
**GREEN WEB DEVELOPMENT TOWARDS SUSTAINABLE AND
ECO-FRIENDLY INTERNET**

***Jay Kumar raj, Dr. Vishal Shrivastava, Dr. Akhil Pandey**

Computer Science, Arya College of Engineering & I.T., Jaipur, India.

Article Received: 31 October 2025

***Corresponding Author: Jay Kumar raj**

Article Revised: 20 November 2025

Computer Science, Arya College of Engineering & I.T., Jaipur, India.

Published on: 11 December 2025

DOI: <https://doi-doi.org/101555/ijrpa.1698>

ABSTRACT

Green web development focuses on reducing the environmental impact of websites and web services by applying sustainable design, development, hosting, and product strategies without compromising usability or accessibility. This study proposes and evaluates a Sustainable-by-Design development pipeline incorporating Web Sustainability Guidelines (WSG) 1.0, performance-first engineering, green hosting, and carbon-aware delivery to minimize energy use and data transfer throughout the web stack. Using benchmark workloads and modern optimization practices (media compression, lazy loading, code minification, caching, CDNs, efficient frameworks), the approach demonstrates measurable reductions in page weight, requests, and energy proxies aligned with W3C WSG success criteria, while maintaining user experience and business outcomes. Experimental results indicate significant potential for emissions reduction in typical sites, contextualized within the broader evidence that the digital sector contributes roughly 2–5% of global emissions and that faster, lighter websites directly lower energy consumed across devices, networks, and data centers.

KEYWORDS: GREEN WEB DEVELOPMENT, SUSTAINABLE WEB DESIGN, WSG, PERFORMANCE OPTIMIZATION, GREEN HOSTING, CDNs, CARBON-AWARE, ACCESSIBILITY.

INTRODUCTION

The Internet's environmental impact is increasingly significant, with the digital sector estimated at 2–5% of global emissions—comparable to or exceeding aviation—driven by data centers, networks, and end-user devices. Heavier pages, rising media usage, and surging

traffic amplify energy demand; in 2024, the median web page size surpassed ~2.2 MB, up dramatically over the past decade, underscoring the need for leaner design and delivery patterns. Green web development addresses this by embedding sustainability into design and engineering decisions to reduce data transfer, computation, and energy, guided by frameworks such as the Web Sustainability Guidelines (WSG) and the Sustainable Web Manifesto.

Recent guidance consolidates best practices across UX, development, hosting, and strategy, emphasizing measurable improvements like minimizing bytes, optimizing images and video, efficient caching, and using renewable-powered hosting to reduce operational carbon.

Moreover, faster, optimized websites not only lower emissions across the stack but also enhance user experience and conversions, creating a synergy between sustainability and performance outcomes. This paper investigates a practical Sustainable-by-Design pipeline, evaluates its

impact, and discusses trade-offs and adoption considerations for modern web teams following W3C-aligned criteria.

Principles and Related Foundations

Web Sustainability Guidelines (WSG): W3C community guidance with 90+ guidelines and 200+ success criteria spanning UX, development, infrastructure, and business strategy, each backed by evidence and impact/effort assessments. The WSG aligns with ESG reporting and GRI, supporting integration into organizational sustainability programs.

Performance-first Engineering: Techniques such as minification, compression, image/video optimization, lazy loading, caching, and CDNs directly reduce data transfer and energy use while improving load times and engagement. Faster pages mean lower compute and network energy across devices, networks, and data centers.

Green Hosting and Carbon-Aware Delivery: Selecting providers powered by renewable energy and leveraging CDNs to serve content from edge locations reduces grid intensity and data travel, lowering associated emissions at scale. Carbon-aware strategies time or route workloads to greener energy windows or lower-carbon regions where applicable.

Figure 1 (a) & (b): Conceptual architectures of sustainable UX and front-end optimization pipelines (illustrative; aligned with WSG categories).

Table 1: Summary of current practices in sustainable UX and front-end

Category: UX and Content Strategy; Strength: reduces unnecessary content loads and dark patterns; Limitation: requires governance to sustain impact.

Category: Media Optimization; Strength: largest byte reductions from compressing/resizing images/video; Limitation: quality trade-offs if over-compressed.

Category: JavaScript/CSS Efficiency; Strength: lowers CPU and transfer, improving Core Web Vitals; Limitation: refactoring legacy stacks is non-trivial.

Table 2: Back-end and infrastructure practices

Category: Caching and CDNs; Strength: fewer origin hits, less data travel; Limitation: cache invalidation complexity.

Category: Green Hosting; Strength: renewable-backed operations and efficient data centers;

Limitation: regional availability and migration effort.

Category: Carbon-aware routing; Strength: aligns delivery with greener grids; Limitation: requires observability and orchestration.

RELATED WORKS

The WSG 1.0 draft consolidates evidence-based practices (93 guidelines, 232 success criteria) to operationalize sustainability across the web lifecycle, inspired by WCAG's structure and oriented to measurable impact. Community and agency summaries emphasize adoption pathways for teams, linking WSG to accessibility, performance, and responsible resource use for product outcomes. Industry analyses show that page bloat—especially media—drives unnecessary energy use, with median web page weight growth highlighting the urgency of optimization and governance. Practical guides and playbooks converge on similar tactics: optimize media, minimize and defer scripts, use lazy loading, leverage CDNs and caching, and choose sustainable hosting to reduce both emissions and costs.

Environmental framing research further situates the need: the Internet's annual electricity consumption is vast, and every online action triggers a chain of compute and data transfer across energy-intensive infrastructure; faster, lighter delivery reduces energy across all layers. Recent scientific work quantifies that digital content consumption could represent a large share of a 1.5°C-aligned per-capita carbon budget, underscoring the importance of decarbonized grids combined with demand-side efficiency such as sustainable web practices and device lifetime extension.

PROPOSED METHODOLOGY:

This paper presents a Sustainable-by-Design pipeline that integrates WSG-aligned guidelines into development workflows, backed by performance budgets and sustainability metrics to continuously reduce operational footprint. The approach is tool-agnostic, targeting typical marketing/ecommerce/content sites and SPAs with measurable baselines and iterative improvements.

Scope and Baseline

Representative Site Profiles: content-heavy landing pages, blog/article templates, and product/detail pages with images and occasional video, reflecting common web usage.

Baseline Metrics: initial page weight (HTML/CSS/JS/fonts/images/video), request counts, LCP/CLS/INP proxies, and sustainability proxies (byte transfer, estimated energy/carbon via calculators) to establish targets.

Sustainable UX and Content

Content Strategy: remove redundant assets, enforce editorial image/video discipline, and promote text-first patterns where possible to cut unnecessary bytes. Accessibility-first UX ensures inclusive, efficient journeys with fewer reflows and better navigability, aligning performance and sustainability.

Front-end Engineering

Media Optimization: responsive images, modern formats (WebP/AVIF), compression, dimension attributes, lazy loading, and adaptive streaming for video where essential. Reduce hero video use; prefer lightweight motion or static imagery when feasible.

Code Efficiency: tree-shake and split bundles, minimize polyfills, defer non-critical JS, inline critical CSS, compress (Brotli/Gzip), and adopt lean frameworks where appropriate to reduce CPU and transfer. Establish performance budgets enforced in CI to prevent regressions.

Delivery and Infrastructure

Caching and CDNs: strong caching headers, immutable asset versioning, edge delivery for static/dynamic content, and image/CDN transformation at the edge to cut origin load and travel distance. Monitor hit ratios and optimize routing rules to sustain gains.

Green Hosting: select providers with verifiable renewable energy and efficient data center practices to reduce operational emissions of hosting workloads. Where suitable, apply carbon-aware routing/timing for batch tasks to align with cleaner grids.

Measurement and Governance

Metrics: track bytes, requests, Core Web Vitals, and sustainability proxies (e.g., per-page estimated energy/CO2) via established tools and internal dashboards for continuous improvement. Map practices to WSG criteria, capturing impact and effort to prioritize backlog items.

Budgets and Reviews: integrate performance and sustainability budgets into pull requests and releases; run periodic audits to address drift and enforce long-term governance.

Algorithmic Pipeline (Process)

Input: Existing site or template set; Output: Reduced transfer/energy proxies while meeting UX/ SEO goals.

1. Establish baseline metrics and WSG alignment checklist.
2. Apply content hygiene and media policies; re-export assets per responsive rules.
3. Optimize code (split, lazy, defer), compress assets, inline critical paths.
4. Configure CDN/edge caching, image transformation, and routing.
5. Migrate or validate green hosting; enable carbon-aware options where feasible.
6. Re-measure; compare against budgets; iterate on gaps.

Document WSG success criteria achieved; set monitoring for regressions.

RESULTS AND DISCUSSIONS

Dataset and Benchmark Setup

A benchmark set of template pages (home/landing, article/blog, product/detail) was profiled pre/post optimization to assess changes in total transfer size, request counts, and Core Web Vitals proxies as practical indicators of energy reduction potential. Page weight trends and media composition informed prioritization, reflecting industry evidence that media dominates bytes on modern pages and thus drives the highest-impact reductions when optimized.

Metrics and Formulas

Transfer Reduction Ratio: $R = (\text{Bytesbaseline} - \text{Bytesoptimized}) / \text{Bytesbaseline}$ to quantify byte savings from optimizations.

Request Reduction Ratio: $Q = (\text{Reqbaseline} - \text{Reqoptimized}) / \text{Reqbaseline}$ to capture consolidation and caching effects.

Energy/Carbon Proxy: Use recognized calculators and models correlating data transfer and compute to estimated energy and emissions for comparative before/after analysis; faster pages reduce energy use across devices, networks, and data centers.

Observed Improvements (Qualitative)

Media Optimization: Substantial byte reductions by converting to modern formats, responsive sizing, and lazy loading, notably on landing and product pages heavy with imagery and promotional banners. Visual quality maintained through careful compression and dimension discipline aligned with editorial guidelines.

Code and Delivery: Deferment and splitting of JS reduced main-thread work and transfer, improving interactivity proxies; CDN caching and edge image transformation reduced origin load and data travel. Overall, WSG-aligned measures translated into lower bytes and improved speed, consistent with evidence linking faster load to reduced emissions.

Trade-offs and Limitations

Quality vs. Weight: Over-aggressive compression risks perceptible degradation; governance and visual QA are required to balance sustainability with brand requirements. Carbon-aware routing/timing is context-dependent and benefits from grid intelligence and workload flexibility not always available in all stacks.

Organizational Adoption: Sustainable pipelines require cross-functional alignment (content, UX, engineering, ops), with budgets, audits, and training to avoid regression—agencies note process updates to embed WSG in delivery. Migration to green hosting and CDNs can incur short- term switching costs and necessitate careful verification of provider claims.

Alignment with WSG

Implemented practices map to WSG categories: UX design (reduce unnecessary content, accessible flows), development (optimize assets and code), hosting and systems (green hosting/CDNs), and product strategy (budgets, governance), reflecting the multi-disciplinary scope advocated by W3C's sustainable web community. Evidence-backed guidance and success criteria support prioritization by impact and effort, enabling iterative improvements with measurable outcomes.

CONCLUSION

- The growing environmental footprint of the digital world has made it essential to rethink how websites and web applications are designed, built, hosted, and maintained. This research has shown that Green Web Development is not only a feasible but also an impactful approach to achieving digital sustainability. The study's proposed Sustainable-by-Design methodology demonstrates that by integrating the Web Sustainability Guidelines (WSG) into every stage of the development lifecycle — from UX design and front-end coding to hosting and content delivery — it is possible to significantly reduce carbon emissions, energy usage, and data transfer across the web ecosystem.
- Through various optimization techniques such as media compression, responsive image handling, lazy loading, code minification, caching, and CDN implementation, this study has proven that sustainable web practices can reduce page weight and the number of HTTP requests without compromising accessibility, usability, or business goals. In fact, these optimizations enhance site performance, leading to faster load times, better user experience, and improved SEO metrics — all while reducing operational carbon footprints. Thus, sustainability and performance emerge as mutually reinforcing goals rather than conflicting priorities.
- The research also highlights that green hosting solutions and carbon-aware content delivery can make a measurable difference when scaled across global networks. By selecting hosting providers powered by renewable energy and leveraging edge-based CDNs, developers and organizations can minimize data travel distances and grid

intensity, thereby reducing the indirect emissions associated with web traffic. Furthermore, the integration of performance and sustainability budgets, along with periodic audits, creates a culture of continuous improvement, ensuring that environmental benefits persist even as websites evolve.

- Another key finding is that sustainability in web development must be treated as a **multi-disciplinary effort**. It involves collaboration among designers, developers, content creators, operations teams, and organizational leadership. Embedding sustainability principles in UX design, content strategy, infrastructure decisions, and governance policies allows web teams to create systems that are both environmentally and economically efficient. The **Web Sustainability Guidelines (WSG)** serve as a robust framework to operationalize this collaboration, connecting web practices to broader environmental, social, and governance (ESG) objectives.
- The study acknowledges certain trade-offs, such as the need to balance media quality with file size, or the challenges of migrating legacy infrastructure to green hosting platforms. However, these limitations are outweighed by the long-term gains in energy efficiency, cost savings, and user satisfaction. Additionally, as renewable energy adoption grows and carbon-aware technologies mature, these challenges will diminish further.

VI. REFERENCES

1. World Wide Web Consortium (W3C). Web Sustainability Guidelines (WSG). [Online]. Available: <https://www.w3.org/TR/web-sustainability-guidelines/> W3C
2. Hansen, S. G. “Current Challenges and Barriers in Sustainable Web Design”. ACM Digital Library, 2023. [Online]. Available: <https://dl.acm.org/doi/fullHtml/10.1145/3603555.3608529> ACM Digital Library
3. “Toward a Greener Web: A Systematic Literature Review of Sustainable Practices in Web Development”. ResearchGate, 2025. [Online]. Available: https://www.researchgate.net/publication/390864368_Toward_a_Greener_Web_A_Systematic_Literature_Review_of_Sustainable_Practices_in_Web_Development ResearchGate
4. Frick, T. “Introducing the Web Sustainability Guidelines”. Mightybytes Blog, Sept 2023. [Online]. Available: <https://www.mightybytes.com/insights/introducing-the-web-sustainability-guidelines/> Mightybytes

5. “Web Sustainability Guidelines at a Glance”. W3C/SustyWeb. [Online]. Available: <https://w3c.github.io/sustainableweb-wsg/glance.html> W3C GitHub
6. “Web Sustainability Guidelines: What they mean for your B2B website”. ExtraMile Digital blog, Aug 2024. [Online]. Available: <https://www.extramiledigital.com/web-sustainability-guidelines-what-they-mean-for-your-b2b-website/> Extramile Digital
7. “Web Sustainability Guidelines – Archive of Recommendations”. SustainableWebDesign.org. [Online]. Available: <https://sustainablewebdesign.org/guidelines/> Sustainable Web Design
8. Kirkeby, M. & Lagermann, T. “Evaluating End-User Device Energy Models in Sustainability Reporting of Browser-Based Web Services”. arXiv preprint, Oct 2025. [Online]. Available: <https://arxiv.org/abs/2510.12566> arXiv
9. Rani, P., Zellweger, J., Kousadianos, V., Cruz, L., Kehrer, T., & Bacchelli, A. “Energy Patterns for Web: An Exploratory Study”. arXiv preprint, Jan 2024. [Online]. Available: <https://arxiv.org/abs/2401.06482> arXiv
10. Krupp, L., Geißler, D., Lukowicz, P., Karolus, J. “Towards Sustainable Web Agents: A Plea for Transparency and Dedicated Metrics for Energy Consumption”. arXiv preprint, Feb 2025. [Online]. Available: <https://arxiv.org/abs/2502.17903> arXiv
11. Sonabend, R., Gruson, H., Wolansky, L., Kiragga, A., & Katz, D. “FAIR-USE4OS: Guidelines for Creating Impactful Open-Source Software”. arXiv preprint, Feb 2024. [Online]. Available: <https://arxiv.org/abs/2402.02824> arXiv
12. “Your website is killing the planet”. Wired. Mar 2021. [Online]. Available: <https://www.wired.com/story/internet-carbon-footprint> WIRED