

ADVANCES IN SUNSCREEN FORMULATIONS: A COMPREHENSIVE REVIEW**Dr. Priyanka jadhav, Dr. Mahesh Pandurang Bhosale, *Rejoy Ratnakar Jadhav**

At Post: Chanda, Ahmednagar, Dharmaraj Shaikshanik Pratisthan College of Pharmacy.

Article Received: 08 December 2025***Corresponding Author: Rejoy Ratnakar Jadhav****Article Revised: 28 December 2025**

At Post: Chanda, Ahmednagar, Dharmaraj Shaikshanik Pratisthan College of

Published on: 16 January 2026

Pharmacy.

DOI: <https://doi-doi.org/101555/ijrpa.6173>**1. ABSTRACT**

Sunscreens have evolved significantly over the past few decades, transitioning from simple UV-blocking creams to advanced multifunctional formulations that provide broad-spectrum protection, photostability, enhanced cosmetic appeal, and additional skin benefits. This review paper explores recent innovations in sunscreen technology, including nano-based delivery systems, hybrid filters, encapsulation techniques, antioxidant-fortified sunscreens, water-resistant formulations, and environment-friendly alternatives. Modern sunscreens aim to overcome major limitations found in traditional formulations, such as photodegradation, white cast formation, poor spreadability, and inadequate UVA protection. The review further highlights regulatory considerations, challenges in formulating safe filters, and future directions such as DNA-repair enzymes and wearable UV-monitoring systems. This comprehensive overview aims to help researchers and formulators understand current advancements and potential developments in sunscreen science.

2. INTRODUCTION

Exposure to ultraviolet (UV) radiation, particularly UVA (320–400 nm) and UVB (280–320 nm), is associated with sunburn, premature aging, oxidative stress, and increased risk of skin cancer. Sunscreens are topical preparations designed to absorb, scatter, or reflect UV radiation, thereby minimizing skin damage. Traditionally, sunscreens were formulated using chemical filters such as oxybenzone or avobenzone and physical filters like zinc oxide or titanium dioxide. However, issues such as photoinstability, low UVA coverage, skin irritation, environmental toxicity, and poor cosmetic acceptability have led to the development of improved sunscreen technologies.

Advances in cosmetic chemistry, nanotechnology, and dermatological research have contributed to more efficient and aesthetically pleasing sunscreen formulations. These innovations include micronized and nano-sized mineral filters, hybrid chemical–physical filters, film-forming agents, encapsulated UV filters, and multifunctional sunscreens with antioxidant and anti-inflammatory activities. The shift from basic sun protection to complete skin health management represents an important evolution in sunscreen formulation science.

3. LITERATURE REVIEW

Previous research has extensively documented the harmful effects of UV radiation and the importance of sunscreen for prevention. Early sunscreens focused primarily on UVB protection to prevent sunburn, with Sun Protection Factor (SPF) being the major indicator of product efficacy. However, SPF does not measure UVA protection, which contributes to photoaging and long-term skin damage.

Studies from 2010 onwards introduced the significance of broad-spectrum protection and prompted the development of UVA filters such as bemotrizinol, bisoctrizole, and avobenzone stabilizers. Researchers also highlighted limitations of chemical filters—such as photodegradation and potential endocrine effects—leading many formulators to incorporate physical filters like zinc oxide.

Recent literature (2018–2024) has focused on nanotechnology, green formulations, and hybrid sunscreens that improve safety, spreadability, and transparency on the skin. Research also shows a rising demand for reef-safe sunscreens, as ingredients like oxybenzone have been linked to coral bleaching. Additionally, encapsulation techniques are becoming widely studied for enhancing photostability and reducing skin penetration of UV filters.

Collectively, the literature suggests a major shift toward performance-enhanced and environmentally sustainable sunscreen formulations.

4. TYPES OF SUNSCREEN FILTERS AND THEIR EVOLUTION

4.1 Chemical (Organic) Filters

Chemical filters absorb UV radiation and convert it to heat. Examples:

- Avobenzone
- Octocrylene
- Homosalate
- Octinoxate

Limitations:

Poor photostability, potential skin sensitivity, suspected environmental toxicity.

Recent Advances:

- Stable UVA filters (e.g., Tinosorb S, Uvinul A Plus)
- Improved photostabilizers
- Reduced penetration through encapsulation

4.2 Physical (Inorganic) Filters

These block UV radiation by reflecting and scattering light.

Main ingredients:

- Zinc oxide (ZnO)
- Titanium dioxide (TiO₂)

Advances in Mineral Filters:

- Micronized and nano-sized ZnO to eliminate white cast
- Surface-coated particles for better spreadability
- Transparent mineral sunscreens for cosmetic elegance

4.3 Hybrid Filters

These combine benefits of organic and inorganic filters.

Advantages:

- Enhanced broad-spectrum coverage
- Lower irritation potential
- Better aesthetic appeal
- Reduced filter concentrations required

5. ADVANCED FORMULATION TECHNOLOGIES

5.1 Nanoparticles and Nanoemulsions

Nano-sized ZnO and TiO₂ improve:

- Transparency
- UV absorption efficiency
- Spreadability

Nanoemulsions enhance filter solubility and minimize greasiness.

5.2 Encapsulation Techniques

Encapsulation of chemical filters in:

- Liposomes
- Niosomes
- Silica shells
- Polymer matrices

Benefits:

- Increased photostability
- Reduced skin penetration
- Lower irritation
- Controlled release

5.3 Film-Forming Polymers

Used to improve:

- Water resistance
- Sweat resistance
- Longevity of UV protection

These polymers create a uniform protective barrier on the skin.

5.4 Antioxidant-Enriched Sunscreens

Common antioxidants used:

- Vitamin C
- Vitamin E
- Green tea polyphenols
- Resveratrol

They neutralize free radicals generated by UV exposure and boost protective effects.

5.5 Water-Resistant & Sweat-Resistant Formulations

Developed using:

- Silicones
- Film formers
- Hydrophobic emulsifying agents

These are ideal for swimmers, athletes, and outdoor use.

6. SAFETY, REGULATORY & ENVIRONMENTAL CONSIDERATIONS

6.1 Skin Safety

Recent advances ensure:

- Lower systemic absorption
- Reduced allergenicity
- Improved photostability to prevent reactive compounds

6.2 Environmental Safety

Concerns over coral reef damage have led to:

- Bans on oxybenzone and octinoxate in regions like Hawaii
- Rise in reef-safe sunscreen formulations
- Use of biodegradable ingredients

6.3 Regulatory Guidelines

Regulatory agencies involved:

- FDA (USA)
- EU Cosmetics Regulation
- BIS (India)

The EU allows more advanced UVA filters compared to the U.S., fostering innovation in European sunscreen markets.

7. MARKET TRENDS & CONSUMER DEMANDS

Recent consumer shifts show increasing demand for:

- **Hybrid sunscreens** (chemical + mineral)
- **Tinted sunscreens** for skin tone matching
- **Gel-based and matte sunscreens** for oily skin
- **Reef-safe and eco-friendly sunscreens**
- Daily-wear sunscreens for indoor blue-light protection
- SPF 50+ broad-spectrum protection

Additionally, wearable UV-sensing devices and AI-driven skin exposure trackers are emerging as complementary technologies.

CONCLUSION

The sunscreen industry is undergoing rapid innovation driven by scientific research, environmental safety concerns, and evolving consumer preferences. Modern sunscreens now use advanced technologies such as nano-delivery systems, encapsulation, hybrid filters,

antioxidant enhancement, and eco-friendly ingredients. These developments not only enhance UV protection but also improve photostability, cosmetic feel, and safety. Future advancements may include DNA-repair enzymes, smart sunscreens that change color upon UV exposure, and personalized sun-protection solutions based on skin type and environment. Continued research and global regulatory alignment will be essential to creating safe, effective, and sustainable sunscreen formulations.

REFERENCES

1. Diffey, B. L. (2018). Advances in sunscreen protection and photostability. *Photodermatology, Photoimmunology & Photomedicine*, 34(1), 67–72.
2. Wang, S. Q., & Lim, H. W. (2020). Overview of modern sunscreen formulations and UV filters. *Journal of the American Academy of Dermatology*, 82(2), 548–559.
3. Osterwalder, U., & Herzog, B. (2021). Innovations in sunscreen technology: Hybrid filters and nano-formulations. *International Journal of Cosmetic Science*, 43(6), 728–742.
4. Schneider, S. L., & Lim, H. W. (2019). Environmental impact and safety of sunscreen ingredients. *Journal of the American Academy of Dermatology*, 80(1), 266–271.