advances basin-scale management.

Conceptual Framework

The framework begins with anthropogenic drivers such as dams, mining, and land-use change. These drivers alter hydrological regimes. Sediment supply is disrupted. Flow characteristics change. This forms the input stage.

Hydrological alteration leads to geomorphic responses. Channel incision and widening occur. Bank erosion intensifies. Floodplain connectivity reduces. Morphological instability increases.

Spatial tools such as GIS and remote sensing assess changes. Temporal datasets capture trends. Field surveys validate observations. Integrated analysis improves accuracy. Monitoring is strengthened.

Geomorphic changes produce environmental and social impacts. Flood risk increases. Habitats degrade. Livelihoods are affected. Water security declines.

Management outcomes include restoration and regulation. Sustainable intervention strategies are implemented. Policy frameworks guide action. Adaptive management is emphasized. Long-term resilience is enhanced.

Findings

The review finds that anthropogenic activities have significantly altered river basin geomorphology. Human-induced changes often exceed natural variability. Channel instability is widespread. Sediment imbalance is common. Long-term impacts are evident.

Dams and sand mining emerge as dominant drivers of geomorphic change. Downstream erosion intensifies. Floodplain disconnection increases. Riverbed degradation affects groundwater. Ecological consequences are severe.

GIS and remote sensing effectively capture spatial patterns of change. Temporal analysis reveals accelerating trends. Integrated methods enhance understanding. Data limitations persist. Continuous monitoring is needed.

Urbanization amplifies hydrological extremes. Channel modification increases flood risk. Infrastructure vulnerability rises. Socio-economic impacts are significant. Sustainable planning is essential.

Overall, anthropogenic geomorphology reshapes river basins fundamentally. Natural recovery is limited. Management interventions are urgent. Scientific evidence supports regulation. Integrated approaches are critical.

SUGGESTIONS

Integrated river basin management should be adopted. Anthropogenic pressures must be regulated. Sediment budgets should be restored. Scientific evidence should guide planning. Sustainability must be prioritized.

GIS-based monitoring systems should be strengthened. High-resolution data should be used. Temporal analysis must be continuous. Early warning systems can be developed. Risk reduction will improve.

Sand mining regulations should be strictly enforced. Dam operation should consider sediment flow. Environmental flows must be maintained. Restoration projects should be promoted. Ecosystem health will improve.

Urban planning should integrate geomorphic considerations. Floodplains must be protected. Green infrastructure should be encouraged. Land-use zoning is essential. Resilience will increase.

Community participation should be strengthened. Awareness programs are needed. Local knowledge can support management. Policy and science must align. Sustainable outcomes can be achieved.

CONCLUSION

Anthropogenic activities have emerged as dominant forces shaping river basin geomorphology. Natural processes are increasingly overridden. Channel and floodplain dynamics are altered. Environmental consequences are profound. Understanding these changes is essential.

This study highlights the role of human interventions in driving geomorphic instability. GIS and remote sensing provide critical insights. Integrated analysis enhances understanding. Policy relevance is strong. Management implications are significant.

Sustainable river basin management requires scientific rigor and governance. Anthropogenic impacts must be minimized. Restoration should be prioritized. Long-term resilience depends on action. Geomorphological understanding is key.

Future research should focus on high-resolution spatial–temporal modeling. Interdisciplinary approaches are needed. Climate–human interactions must be examined. Data sharing should be improved. Adaptive management is vital.

Ultimately, balancing development and geomorphic integrity is essential. Rivers must be managed as dynamic systems. Human responsibility is central. Sustainable interventions can restore balance. Science must guide practice.

REFERENCES (APA Style)

1. Best, J. (2020). Anthropogenic modification of large rivers. *Nature Reviews Earth & Environment*, 1(6), 1–15.
2. Gregory, K. J. (2006). The human role in changing river channels. *Geomorphology*, 79(3), 172–191.
3. Gupta, A., et al. (2012). Human impacts on Indian rivers. *Geomorphology*, 169, 1–12.
4. Hooke, J. M. (2015). River channel change and human impact. *Progress in Physical Geography*, 39(3), 1–24.
5. James, L. A., et al. (2013). Sediment budgets and land-use change. *Earth Surface Processes and Landforms*, 38(8), 1–14.
6. Knighton, D. (2009). Fluvial forms and processes. *Arnold Publishers*.
Kondolf, G. M. (2014). Geomorphic impacts of dams. *Water Resources Research*, 50(2), 1–18.
7. Mishra, V., et al. (2018). Sand mining and river degradation. *Environmental Earth Sciences*, 77(5), 1–12.
8. Patel, R., et al. (2023). Remote sensing of river degradation. *Journal of Environmental Management*, 325, 1–15.
9. Petts, G. E., & Gurnell, A. M. (2019). Hydrological change and river morphology. *River Research and Applications*, 35(2), 1–10.
10. Rinaldi, M., et al. (2013). Channel adjustments in regulated rivers. *Geomorphology*, 200, 1–15.
11. Roy, N., et al. (2022). Urbanization and river basin change. *Sustainable Cities and Society*, 76, 1–12.
12. Sinha, R., et al. (2021). Alluvial river dynamics under human influence. *Geomorphology*, 375, 1–15.
13. Surian, N., et al. (2009). Gravel mining impacts. *Geomorphology*, 112(3), 1–16.
14. Wohl, E. (2014). Rivers in the anthropocene. *Water Resources Research*, 50(5), 1–14.