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ABSTRACT

The rapid proliferation of autonomous and robotic systems in domains such as smart
manufacturing, healthcare, transportation, and home assistance has intensified concerns over
privacy and cybersecurity. Modern autonomous systems rely heavily on machine learning for
perception, decision-making, and control, which both exacerbates and mitigates security
risks. On the one hand, machine learning components introduce new attack surfaces
(adversarial examples, model poisoning), while on the other hand machine learning methods
are essential tools for detecting intrusions, securing communications, and preserving data
privacy. This review surveys recent advances at the intersection of autonomy, robotics,
machine learning, privacy, and cybersecurity. We examine machine learning-driven
techniques for securing robotic systems, including network intrusion and anomaly detection,
secure authentication, and resilient control. The machine learning approaches that enhance
privacy, such as federated and distributed learning, differential privacy, and novel sensor
designs that obfuscate sensitive data were explored. Case studies span autonomous vehicles,
drones, industrial robots, medical robots, and service robots. Our findings highlight the
promise of machine learning in improving detection accuracy and adaptive defenses, while
also underscoring challenges like data scarcity, adversarial vulnerabilities, and regulatory
compliance. It is concluded by recommending integrated "secure-by-design™ frameworks,
interdisciplinary standards and privacy-by-design principles (for example. inherent privacy-
preserving sensors) to ensure that future autonomous systems are both effective and

trustworthy.
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1.0 INTRODUCTION

Autonomous systems and robotics are transforming many sectors, from driverless vehicles
and delivery drones to surgical robots and home assistants. These systems typically fuse
advanced sensing, connectivity, and intelligent decision-making to operate with minimal
human intervention. However, their complexity and connectivity also make them vulnerable
to cyber threats. Prior work has shown that the most cybersecurity-vulnerable parts of robot
technologies are robots’ data, software, networks, and hardware, [2]. For example,
autonomous vehicles depend on data links (V2X), sensors (LIiDAR, cameras), and control
software, any of which can be targeted by attackers. Likewise, service robots in homes or
hospitals collect personal data, raising privacy concerns, [8]. Ensuring the confidentiality,

integrity, and availability of autonomous systems is thus a critical challenge.

Machine learning has become deeply embedded in modern autonomy. Machine learning is
used for perception (for example. object recognition), navigation (for example. localization
and planning), and control (for example. reinforcement learning). These machine learning
capabilities can help address security issues: for instance, machine learning-based intrusion
detection systems (IDS) can learn network traffic patterns to spot anomalies [3]. However,
machine learning also introduces new risks. Neural models can be fooled by adversarial
inputs or data poisoning, and centralized machine learning can leak sensitive data.
Recognizing this dual role, current research increasingly applies machine learning to

cybersecurity and designs machine learning that respects privacy.

The aim of this paper is to provide an in-depth review of recent developments in machine
learning-driven autonomous and robotic systems for privacy and cybersecurity. In doing so,
we address the following questions:

1. What are the main security and privacy threats facing autonomous robots and vehicles?
We survey vulnerabilities (for example. sensor spoofing, network attacks, data breaches)
across different robotic platforms.

2. How are machine learning methods used to enhance security in autonomous systems?
We review machine learning-based intrusion detection, anomaly detection, authentication

schemes, and resilient control strategies in robotics.
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3. How can autonomous systems use machine learning to preserve privacy? We examine
federated learning, differential privacy, secure aggregation, and privacy-preserving sensor
designs that keep data local or obfuscated.

4. What are the challenges faced by stakeholders in managing autonomous systems?

2.0 LITERATURE REVIEW

2.1 Security and Privacy Challenges in Autonomous Robotics

Autonomous systems combine sensing, computation and actuation, often in complex
environments. This diversity of components gives rise to a wide threat landscape. For
example, autonomous vehicles rely on camera, radar, and LIDAR feeds; attackers can
manipulate these (for example. projecting fake obstacles) to cause misperceptions. In a
comprehensive survey of AV cybersecurity, sensor manipulation (spoofing, jamming) and
remote hacking (exploiting wireless links) are key threats [9]. Similarly, service robots (for
example. elder-care helpers) collect personal data; such continuous monitoring raises
significant privacy concerns and that robots suffer from the same cybersecurity problems as

computers [8].

Machine learning, encryption, and blockchain-based mechanisms may be used to prevent or
detect cyber-attacks in robotic systems [4]. [2] emphasize that robots’ networks, software,
and data are vulnerable, and advocate for security to be integrated early in design. Their
analysis of a database of vulnerabilities highlights common trends in attacks against robots.
In the context of multi-robot swarms, [14] studied coordinated attacks on UAV swarms and
identified attack strategies that can compromise swarm consensus. The data issue in terms of
its persistence and complexity is the key one. This includes: data collection issues, consistent
labelling ensuring high quality of annotations; effective addressing of extreme data imbalance
and heterogeneous data integrating data; network flows, sensor readings, system logs,
security events, etc [12]. Although it looks promising in regards to its ability to generate new
data through GANSs, the quality of these generation is still subject to improvement,

particularly when it comes to complex cyber-physical environments.

Overall, the literature identifies frequent concerns for autonomous systems: unauthorized
access to control systems, data theft or leakage, tampering with sensor inputs, and
exploitation of communication links. It is also mentioned that many autonomous platforms
(drones, mobile robots) operate in partially known or open environments which then
complicates security. For example, [11] categorise various kinds of attacks on mobile robot
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navigation (spoofing, DoS, hijacking, etc.), and propose models to classify the impact of such
attacks. These baseline threat analyses reveal clearly the requirement for both preventive and

detective security mechanisms which are tailored specifically to robotic autonomy.

2.2 Machine Learning-Based Intrusion and Anomaly Detection

Machine learning has emerged as a core method of IDS and anomaly detector for
autonomous systems. Traditional signature-based security is constrained for dynamic robotic
environments; machine learning can learn patterns from data to recognise novel threats. [10]
said focusing on Greater Explainability AI(XAI), Highly Resistant to Adversarial Al, Public
Quality Datasets and Industry Control System (ICS)-Specific Solutions to improve cyber
defence of systems. Network-based intrusion detection is one area that is prominent. [3]
provide a survey of network-based IDS (NIDS) for industrial and robotic systems; They
report that detection accuracy and false-positive rates are greatly enhanced by machine
learning (including deep learning) [3]. For example, neural classifiers and ensemble
techniques can detect malicious network traffic to a robot's control unit. Similarly, anomaly
detection can be used on the robot’s behavioral data (sensor readings, motion patterns). A
recent CAV (connected autonomous vehicle) study used a stacked LSTM to predict vehicle
trajectories and flagged large deviations as anomalies, achieving near-perfect regression
accuracy (R2~0.9998) [27]. Such data-driven detectors can reveal cyber-attacks that subtly

alter vehicle behavior.

At the system level, multi-agent machine learning methods help detect distributed attacks.
For example, Self-Evolving Host-based IDS (SEHIDS) for robotic systems dynamically
updates its detection rules using reinforcement signals when an attack is suspected [4]. Other
works explore unsupervised learning: clustering or autoencoders trained on “normal” robot
sensor data can detect outliers from attacks [11]. The anomaly detection survey by [16]
classifies anomalies by spatial and temporal features in robotic missions, reflecting the varied

forms anomalies can take in robots.

The model enables users, customers, and workers to post digital news directly to the
verification system, which contributes to the creation of a quicker and more precise
counterfeit news detection system utilizing the Decision Tree algorithm [28]. Besides
detection, machine learning also supports authentication and authorization in robotic
contexts. [7] design a privacy-preserving, transformer-based multi-factor authentication for

delivery robots, noting that robots are vulnerable to machine learning-driven impersonation
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and adversarial attacks (for example. FGSM/PGD). Machine learning models (for example.
facial or voice recognition) are integrated with cryptographic credentials to verify users or
devices in robot networks. In essence, Al strengthens authentication but also must itself be
secured (for example. with defenses to adversarial input [7].

Collectively, these works demonstrate that machine learning can greatly enhance cyber
defenses in autonomous systems. By learning from large-scale logs and sensor streams,
machine learning-enabled IDS adapt to complex patterns that rule-based systems miss [3].
However, several challenges are noted: models require high-quality training data (often
scarce in niche robotic applications) and machine learning detectors may struggle to
distinguish attacks from rare but benign anomalies [11]. Ensuring machine learning models
remain robust under adversarial conditions is an ongoing concern (for example. incorporating

adversarial training in detectors as part of “security by design” [2].

2.3 Machine Learning for Privacy-Preserving Autonomy

Privacy concerns arise when autonomous robots collect or transmit personal data. Here,
machine learning techniques are being developed to protect data at various stages. One major
approach is federated learning (FL), where multiple robots or devices collaboratively train a
shared model without exchanging raw data. [5] introduce a multi-agent federated
reinforcement learning framework for collaborative robots in smart manufacturing. Their
MARL-FL scheme integrates FL with RL and differential privacy: each robot (agent) trains
locally on its data, then only encrypted model updates are shared. This preserves sensitive
information (compliant with GDPR/CCPA) while enabling effective joint learning [5]. Their
experiments in a simulated assembly task achieved ~91% accuracy with 41.5% less privacy
leakage than a central approach. Similarly, [26] propose Federated Deep Reinforcement
Learning (FDRL) for robotic-assisted surgery, using secure aggregation and homomorphic
encryption to protect patient data. They reported a 60% reduction in privacy leakage
compared to conventional methods [26]. These works show that FL/RL can give robots high-

quality learning without pooling sensitive data into a single vulnerable repository.

Other machine learning privacy methods include differential privacy (DP). While not many
robotics-specific DP implementations are published yet, DP techniques are mentioned as
complementary. [5] suggests adding DP to FL updates to satisfy rigorous privacy guarantees.
Another direction is multi-party computation and homomorphic encryption, enabling robots
to run joint computations on encrypted data as in [6].

Copyright@ Olajide | Page 5



International Journal Research Publication Analysis Volume 01, Issue 06

At the sensor level, innovative privacy-by-design concepts are emerging. [1] argue that some
robotics vision tasks should avoid forming human-interpretable images altogether. They
propose a novel hardware concept where analog optical processing generates “hashes” of the
scene that are sufficient for robot vision tasks (for example. localization) but intractable to
invert [1]. The underlying principle is “shift processing out of the digital domain” and
maximize irreversible transformations. This preserves privacy because the robot never
acquires raw images of people or environments. For example, their simulated robot could
localize using privacy-preserving visual hashes with accuracy comparable to conventional
SIFT-based methods [1]. Such work exemplifies how machine learning-aligned robotics

design can ensure data never leaves the device unprotected.

Federated and encrypted learning methods are also applied to specific robotic services. For
autonomous driving, one FL study addressed data privacy among vehicles, customizing FL to
account for vehicle-specific data distributions. In robotics teleoperation, secure machine
learning ensures that private telemetric streams are only shared in encoded form. The [7]
authentication scheme mentioned earlier also uses machine learning-based biometric features

in a multi-factor protocol to preserve user identity.

In summary, privacy-preserving machine learning enables collaborative autonomy without
exposing raw data. By keeping training data local (FL) or encrypting it, robots can benefit
from shared intelligence while respecting individual privacy [5]. Nonetheless, these methods
trade off some performance and require additional overhead (for example. encryption costs,
communication rounds). Designing efficient, low-power privacy protocols for resource-

constrained robots is an active research area.

3.0 Case Studies and Domain Applications

i. Autonomous Vehicles (AVs): AVs are a flagship example of machine learning-driven
autonomous systems. As noted earlier, AV cybersecurity surveys emphasize intrusion
detection and anomaly detection using artificial intelligence [9]. [9] discuss adaptive machine
learning-based IDS and blockchain for securing AV data. The stacked Long-Short Term
Memory (LSTM) anomaly detector for CAVs (mentioned above) specifically targeted AV
trajectories [27]. Other AV-focused work applies CNNs to detect spoofing in camera feeds or
adversarial perturbations on road signs. Overall, machine learning aids AV security by
continuously learning driving patterns and flagging deviations (for example. recognizing that
sensor readings are inconsistent with physical reality).
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ii. Unmmaned Aerial Vehicles (UAVs) and Swarm Robots: Drones/lUAVs combine
autonomy with mobility, making them susceptible to GPS spoofing and jamming. [11] via a
machine learning approach) achieved >92% spoofing attack detection on UAVs. The
“Threats to the Swarm” analysis by [14] highlighted potential coordinated swarm attacks,
motivating machine learning-based defenses in swarm coordination. Machine learning is used
to fuse multi-sensor drone data, enabling anomaly detectors that alert on control signal
inconsistencies. Additionally, secure multi-agent RL is a direction where drones learn

collaboratively under adversarial conditions.

iii. Industrial and Collaborative Robots: In smart factories, robots work alongside humans.
Here, privacy concerns focus on human worker data (for example, gestures) and network
security on the shop floor. Federated learning for human-robot collaboration as in the work of
[5] directly addresses this. Machine Learning-based IDS for industrial control networks
(often sharing protocols with robotics) are surveyed in [24]. Authenticated safety protocols
(with Machine learning biometric checks) are also investigated for robots in public spaces.

iv. Healthcare and Surgical Robots: Medical robotics requires strict privacy. The FDRL
surgical framework is a prime example of Machine learning security in healthcare robotics
[26]. More generally, Machine learning helps in anomaly detection in medical robotic motion
to ensure patient safety. Privacy-preserving data sharing (for example, federated learning on

patient datasets) is an active area, though specific papers from 2021-2025 are still emerging.

v. Mobile and Service Robots: Robots in homes or public venues often have cameras and
microphones, [26]. There is also work on encrypting audio streams or using on-device
machine learning to process personal data without cloud uploads. Multi-factor authentication

is aimed at secure access for delivery robots [7].

In each domain, the integration of machine learning with security/privacy measures is
context-specific, but common themes emerge: learning-based detection, decentralized

learning for privacy, and sensor-level data protection.

4.0 Machine Learning Techniques and Issues
Across the surveyed literature, a wide range of machine learning approaches are employed.
Supervised learning (for example, CNNs, random forests) is popular for classifying attack

types once labeled data is available [11]. Unsupervised learning (clustering, autoencoders) is
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used for anomaly detection where attack labels are unknown [27]. Deep learning (LSTM,
CNN) handles complex data (sequences, images) to detect subtle anomalies [27].
Reinforcement learning appears both as a target (secure RL algorithms) and as a tool (RL
controllers that are robust to attacks). For example, secure RL can adapt a robot’s policy if an

attack is detected mid-operation.

Adversarial machine learning is a growing focus: many researchers note the need to defend
ML models themselves. Techniques like adversarial training, model distillation, and input
sanitization are beginning to be applied. [7] specifically mention defending against

FGSM/PGD adversarial examples in robotic authentication.

Resource constraints are also a challenge: embedded robots may not handle huge machine
learning models or encryption computations. Several works suggest using lightweight models
or offloading computation to edge servers, with secure channels. Federated approaches
inherently distribute the computation, but at the cost of communication overhead. Emerging
work on swarm federated reinforcement learning (RL) shows how clustering-based FL can
reduce bandwidth [15].

Finally, regulatory requirements such as General Data Protection Regulation (GDPR),
Central Consumer Protection (CCPA), and industry standards (for example, 1SO 21434 for
automotive) influence design. The reviewed works. Machine learning solutions often
incorporate privacy-by-design principles such as data minimization (only exchanging model

weights, not raw data) or deploying encryption [5].

In summary, a diverse machine learning toolkit is employed in securing autonomous systems.
Supervised machine learning excels in recognizing known threats, unsupervised machine
learning flags unknown anomalies, and federated/differentially-private machine learning
protects data. However, all approaches must be carefully validated, as false positives in
intrusion detection system (IDS) can disrupt operations, and missed detections can be

catastrophic.

5.0 FINDINGS
First, methods based on machine learning have measurable benefit for security in autonomy.
In studies, it is consistently shown that with machine learning, there are greater detection

rates and lower false positives. [3] state that machine learning based NIDS significantly
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outperforms traditional rule-based IDS. The trajectory predictor based on LSTM for vehicles
had R2 about 99.9%, which allows very accurate detection of anomalies [27]. These results
have shown that learning from complex data patterns is very well-suited to the robotic

domain.

Second, privacy-preserving machine learning is becoming practical. Federated frameworks
indicate the fact that robots can collaboratively learn models without raw data sharing [5].
The cited studies show large reductions in the amount of privacy leaked (30% - 60%) while
maintaining performance. This is important for compliance: rather than creating one central
data lake (breeding a single point of breach), robots create ad-hoc learning networks.
Methods such as differential privacy and secure aggregation further make these schemes

more difficult, though they do come with utility trade-offs.

Third, new sensor designs for privacy are emerging. [1] prove that it is possible to make
robotic vision inherently privacy-preserving. This "in-the-camera™ approach, while still being
experimental, constitutes a paradigm shift: privacy does not just need to be software-
enforced, it could be built into the hardware. We expect to see more such multi-disciplinary
approaches (optics, machine learning hardware) in the future.

Fourth, despite the gains, there are important challenges ahead. A recurring problem is data
availability: real attack data sets for robots are scarce. Many studies are based on simulated
attacks or use datasets that were re-used, possibly not reflecting field conditions. Machine
learning methods work best when information about the processes of the system has already
been studied and initial conditions determined - a luxury not always available [11].
Adversarial robustness is another problem. Robots are often used in safety-critical
environments, so it is necessary for machine learning models to be resistant to adversarial

inputs. Few reviewed works give this full treatment; most mention this as an open problem.

There are also issues of system-level integration. Security patches or machine learning model
need to be updated over-the-air and security update mechanisms in robots are still immature.
Autonomous systems tend to have long lifecycles (for example, cars, industrial arms);
maintainable ML components are required. Moreover, interdisciplinary coordination is
required: researchers in machine learning, engineers in robotics and experts in security must

collaborate.
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In terms of domain gaps, it was noted that little work is done in ethics or human factors. For
example, trust in Al decisions, user consent on collecting data, and legal accountability are
not really part of technical papers, but will affect adoption. Nonetheless, [8] begin to address
these aspects, emphasising that privacy is not only a technical problem, but a social one.

6.0 CONCLUSION AND RECOMMENDATIONS

In this work, we have examined how machine learning is leveraged to secure autonomous
systems and protect privacy. The reviewed literatures consistently show that machine
learning can greatly enhance detection of cyber threats and enable new privacy-preserving

architectures in robotics.

Machine Learning-based Intrusion Detection System (IDS) and anomaly detectors
significantly improve security monitoring; federated and encrypted learning can allow
collaborative robotics without centralized data exposure; and privacy-by-design sensors (for
example. obfuscating vision streams) can prevent leaks before they happen. However, robust
implementation requires overcoming data scarcity, adversarial risks, and integration

challenges.

Based on the findings, the following are recommended

1. Adopting secure-by-design frameworks for robotics. This means incorporating machine
learning-based security modules from the outset, not retrofitting them. Robot system
architectures should include monitoring components that use machine learning to detect
intrusions in real time.

2. Investing in federated and decentralized learning. Robot manufacturers and service
providers should share model architectures and aggregated parameters rather than raw logs,
enabling a community-wide machine learning improvement without sacrificing privacy.

3. Using standardized benchmarks and datasets. The community needs open, realistic datasets
of robotic attacks and normal operations to train and evaluate machine learning models.

4. Considering regulation and ethics. Autonomous systems often collect personal data; thus
compliance with privacy laws (GDPR, etc.) must be baked into design. Methods like

anonymization and DP should be applied whenever possible.

In conclusion, machine learning is a powerful tool for advancing autonomous systems, but it
must be used carefully. By integrating machine learning into security and privacy

mechanisms, future robots and vehicles can be both intelligent and trustworthy. Continued
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research—especially in adversarial robustness, explainability of security models, and cross-

domain standards—will be essential to ensure these systems benefit society safely.
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