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ABSTRACT 

This theoretical review examines the application of deep learning algorithms in automated 

code review and bug detection, highlighting their potential to improve software quality and 

development efficiency. Traditional static and dynamic analysis tools often struggle with 

complex code patterns and require extensive manual tuning. Deep learning models, 

particularly recurrent neural networks, convolutional architectures, and transformer-based 

language models, provide data-driven approaches capable of learning semantic and syntactic 

relationships directly from source code. These models enable automated identification of 

bugs, code smells, security vulnerabilities, and stylistic inconsistencies with higher accuracy 

and adaptability. The review also discusses key challenges, including the need for large, high-

quality labeled datasets, handling diverse programming languages, and ensuring model 

interpretability for developers, emphasized by many scholars in this domain. Despite these 

limitations, deep learning continues to advance automated code analysis, offering promising 

directions for intelligent development environments and continuous integration pipelines. 

Overall, the theoretical foundations suggest substantial benefits for future software 

engineering practices. 

 

KEYWORDS: Theoretical Review, Deep learning, Algorithm, Automated code review, Bug 

detection. 

 

 

 

International Journal Research Publication Analysis 

2026 Volume: 02 Issue: 01      www.ijrpa.com     ISSN 2456-9995 Review Article 

Page: 01-32 

 

https://doi-doi.org/101555/ijrpa.8639
http://www.ijrpa.com/


International Journal Research Publication Analysis                                   

Copyright@                                                                                                                              Page 2 

1.1 INTRODUCTION 

Software Quality Assurance (SQA) refers to a systematic set of activities designed to ensure 

that software products and development processes meet defined quality standards across the 

entire software development life cycle (SDLC). It encompasses planning, design, 

implementation, deployment, and maintenance, emphasising preventive practices aimed at 

reducing defects, improving reliability, and ensuring that software aligns with user 

requirements. Rather than relying solely on defect detection, SQA incorporates proactive, 

quality-oriented processes such as audits, metric-driven evaluations, standards compliance, 

and continuous monitoring based on frameworks like ISO 9001, CMMI, and IEEE guidelines 

to enhance consistency, predictability, and long-term process improvement. These practices 

also ensure systematic evaluation of core software quality attributes, including functionality, 

performance, reliability, maintainability, portability, and usability. 

Within this broader framework, code review remains one of the most essential SQA practices. 

Manual code reviews enable early identification of defects, enforcement of coding standards, 

and assessment of design decisions. Despite their benefits, manual reviews are often time-

consuming, inconsistent, and heavily dependent on the expertise and availability of 

reviewers. As modern software grows in scale and complexity, traditional review methods 

increasingly struggle to keep pace with the rapid volume of code changes, limiting their 

effectiveness in large, fast-evolving systems. 

These limitations have led to the emergence of automated and intelligent techniques for 

software quality assurance. Traditional Static Analysis Tools (SATs), linters, and rule-based 

engines offer increased efficiency in detecting syntactic issues, stylistic violations, and 

common error patterns. However, such tools remain constrained by their reliance on 

predefined rules and shallow pattern matching, often failing to capture deeper semantic 

relationships within source code or identify subtle context-dependent bugs (Li et al., 2018). 

These weaknesses have motivated a growing shift toward data-driven and learning-based 

approaches capable of modelling complex program behaviour. 

Recent advancements highlight the transformative potential of AI-driven and deep-learning-

based automation frameworks in SQA. Kavuri (2025) emphasises that modern AI-enhanced 

systems integrate machine learning (ML), natural language processing (NLP), and deep 

learning (DL) to automate critical testing tasks such as test case generation, execution, defect 

prediction, and test script maintenance. Through reinforcement learning, these frameworks 

can continuously improve test coverage and adapt to evolving software behaviour. NLP-

powered models further enable the conversion of human-readable requirements into 
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executable test scripts, significantly reducing manual effort and accelerating validation 

processes. Additionally, AI-based defect analytics offer predictive capabilities that allow 

teams to prioritise high-risk components, reducing test cycle duration and overall human 

workload (Kavuri, 2025). 

Deep-learning-based vulnerability detection systems further illustrate the capabilities of 

intelligent SQA tools. For example, Li et al. (2018) introduced VulDeePecker, a system that 

uses code gadgets, semantically related code segments, to detect subtle vulnerabilities that 

traditional static analysis tools often miss. Their experiments demonstrated that deep learning 

can substantially reduce false negatives and identify real-world vulnerabilities that were 

silently patched but never reported, showcasing the promise of learning-based approaches for 

improving automated code review and bug detection. 

Despite these advancements, challenges remain. AI-driven SQA systems depend heavily on 

high-quality datasets, face interpretability concerns, and often require careful integration into 

modern CI/CD pipelines (Kavuri, 2025). However, the growing body of research, including 

deep-learning-based vulnerability detection, automated code-review recommendation 

systems, and ML-based defect prediction frameworks, demonstrates a clear movement 

toward intelligent, scalable, and context-aware quality-assurance tools (Li et al., 2018). 

In summary, SQA establishes the essential foundation for developing reliable and high-

quality software systems. While manual code review continues to play a critical role, its 

inherent limitations underscore the need for more advanced, adaptable, and automated 

approaches. The integration of AI, ML, and deep learning into SQA represents a paradigm 

shift toward more efficient, intelligent, and robust code review and bug detection processes. 

These emerging technologies not only enhance software dependability but also accelerate 

release cycles and support the rapidly evolving demands of modern software development 

environments (Kavuri, 2025; Li et al., 2018). 

Code review is a fundamental practice in software development aimed at improving code 

quality, ensuring compliance with coding standards, and reducing the likelihood of defects in 

software systems. It involves the systematic examination of source code by one or more 

developers other than the original author to identify issues such as logic errors, inefficiencies, 

security vulnerabilities, and poor design decisions. As a core component of Software Quality 

Assurance (SQA), code review serves as an early checkpoint in the development workflow, 

enabling developers to detect and address defects before they propagate into later stages of 

the software life cycle (Fregnan, Petrulio, Di Geronimo, et al., 2022). 
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Several techniques have traditionally been used in conducting code reviews, each with its 

own strengths and limitations. One of the oldest and most formal approaches is the Fagan 

Inspection, a structured review process involving multiple stages such as planning, overview, 

preparation, inspection meeting, rework, and follow-up. This technique is highly effective in 

identifying deep structural and logical defects but is often time-consuming and resource-

intensive. A more flexible approach is peer review, where developers examine each other’s 

code informally, either synchronously (e.g., face-to-face review sessions) or asynchronously 

(e.g., comments on version control platforms). Peer reviews encourage knowledge sharing 

and team collaboration but may vary in effectiveness depending on reviewer expertise and 

availability (Fregnan, Petrulio, & Bacchelli, 2022). 

Modern development practices have introduced additional techniques such as pair 

programming, where two developers work together at the same workstation, one writes code 

while the other reviews in real-time. This method enhances code quality and fosters 

collaborative problem-solving, although it may increase development cost. Another widely 

used method is tool-assisted code review, supported by version control systems and 

collaborative platforms such as GitHub, GitLab, and Gerrit. These platforms enable 

asynchronous review, inline comments, automated checks, and integration with Continuous 

Integration/Continuous Deployment (CI/CD) pipelines, making the review process more 

efficient and scalable (Fregnan, Petrulio, Di Geronimo, et al., 2022). 

Underlying these techniques are key principles that guide effective code reviewing. One 

essential principle is readability, which emphasises that code should be easy to understand, 

well-structured, and properly documented so reviewers can easily identify issues. Another 

key principle is maintainability, requiring code to be modular, consistent, and adaptable to 

future changes. Consistency with established coding standards and project guidelines ensures 

uniformity, reduces technical debt, and facilitates collaborative development. Additionally, 

good review practices emphasise constructive feedback, where reviewers provide clear, 

actionable, and respectful comments aimed at improving the code rather than criticising the 

developer (Fregnan, Petrulio, & Bacchelli, 2022). 

Despite the value of traditional techniques, their manual nature poses challenges in large-

scale or fast-paced software environments. Manual reviews can be slow, inconsistent, and 

susceptible to human error or oversight. Moreover, as systems grow in complexity, 

understanding intricate logic or detecting subtle bugs becomes increasingly difficult, even for 

experienced reviewers. Empirical studies indicate that review outcomes often involve 

evolvability concerns, with documentation and structural changes being most common, and 
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that the number of review changes is influenced by factors such as patch size and added lines 

of code rather than reviewer comments alone (Fregnan, Petrulio, & Bacchelli, 2022). These 

findings highlight the complexity and limitations of manual review processes and further 

motivate the need for automated and intelligent systems. 

In modern software engineering, automated code review tools and deep learning-based 

systems are emerging as powerful solutions for addressing these limitations, offering faster, 

more consistent, and more accurate analysis of source code. Such systems can automatically 

classify review changes, providing information that is perceived by practitioners as valuable 

for improving the code review process (Fregnan, Petrulio, Di Geronimo, et al., 2022). These 

advancements complement traditional practices and represent an important evolution in how 

software teams ensure high-quality code. 

Software bug detection refers to the process of identifying errors, defects, or anomalies 

within a software system that cause incorrect or unexpected behaviour. Effective bug 

detection is crucial for ensuring software reliability, security, and performance. Over the 

years, various approaches, ranging from manual methods to advanced automated techniques, 

have been developed to detect bugs early in the development cycle. These approaches can 

generally be categorised into manual, static, dynamic, and intelligent (machine learning–

based) techniques (Akhtar et al., 2023; Shaon & Akter, 2025). 

One of the earliest methods for bug detection is manual code review, where developers 

examine source code line-by-line to identify logical errors, inconsistencies, and violations of 

best practices. Although this method can uncover deep structural issues, it is time-consuming, 

susceptible to human bias, and limited in scalability. To address these limitations, automated 

techniques have gained prominence, with static and dynamic analysis being the two most 

widely adopted approaches. 

Static bug detection involves examining source code without executing it. Tools such as 

SonarQube, PMD, FindBugs, and ESLint apply rule-based and pattern-matching techniques 

to identify potential issues such as null pointer dereferences, unused variables, unreachable 

code, code smells, and security vulnerabilities. Static analysis is particularly effective at 

detecting syntactic and structural issues early in development and can be integrated into 

Continuous Integration (CI) pipelines for automated quality checks. However, rule-based 

static analysis tools often suffer from limitations such as high false-positive rates and an 

inability to interpret complex program logic or understand deeper semantic relationships 

(Akhtar et al., 2023; Shaon & Akter, 2025). 
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In contrast, dynamic analysis detects bugs by executing the software and observing its 

runtime behaviour. This category includes techniques such as unit testing, integration testing, 

fuzz testing, symbolic execution, and runtime monitoring. Dynamic analysis is effective for 

identifying issues such as memory leaks, race conditions, buffer overflows, and API misuse. 

Tools like Valgrind, AFL (American Fuzzy Lop), and JUnit support various aspects of 

dynamic testing. While dynamic analysis can uncover runtime-specific defects that static 

tools miss, it requires executable code, comprehensive test coverage, and often significant 

computational resources (Akhtar et al., 2023). 

Beyond traditional static and dynamic methods, advancements in artificial intelligence have 

given rise to machine learning (ML) and deep learning (DL)-based bug detection approaches. 

These approaches leverage historical code data, bug reports, and code change patterns to 

learn statistical relationships between code characteristics and the presence of defects. 

Supervised learning models, for instance, classify code segments as buggy or clean based on 

extracted features such as complexity metrics or code tokens. Meanwhile, deep learning 

models, including recurrent neural networks (RNNs), convolutional neural networks (CNNs), 

transformers, and graph neural networks (GNNs), can automatically learn semantic and 

structural representations of code without extensive manual feature engineering (Akhtar et 

al., 2023; Shaon & Akter, 2025). These intelligent models have demonstrated improvements 

in detection accuracy and reduced the need for manually defined rules. 

Another emerging approach involves hybrid bug detection, which combines static analysis, 

dynamic testing, and machine learning to leverage the strengths of each method. For 

example, hybrid models can use static analysis outputs as features for training machine 

learning classifiers or utilise runtime traces to enhance deep learning performance. This 

integrated strategy enhances precision and recall, particularly for complex bugs that require 

both structural and behavioural understanding (Akhtar et al., 2023). 

Despite progress in these techniques, bug detection remains a challenging task due to 

evolving software complexity, increasing codebases, and the need to detect subtle logic or 

security vulnerabilities. Traditional rule-based tools struggle with scalability and contextual 

understanding, while machine learning approaches require large, high-quality datasets and 

may face issues such as model interpretability, class imbalance, and limited vulnerability 

coverage. Furthermore, modern approaches, including Large Language Models (LLMs), 

provide significant potential for capturing both syntactic and semantic properties of code but 

introduce challenges such as hallucination and high computational cost (Shaon & Akter, 

2025). These limitations motivate ongoing research into more advanced, intelligent, and 
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automated methods, including neuro-symbolic hybrid approaches, parameter-efficient fine-

tuning, cross-language generalisation, continual learning, and explainable AI for vulnerability 

detection (Shaon & Akter, 2025). 

Machine Learning (ML) has emerged as a transformative technology in software engineering, 

enabling automated analysis, prediction, optimisation, and decision-making across various 

phases of the software development lifecycle. ML techniques leverage data-driven patterns to 

understand software artefacts, detect anomalies, recommend improvements, and support tasks 

that traditionally require human expertise. As modern software systems become increasingly 

complex and data-intensive, ML provides a scalable and intelligent approach to addressing 

long-standing challenges related to code quality, bug detection, maintenance, and developer 

productivity (Khalid et al., 2023; Yadav et al., 2024). 

In software engineering, ML applications can be broadly classified into tasks such as defect 

prediction, code classification, effort estimation, automated testing, code recommendation, 

and software documentation. These tasks rely on diverse data sources, including source code, 

commit histories, code metrics, bug reports, execution logs, and developer interactions. ML 

models learn from these artefacts to perform predictions or classifications that assist 

developers in making informed decisions. For instance, defect prediction models analyse 

historical bug data and software metrics to estimate the likelihood of defects in new code 

modules, enabling teams to allocate testing and review resources more effectively (Khalid et 

al., 2023). 

ML encompasses multiple paradigms, each applicable to different software engineering 

problems. Supervised learning is commonly used when labelled datasets exist, such as code 

segments labelled as "buggy" or "clean." Models such as decision trees, support vector 

machines (SVM), random forests, and neural networks are often employed for defect 

prediction, code smell detection, and vulnerability classification. Unsupervised learning 

techniques, including clustering and anomaly detection, help discover hidden patterns in code 

repositories or identify unusual behaviour in system logs. Reinforcement learning is also 

being explored for applications such as automated program repair, compiler optimisation, and 

adaptive testing, where the model learns optimal actions through iterative interactions with 

the environment (Khalid et al., 2023; Yadav et al., 2024). 

A critical component of ML in software engineering is feature engineering, which involves 

extracting meaningful representations of code to transform it into a format suitable for ML 

models. Traditional approaches rely on manually crafted features such as cyclomatic 

complexity, lines of code, coupling, cohesion, and naming conventions. While these features 
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are useful, they often fail to capture the deeper semantics and structural relationships in code. 

To overcome these limitations, representation learning and deep learning techniques have 

gained prominence, enabling models to automatically learn complex features from raw code 

data (Yadav et al., 2024). 

ML has significantly enhanced automated code review by enabling systems to analyse code 

patterns, understand developer intent, and generate context-aware feedback. ML-based 

models can learn from historical review comments, commit messages, and review outcomes 

to assist reviewers by predicting potential issues, suggesting improvements, or prioritising 

code segments requiring attention. Similarly, in bug detection, ML algorithms can identify 

recurring defect patterns and generalise beyond predefined rules, offering more flexible and 

scalable solutions than traditional static analysis tools (Khalid et al., 2023). 

Research demonstrates that optimised ML models can achieve very high accuracy in defect 

prediction. For example, SVM and optimised SVM models have achieved accuracies up to 

99% and 99.8%, respectively, while other models, such as Naive Bayes, Random Forest, and 

ensemble approaches, also perform strongly (Khalid et al., 2023). In code smell detection, 

ML has also proven effective, with algorithms like SVM, J48, Naive Bayes, and Random 

Forest being widely applied to identify early warning signs of potential software quality 

issues. These approaches help developers detect structural or design problems during the 

coding phase, supporting higher software quality and maintainability (Yadav et al., 2024). 

Despite its advantages, the integration of ML into software engineering faces challenges such 

as data scarcity, imbalanced datasets, noisy labels, language diversity, and model 

interpretability. Software evolution introduces concept drift, requiring models to adapt 

continuously to maintain performance. Nonetheless, ML continues to play a central role in 

modern software engineering, providing the foundation for more advanced methods such as 

deep learning and hybrid approaches that further enhance automated code review and bug 

detection systems (Khalid et al., 2023; Yadav et al., 2024). 

Deep Learning (DL) is a subfield of Machine Learning that focuses on neural networks with 

multiple hierarchical layers capable of automatically learning complex patterns from data. 

Unlike traditional ML approaches that rely heavily on manual feature engineering, deep 

learning models extract high-level abstractions directly from raw input, making them 

particularly powerful for tasks involving unstructured data such as images, speech, natural 

language, and increasingly, source code. DL’s ability to model semantic relationships and 

nonlinear dependencies has positioned it as a leading technique in modern artificial 

intelligence research and applications (Mienye & Swart, 2024). 
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At the core of deep learning lies the artificial neural network (ANN), which consists of 

interconnected layers of neurons organised into input, hidden, and output layers. Each neuron 

performs a weighted transformation of its inputs followed by a nonlinear activation function, 

enabling the network to approximate complex functions. As the number of hidden layers 

increases, the network gains the capacity to learn deeper and more abstract features. Training 

is achieved using backpropagation and gradient-based optimisation algorithms such as 

Stochastic Gradient Descent (SGD), Adam, or RMSprop (Mienye & Swart, 2024). 

Several specialised deep learning architectures have been developed to handle different types 

of data and tasks. Convolutional Neural Networks (CNNs) are well-suited for grid-like data 

and have been widely applied in computer vision. Their ability to learn spatial features 

through convolutional operations has also proven useful in source code analysis, particularly 

when treating code as token sequences or structural graphs. Recurrent Neural Networks 

(RNNs), along with their variants Long Short-Term Memory (LSTM) and Gated Recurrent 

Unit (GRU), are designed for sequential data and can capture long-range dependencies. These 

models have been used in tasks such as code generation, bug prediction, and automatic 

comment generation, where understanding the sequential nature of code tokens is essential 

(Mienye & Swart, 2024). 

A major breakthrough in deep learning came with the introduction of the Transformer 

architecture, built around the concept of self-attention. Transformers, including models such 

as BERT, GPT, and their code-specific adaptations (CodeBERT, GraphCodeBERT, CodeT5), 

excel at capturing contextual relationships by attending to all parts of an input sequence 

simultaneously. This parallelism enables them to process long sequences efficiently and learn 

richer semantic representations of code. Transformers have thus become a dominant 

architecture in state-of-the-art automated code review and bug detection systems (Mienye & 

Swart, 2024). 

Graph Neural Networks (GNNs) have also emerged as a crucial tool in deep learning for code 

analysis, particularly for tasks that require a structural understanding, such as bug 

localisation. Source code naturally forms structures like Abstract Syntax Trees (ASTs), 

Control Flow Graphs (CFGs), and data dependency graphs. GNNs propagate information 

through graph nodes and edges, enabling the model to capture both syntactic structure and 

semantic interactions. This makes GNNs particularly effective for detecting logical bugs, 

security vulnerabilities, and structural anomalies. Recent work has demonstrated that graph-

based bug classifiers can accurately identify buggy nodes in code graphs, effectively 
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localising a wide range of bug types, including undefined properties, functional errors, 

variable naming errors, and variable misuse (Yousofvand et al., 2026). 

Training deep learning models typically requires large datasets, high computational power, 

and careful tuning of hyperparameters such as learning rate, batch size, number of layers, and 

regularisation techniques. Methods such as dropout, batch normalisation, and early stopping 

help prevent overfitting and ensure that models generalise well to unseen data. Transfer 

learning is increasingly used, allowing pre-trained models to be fine-tuned on domain-

specific code datasets, significantly reducing training costs and improving performance for 

specialised tasks (Mienye & Swart, 2024). 

Despite these advantages, deep learning models face several challenges. They often require 

substantial data to achieve high performance, and their internal mechanisms can be difficult 

to interpret, a concern in software engineering where explainability is critical. Poorly trained 

models may struggle with code from unfamiliar programming languages or unconventional 

coding styles. Nonetheless, the strengths of deep learning, particularly its ability to learn 

semantic, contextual, and structural patterns, make it a powerful foundation for automated 

code review, bug detection, and code understanding (Mienye & Swart, 2024). 

Representation learning for source code refers to the process of transforming program 

elements, such as tokens, syntax structures, control flows, and dependency relationships, into 

numerical representations that machine learning and deep learning models can effectively 

process. Unlike natural language, source code is highly structured, governed by strict 

grammar rules, and contains deep semantic dependencies. As a result, effective representation 

learning is fundamental to enabling automated code review, bug detection, vulnerability 

analysis, code summarisation, and various other intelligent software engineering tasks. 

Traditional machine learning techniques rely on manually engineered features derived from 

code metrics, token frequencies, or structural characteristics. While these handcrafted features 

offer limited insights, they fail to fully capture the rich semantics and hierarchical structure 

embedded in modern programming languages. Contemporary approaches overcome these 

limitations by learning distributed representations that encode both syntactic and semantic 

information in dense vector spaces. 

A foundational line of work treats source code as token sequences, similar to natural 

language. Embedding techniques such as Word2Vec, GloVe, and FastText have been adapted 

to generate vector representations for tokens, identifiers, and keywords, capturing contextual 

relationships useful for classification or comment generation tasks. However, token-based 
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models often struggle to capture deeper structural dependencies, as the meaning of code 

extends beyond linear token order. 

To better capture hierarchical structure, many approaches incorporate Abstract Syntax Trees 

(ASTs), which represent the syntactic organisation of code. Models such as TreeLSTM and 

other recursive neural architectures leverage the parent–child relationships in ASTs to extract 

structural information and better understand program logic. A notable advancement in AST-

based learning is code2vec, which represents a code snippet by decomposing it into multiple 

paths in its AST and learning embeddings for these paths jointly. These path-based 

representations are aggregated to form a single fixed-length vector capable of predicting 

semantic properties, such as method names (Alon et al., 2018). The ability of code2vec to 

learn representations from millions of methods illustrates the effectiveness of structural 

decomposition in capturing semantic regularities across large codebases. 

Beyond syntactic structure, more expressive representations incorporate graph-based 

semantics. Control Flow Graphs (CFGs) and Data Flow Graphs (DFGs) model execution 

order and variable interactions, respectively, enabling deeper analysis of program behavior. 

Graph Neural Networks (GNNs), including GCNs, GATs, and MPNNs, have been widely 

adopted to learn from these graph structures, capturing both local and global semantic 

dependencies essential for tasks such as bug detection and vulnerability discovery. Recent 

work further expands this paradigm by integrating multiple forms of program graphs into 

unified models. For example, CogCol converts code graphs into unique sequences and 

applies supervised contrastive learning to strengthen structural understanding and improve 

generalisation across similar code patterns, addressing the limitations of purely syntactic 

AST-based approaches (Shi et al., 2024). 

Pre-trained language models for code have also transformed representation learning. Trained 

on large-scale repositories, these models combine token-level and structure-level information 

to produce context-aware embeddings that reflect both syntactic and semantic relationships. 

Their effectiveness across tasks like automated code review, defect prediction, and code 

retrieval highlights the power of large-scale pre-training for capturing deep code semantics. 

An emerging direction is multimodal representation learning, which integrates multiple views 

of code, including tokens, ASTs, CFGs, DFGs, and execution traces, into a unified 

embedding. These multimodal models leverage complementary structural and semantic 

information to achieve greater robustness and improved performance across diverse software 

engineering tasks. 



International Journal Research Publication Analysis                                   

Copyright@                                                                                                                              Page 12 

Despite these advancements, several challenges persist. Differences in syntax and semantics 

across programming languages complicate cross-language generalisation. Detecting subtle or 

logic-dependent bugs often requires modelling complex program dependencies that may not 

be fully represented in generic embeddings. In addition, labelled datasets for bug detection 

and defect prediction remain limited, hindering the training of high-capacity models. 

Nonetheless, ongoing research in structural, semantic, and multimodal representation learning 

continues to push the boundaries of automated code understanding, providing a strong 

foundation for advanced intelligent systems in software engineering. 

Deep learning models for automated code review aim to assist developers in identifying 

defects, improving code quality, and ensuring compliance with software engineering 

standards through intelligent, machine-driven analysis. Traditional automated review tools 

depend heavily on handcrafted rules and heuristics, which are effective at detecting syntactic 

issues but struggle to capture deeper semantics and contextual logic. Deep learning provides a 

powerful alternative by learning complex patterns from large codebases and enabling models 

to reason about structural dependencies, functional intent, and semantic relationships in 

source code. Recent studies highlight that graph-based and deep neural models significantly 

outperform conventional static analysis tools in vulnerability detection and semantic 

understanding (Abdul Kadar, 2022). 

Various neural architectures have been explored for automated code review, each offering 

unique strengths. Sequence-based models such as RNNs, LSTMs, and GRUs treat code as 

token sequences and learn contextual dependencies across statements. These architectures 

have been applied to tasks such as predicting review comments, detecting code smells, and 

identifying stylistic inconsistencies. However, because they rely on sequential token 

representations, these models often struggle with long-range dependencies and the rich 

structural complexity inherent in modern programming languages (Yin et al., 2023). 

Transformer-based models have become the dominant approach for code intelligence due to 

their ability to capture global context through self-attention mechanisms. Pretrained models 

such as CodeBERT, CodeT5, PLBART, GraphCodeBERT, and CodeGPT have demonstrated 

state-of-the-art performance across code review tasks by learning powerful semantic and 

contextual representations from massive open-source repositories. These models support fine-

tuning for domain-specific code review scenarios, allowing high accuracy even with 

relatively small datasets. For example, models that fuse structural information, such as 

program dependency graphs, with sequence-based representations within transformer 

architectures have shown notable improvements in accuracy and robustness (Yin et al., 2023). 
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Graph-based deep learning models represent another important paradigm in automated code 

review. By expressing software as Abstract Syntax Trees (ASTs), Control Flow Graphs 

(CFGs), Data Flow Graphs (DFGs), or Program Dependency Graphs (PDGs), Graph Neural 

Networks (GNNs) capture rich semantic and structural information that sequential models 

often overlook. Studies have shown that GNN-based representations significantly enhance 

vulnerability detection, providing notable gains in accuracy, context awareness, and reduction 

of false positives compared to traditional tools and earlier neural approaches (Abdul Kadar, 

2022). Program dependency graph serialisation methods, such as PDG2Seq, further improve 

representational quality by converting complex semantic graphs into unique sequences while 

preserving structure and meaning, enabling models like CodeBERT-based architectures to 

more effectively detect and correct defects (Yin et al., 2023). 

Hybrid and multimodal deep learning approaches combine multiple representational views, 

including token sequences, ASTs, CFGs, and PDGs, to achieve more robust automated code 

review. These models often integrate transformers with GNNs to capture both semantic 

context and structural dependencies, improving the detection of subtle issues such as variable 

misuse, logical inconsistencies, or resource mismanagement. The fusion of sequence and 

structural representations has proven especially valuable for tasks requiring nuanced 

reasoning, such as automated fix suggestion or context-aware comment generation. 

Deep learning has also enabled systems to generate natural-language review comments 

derived from historical pull request discussions and developer feedback. These models can 

articulate issues and propose improvements in human-readable form, reducing cognitive load 

and enhancing the collaborative review process. Attention mechanisms further improve 

interpretability by highlighting influential regions of the code, addressing concerns about 

transparency and model explainability, both important in professional software engineering 

contexts. 

Despite substantial progress, challenges remain. Deep learning models require large, high-

quality datasets containing code and corresponding review annotations; yet, these datasets are 

difficult to curate due to privacy constraints, inconsistency in review styles, and the labour-

intensive nature of labelling. Moreover, the opaque inner workings of deep neural models 

raise concerns about trust and explainability, especially when automated feedback influences 

production systems. Ensuring that automated code review systems provide reliable, 

actionable, and transparent insights remains an ongoing research priority. 

Deep learning has significantly transformed the landscape of software bug detection by 

enabling automated systems to learn patterns of defective code directly from large datasets. 
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Unlike traditional rule-based or heuristic methods, deep learning approaches possess the 

ability to capture complex semantic relationships, structural dependencies, and contextual 

patterns within source code. This makes them particularly effective for detecting subtle bugs, 

logic errors, and security vulnerabilities that may not be easily identifiable through static 

analysis tools or manual code review. Recent work also shows that deep learning models 

benefit from considering not only code features but also inter-module dependencies, as 

treating software systems as interconnected graphs can yield improved defect prediction 

performance (Cui et al., 2022). 

One of the earliest deep learning approaches for bug detection involves sequence-based 

models, where source code is treated as a sequence of tokens similar to natural language. 

Models such as Recurrent Neural Networks (RNNs), Long Short-Term Memory networks 

(LSTMs), and Gated Recurrent Units (GRUs) are commonly used in this paradigm. These 

models learn long-range dependencies within code, allowing them to detect patterns 

associated with common bug types, such as incorrect API usage or logical inconsistencies. 

Although effective in modelling token-level context, sequence-based methods sometimes 

struggle with structural complexity, as raw token sequences cannot fully capture the 

hierarchical and graph-oriented nature of source code. This limitation has also been observed 

in modern issue-tracking datasets, where text-based bug reports require richer structural 

modelling to improve prediction accuracy (Siachos et al., 2025). 

To overcome the limitations of sequential processing, convolutional neural networks (CNNs) 

have also been employed in bug detection tasks. CNNs, while traditionally used in image 

analysis, can be adapted to operate on encoded representations of code, such as token 

embeddings or serialised abstract syntax trees (ASTs). Their strength lies in detecting local 

patterns, enabling the identification of small but critical code fragments associated with 

defects. However, CNNs are less effective when deeper semantic understanding or global 

context is required, especially for complex bugs involving long-range dependencies or multi-

module interactions. 

A breakthrough in deep learning for bug detection came with the introduction of transformer-

based architectures, which use self-attention mechanisms to model global dependencies 

within code sequences. Models such as CodeBERT, CodeT5, GraphCodeBERT, and 

DeepBugs have achieved state-of-the-art performance in numerous bug detection tasks. 

Transformers excel in capturing the contextual relationships between variables, function 

calls, and control flows, making them highly effective for identifying complex logical bugs 

and security vulnerabilities. Pre-training on massive code corpora allows these models to 
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generalise across programming languages and defect types. Fine-tuning on bug-specific 

datasets further improves predictive performance by addressing domain-specific 

characteristics. 

Another influential direction in deep learning-based bug detection is the use of Graph Neural 

Networks (GNNs). Many software bugs arise from improper data flows, variable misuse, or 

broken control paths, patterns that are naturally represented as graph structures. GNNs 

operate on representations such as Abstract Syntax Trees (ASTs), Control Flow Graphs 

(CFGs), Data Flow Graphs (DFGs), and Program Dependency Graphs (PDGs), propagating 

information across nodes and edges to capture both syntactic and semantic properties of code. 

This graph-centric perspective aligns with emerging research that models entire software 

systems as complex networks, treating classes or modules as nodes and their dependencies as 

edges, enabling more accurate defect prediction through improved structural representations 

(Cui et al., 2022). Additionally, hybrid graph-text models leveraging Graph Attention 

Networks (GATs) have demonstrated strong performance in predicting bugs from textual 

issue descriptions by combining semantic embeddings with graph-based relationships 

(Siachos et al., 2025). 

In addition to standalone architectures, hybrid deep learning models integrate multiple 

representations of code—tokens, ASTs, CFGs, embeddings, and execution traces—to provide 

a more robust understanding of program behaviour. Such models leverage the complementary 

strengths of different views to detect subtle bugs that might be missed by single-

representation approaches. For instance, a hybrid model may combine a transformer to 

capture high-level semantics with a GNN to analyse data dependencies, yielding more 

accurate predictions of variable misuse or incorrect control flow. 

Moreover, deep learning has enabled anomaly detection approaches, in which autoencoders 

or variational autoencoders (VAEs) learn latent representations of “normal” code behaviour 

and detect deviations that may signify defects. These methods are particularly valuable when 

labelled datasets are scarce, allowing unsupervised or semi-supervised learning to identify 

unusual patterns resembling potential bugs. 

Despite the remarkable progress, deep learning approaches for bug detection face challenges 

such as data imbalance, limited availability of high-quality labelled datasets, and difficulties 

related to model interpretability. Software systems vary widely in language, architectural 

style, and programming practices, making generalisation across domains difficult. 

Furthermore, developers often require transparent explanations for identified bugs, yet deep 

models typically operate as black boxes, complicating real-world adoption. 



International Journal Research Publication Analysis                                   

Copyright@                                                                                                                              Page 16 

Nevertheless, deep learning continues to push the boundaries of automated bug detection, 

offering scalable, accurate, and intelligent solutions that complement human expertise and 

traditional tools. With ongoing advancements in graph-based modelling, multimodal learning, 

and transformer architectures, deep learning is expected to play an increasingly central role in 

next-generation software quality assurance systems (Cui et al., 2022; Siachos et al., 2025). 

Evaluation metrics play a critical role in assessing the performance, reliability, and 

effectiveness of automated code review and bug detection systems. These metrics provide 

quantitative measures that help researchers and practitioners determine how well a model 

identifies defects, classifies code segments, generates review comments, or supports decision-

making during software development. Choosing appropriate metrics ensures fair comparisons 

between techniques and provides insights into their strengths and limitations (Albattah & 

Alzahrani, 2024). 

For classification-based tasks, such as distinguishing buggy from non-buggy code, commonly 

used metrics include Accuracy, Precision, Recall, and F1-Score. Accuracy measures the 

proportion of correct predictions made by the model; however, it becomes less reliable when 

datasets are imbalanced, which is often the case in bug detection, where non-defective code 

typically outnumbers defective code. In such cases, a model could achieve high accuracy 

while failing to detect actual defects. To address this, Precision and Recall offer more 

nuanced evaluation. Precision measures the proportion of correctly identified buggy instances 

among all predicted buggy instances, which is essential when minimising false positives is a 

priority. Recall measures the proportion of actual buggy instances correctly detected, 

reducing false negatives and ensuring critical defects are not overlooked. The F1-Score, the 

harmonic mean of Precision and Recall, balances these concerns, providing a single metric 

that reflects overall predictive quality (Albattah & Alzahrani, 2024). 

The Confusion Matrix is often employed to provide a comprehensive view of model 

performance by summarising true positives, true negatives, false positives, and false 

negatives. It enables deeper analysis of model behaviour and facilitates identification of 

specific error patterns. Similarly, the Receiver Operating Characteristic – Area Under the 

Curve (ROC-AUC) evaluates the trade-off between true positive and false positive rates 

across varying thresholds. ROC curves are particularly useful for defect prediction models, as 

they provide an overall assessment of classifier performance across all possible threshold 

values, helping to identify optimal operational points for practical use (Morasca & Lavazza, 

2020). 
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When automated code review systems generate natural-language comments or suggestions, 

evaluation metrics shift toward language quality and semantic relevance. Metrics such as 

BLEU (Bilingual Evaluation Understudy), ROUGE (Recall-Oriented Understudy for Gisting 

Evaluation), and METEOR assess the similarity between generated and reference comments, 

analysing aspects such as n-gram overlap, word precision and recall, and semantic alignment. 

Although originally developed for machine translation and summarisation, these metrics are 

now standard for evaluating textual feedback in code review environments (Albattah & 

Alzahrani, 2024). 

For ranking or prioritisation tasks, such as recommending which files or lines require urgent 

attention, metrics like Mean Average Precision (MAP) and Mean Reciprocal Rank (MRR) are 

employed. These assess a model’s ability to correctly rank buggy or problematic code higher, 

which is crucial for helping developers focus their efforts efficiently. In industrial contexts, 

additional metrics related to software quality may be considered, including reductions in 

post-release defects, review latency, developer productivity, and maintainability indices. 

Though harder to quantify, these metrics reflect the real-world impact of automated review 

and bug detection tools (Albattah & Alzahrani, 2024). 

Selecting appropriate metrics depends on the goals of the system being developed. For 

instance, a bug detection model aimed at minimising missed defects may prioritise Recall, 

whereas a static analyser integrated into a continuous integration pipeline may emphasise 

Precision to reduce unnecessary alerts. Similarly, natural-language comment generation 

models rely on linguistic metrics, while structural defect detection models depend on 

classification metrics such as Accuracy, F1-Score, or ROC-AUC (Morasca & Lavazza, 2020; 

Albattah & Alzahrani, 2024). 

Despite significant progress in applying deep learning to automated code review and bug 

detection, several challenges and limitations continue to constrain the effectiveness, 

reliability, and adoption of these systems. These challenges stem from the complexity of 

software systems, the evolving nature of programming languages, and inherent limitations in 

machine learning methodologies. Understanding these issues is essential for guiding future 

research and improving system performance (Viswanadhapalli, 2024). 

One major challenge is the inherent complexity and variability of source code. Unlike natural 

language, code is highly structured and governed by strict grammatical and semantic rules. 

Small changes in syntax can drastically alter program behaviour, making it difficult for deep 

learning models to capture exact semantics. While modern models effectively learn statistical 

patterns, they may fail to understand deeper logic, data flow, or interactions between 
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components, leading to incorrect predictions or shallow analyses. This limitation becomes 

even more pronounced in large-scale or highly modular projects where context extends across 

multiple files (Viswanadhapalli, 2024; Golovnev, Starovoytov, & Staroletov, 2025). 

Another critical limitation is the scarcity of high-quality, well-labelled datasets. Although 

numerous code datasets exist, many suffer from label noise, incomplete bug descriptions, or 

inconsistent annotations. For bug detection tasks, the imbalance between buggy and non-

buggy samples often causes models to exhibit poor recall, failing to detect rare but significant 

defects. Furthermore, datasets sourced from open-source repositories may not be 

representative of proprietary or domain-specific software, limiting the generalizability of 

trained models (Viswanadhapalli, 2024; Golovnev et al., 2025). 

The dynamic and evolving nature of software development introduces additional challenges. 

Programming languages, frameworks, and libraries are continually updated, causing models 

trained on older data to become outdated. Emerging coding patterns, new vulnerabilities, and 

evolving best practices require ongoing retraining and dataset updates. Failure to adapt can 

result in outdated or irrelevant recommendations, reducing trust in automated systems 

(Viswanadhapalli, 2024). 

Interpretability is another significant concern. Deep learning models, particularly large neural 

architectures, often operate as black boxes, providing little insight into why a specific piece 

of code is flagged as defective. Developers require clear, interpretable explanations to trust 

automated suggestions. Without transparency, these systems may be perceived as unreliable 

or overly cautious, which can limit adoption in professional environments (Viswanadhapalli, 

2024; Golovnev et al., 2025). 

False positives and false negatives present additional obstacles. Excessive false positives can 

overwhelm developers with unnecessary warnings, reducing productivity and discouraging 

tool usage. Conversely, false negatives may allow critical defects to remain undetected. 

Balancing precision and recall is especially challenging for complex bugs that require deep 

semantic reasoning or contextual understanding across multiple files (Viswanadhapalli, 

2024). 

Integrating automated code review tools into existing development workflows also presents 

difficulties. Many organisations involve multiple stakeholders, diverse tools, and varying 

coding standards. Automated systems must be highly adaptable to different project structures, 

codebases, and review cultures. Poor integration can disrupt workflows, create redundancy, 

or conflict with human reviewers’ judgments (Golovnev et al., 2025). 
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Deep learning models also demand substantial computational resources for training and 

inference. Large models can be expensive to train and maintain, particularly in continuous 

integration pipelines where rapid feedback is essential. Resource constraints may prevent 

smaller teams or organisations from deploying advanced models, limiting their practicality 

(Viswanadhapalli, 2024). 

Detecting semantic, logical, or context-dependent bugs, such as concurrency issues, race 

conditions, or security vulnerabilities that depend on runtime behaviour, remains particularly 

difficult. Static code alone may not reveal these defects, and current deep learning models 

struggle to infer dynamic behaviour without execution traces or symbolic analysis tools 

(Viswanadhapalli, 2024; Golovnev et al., 2025). 

Ethical concerns also arise, including potential bias embedded in training data, which may 

cause models to favour certain coding styles, patterns, or developer practices. This can lead to 

non-uniform treatment of contributions and inadvertently introduce unfairness 

(Viswanadhapalli, 2024). 

Finally, developer trust and acceptance continue to be major barriers. Developers may resist 

tools that generate unclear, incorrect, or overly aggressive suggestions. Building trust requires 

consistent performance, interpretability, and the ability to complement rather than replace 

human expertise (Viswanadhapalli, 2024; Golovnev et al., 2025). 

In summary, while deep learning has significantly advanced automated code review and bug 

detection, challenges ranging from dataset limitations and interpretability issues to workflow 

integration and computational constraints continue to limit the effectiveness and scalability of 

these systems. Addressing these challenges is essential for developing robust, trustworthy, 

and practical solutions capable of supporting modern software engineering processes 

(Viswanadhapalli, 2024; Golovnev et al., 2025). 

 

2.1 Review of Related Works 

The increasing complexity of software systems has made manual code review and bug 

detection both time-consuming and error-prone, prompting significant research into 

automated approaches. Traditional static and rule-based analysis tools, such as SonarQube 

and FindBugs, have been widely used to detect code smells and potential bugs, but they often 

fail to capture deeper semantic or context-specific issues. Consequently, researchers have 

turned to deep learning techniques to improve automated code analysis. Recent studies have 

explored sequence-based models, such as LSTMs, to learn patterns from historical code 

changes and suggest corrections or detect anomalies. More recently, transformer-based 
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models, including CodeBERT and GraphCodeBERT, have leveraged large code corpora and 

structural representations to achieve state-of-the-art performance in tasks like code review, 

bug detection, and code summarisation. While these deep learning approaches show 

considerable promise, challenges remain in terms of dataset requirements, generalisation 

across diverse projects, and computational cost. This section reviews related work in deep 

learning-based automated code review and bug detection, with particular attention to models 

that capture semantic and structural aspects of source code. 

 

Siva et al (2023). Automatic software bug prediction using adaptive artificial jelly 

optimisation with long short-term memory. 

Siva et al. (2023) proposed a deep learning-based framework for software bug prediction, 

aiming to improve software quality and reliability by detecting defects at early stages of 

development. The approach consisted of three key stages: pre-processing to remove duplicate 

data, feature selection using an adaptive artificial jelly optimisation algorithm (A2JO) to 

reduce complexity and prevent overfitting, and classification using a long short-term memory 

(LSTM) model to predict defective and non-defective code. Experiments were conducted on 

publicly available datasets, including Promise and NASA repositories, and the model was 

evaluated using metrics such as accuracy, F-measure, G-measure, and Matthews Correlation 

Coefficient (MCC). The results demonstrated high predictive performance, achieving 

accuracies of 93.41% and 92.8% for the Promise and NASA datasets, respectively. While the 

study highlighted the effectiveness of combining feature optimisation with LSTM-based 

prediction, its applicability may be influenced by dataset characteristics and the 

computational cost of model training. Nevertheless, it provides a valuable contribution to 

automated bug detection research by integrating deep learning with feature selection 

techniques. 

 

Khalid et al. (2023) Software Defect Prediction Analysis Using Machine Learning 

Techniques 

Khalid et al. (2023) investigated machine learning (ML) techniques for software defect 

prediction, focusing on improving model accuracy and precision on publicly available 

datasets. The study applied K-means clustering to categorise class labels and employed 

various classification models on selected features. To further enhance model performance, 

Particle Swarm Optimisation (PSO) was used to optimise the ML models. The models were 

evaluated using metrics including accuracy, precision, recall, F-measure, error metrics, and 
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confusion matrices. Results indicated that all ML and optimised ML models performed well, 

with Support Vector Machine (SVM) and optimised SVM achieving the highest accuracies of 

99% and 99.80%, respectively. Other models, including Naive Bayes, Random Forest, and 

ensemble methods, also showed strong performance. While the study demonstrates the 

effectiveness of combining feature selection and model optimisation for defect prediction, its 

reliance on specific dataset characteristics may influence generalizability. Nonetheless, it 

contributes significantly to advancing automated bug detection techniques with high-

accuracy ML approaches. 

 

Akhtar, N., Rana, A., Deshpande, P. P., Kumar, M., Parida, P. K., & Bajaj, K. K. (2023). 

Software bug prediction and detection using machine learning and deep learning. 

International Journal of Intelligent Systems and Applications in Engineering 

Akhtar et al. (2023) conducted a comprehensive study on the application of machine learning 

(ML) and deep learning (DL) techniques for software bug prediction and detection. The 

research focused on analysing data from code repositories, bug databases, and other software-

related sources to identify patterns linking code attributes to defect occurrence. The study 

included a comparative evaluation of various ML and DL approaches, emphasising the 

importance of publicly accessible datasets and model interpretability. The authors highlighted 

the potential of hybrid methodologies that combine machine learning and deep learning to 

improve prediction accuracy and detection capabilities. While the paper provided a broad 

overview of existing techniques and their practical implications for software development, it 

also discussed current limitations and identified future research directions in automated bug 

detection and prediction. 

 

Shaon, M. S. H., & Akter, M. S. (2025). Modern Approaches to Software Vulnerability 

Detection: A Survey of Machine Learning, Deep Learning, and Large Language Models 

Shaon and Akter (2025) presented a comprehensive survey of modern approaches for 

automated software vulnerability detection, focusing on machine learning (ML), deep 

learning (DL), and large language model (LLM) techniques. The study analysed recent 

advances in feature representation, fine-tuning, generative methods, and prompt engineering, 

highlighting their ability to capture both syntactic and semantic aspects of source code. Key 

challenges, including limited real-world datasets, class imbalance, interpretability issues, and 

high computational costs, were critically discussed. The authors also outlined promising 

future directions, such as neuro-symbolic hybrid methods, parameter-efficient fine-tuning, 
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cross-language generalisation, continual learning, and explainable AI. By bridging the gap 

between classical feature-based methods and LLM-driven frameworks, the survey provides 

valuable insights for developing scalable, accurate, and interpretable vulnerability detection 

systems. 

 

Yadav, P. S., Rao, R. S., Mishra, A., & Gupta, M. (2024). Machine Learning-Based 

Methods for Code Smell Detection 

Yadav et al. (2024) conducted a comprehensive survey of machine learning (ML) techniques 

for code smell detection, which serve as early indicators of potential software quality issues. 

The study reviewed 42 relevant works from 2005 to 2024, covering a range of ML algorithms 

including Support Vector Machines, J48, Naive Bayes, and Random Forest, as well as 

traditional methods such as rule-based and Bayesian approaches. The authors highlighted 

challenges in code smell detection, including the lack of standardized definitions, difficulty in 

feature selection, and handling large-scale datasets. By evaluating multiple contributing 

factors and presenting class-wise distributions of ML algorithms, the study demonstrated the 

potential of ML methods to improve software design and development practices. The findings 

emphasize the practical value of ML in anticipating and addressing software design flaws, 

ultimately enhancing software quality and maintainability. 

 

Albattah, W., & Alzahrani, M. (2024). Software Defect Prediction Based on Machine 

Learning and Deep Learning Techniques 

Albattah and Alzahrani (2024) investigated machine learning (ML) and deep learning (DL) 

techniques for software defect prediction, emphasizing early-stage bug detection to enhance 

software reliability and reduce maintenance costs. The study evaluated eight widely used ML 

and DL algorithms using a large dataset compiled from five publicly available bug 

repositories, comprising around 60 software metrics such as cohesion, coupling, complexity, 

documentation, inheritance, and class size. Models were compared using performance 

metrics including accuracy, macro F1 score, weighted F1 score, and binary F1 score. Results 

indicated that the deep learning model, particularly LSTM, outperformed traditional ML 

algorithms, achieving an accuracy of 87%. The study highlights the effectiveness of 

combining extensive software metrics with deep learning approaches for early and accurate 

defect prediction, contributing to improved software quality and maintainability. 
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Yousofvand, L., Soleimani, S., Rafe, V., & et al. (2026). Graph neural networks for 

precise bug localisation through structural program analysis 

Yousofvand et al. (2026) proposed a graph neural network (GNN)-based approach for precise 

bug localisation, addressing the challenge of identifying code segments responsible for 

program failures in increasingly complex software systems. The method represents source 

code as graphs encoding syntactic and semantic structures, labelling nodes using the Gumtree 

algorithm, and classifying them with a supervised GNN model into buggy or bug-free nodes. 

To handle class imbalance, the approach was evaluated using accuracy, precision, recall, and 

F1-score metrics. Experimental results demonstrated that the proposed method outperformed 

existing techniques, effectively localising a wide range of bug types, including undefined 

properties, functional bugs, variable naming errors, and variable misuse. This study 

highlights the potential of structural program analysis and graph-based deep learning models 

for automated, high-precision bug detection. 

 

Abdul Kadar, M. (2022). Automated code review and vulnerability detection using 

graph neural networks 

Abdul Kadar (2022) proposed a graph neural network (GNN)-based framework for 

automated code review and vulnerability detection, focusing on improving software security 

within modern development workflows, including DevSecOps. The approach represents 

source code as structural graphs to capture semantic relationships and extracts features for 

GNN-based classification of security vulnerabilities and code quality issues. The model 

achieved 93.7% accuracy across multiple programming languages, outperforming traditional 

static analysis tools by 27% and conventional deep learning approaches by 18%. When 

integrated into CI/CD pipelines, the system provided real-time feedback during code 

commits, reducing vulnerabilities by 76% and decreasing false positives by 41%. This study 

demonstrates the effectiveness of combining structural code representation with deep learning 

to enhance automated vulnerability detection and streamline code review processes. 

 

Yin, Y., Zhao, Y., Sun, Y., & Chen, C. (2023). Automatic Code Review by Learning the 

Structure Information of Code Graph. Sensors 

Yin et al. (2023) proposed an automated code review model that leverages structural 

information from code graphs to improve review efficiency. The study introduced the 

PDG2Seq algorithm, which converts program dependency graphs into unique sequences 

while preserving structural and semantic information. The model builds on the pre-trained 
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CodeBERT architecture, integrating both code sequence and structure information, and is 

fine-tuned for practical code review scenarios. Experimental results demonstrated significant 

improvements over baseline methods, as measured by BLEU, Levenshtein distance, and 

ROUGE-L metrics. This work highlights the potential of combining graph-based structural 

representations with deep learning models to enhance automated code review processes. 

 

Siachos, I., Kanakaris, N., & Karacapilidis, N. (2025). Software bug prediction using 

graph neural networks and graph-based text representations 

Siachos et al. (2025) proposed a hybrid approach for software bug prediction that combines 

graph-based text representations, word embeddings, and graph neural networks (GNNs) to 

leverage both structural and semantic information. Unlike prior methods that focus on 

individual components, the approach models textual data from issue tracking platforms as 

graphs and applies Graph Attention Networks (GATs) to predict software bugs. Experiments 

on four publicly available datasets from GitHub and Jira demonstrated improvements in 

accuracy, precision, and recall compared to existing graph-based machine learning models. 

This study underscores the potential of integrating textual information and graph-based 

learning for enhanced bug prediction in open-source software development environments. 

 

Viswanadhapalli, V. (2024). Automated bug detection and resolution using deep 

learning: A new paradigm in software engineering 

Viswanadhapalli (2024) presented an in-depth analysis of deep learning techniques for 

automated bug detection and resolution, highlighting their potential to improve software 

reliability and reduce debugging time. The study reviewed neural network architectures, 

including CNNs for token-based code analysis, RNNs and LSTMs for capturing sequential 

dependencies, and transformer-based models such as CodeBERT and GPT-4 for large-scale 

code understanding. The paper also discussed transfer learning and reinforcement learning 

approaches to enhance model adaptability and optimise corrective actions. While deep 

learning methods significantly improve accuracy and efficiency compared to traditional static 

and dynamic analysis, challenges remain, including the scarcity of high-quality labelled 

datasets, interpretability issues, and high computational costs. The study further proposed a 

hybrid deep learning approach combining multiple architectures to leverage their strengths 

and mitigate individual limitations, providing a promising direction for more effective 

automated bug detection and resolution in modern software engineering. 
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Zymawy, H. (2025). Leveraging machine learning for automated code quality 

assessment and optimisation in modern software development 

Zymawy (2025) proposed a comprehensive machine learning-based framework for 

automated code quality assessment, optimisation, and intelligent software development 

workflows. The study employed transformer-based deep learning models trained on large-

scale code repositories to perform automated code review, predictive bug detection, 

performance optimisation, and technical debt management. Experimental results 

demonstrated substantial improvements over traditional static analysis tools, including a 42% 

increase in bug detection accuracy, a 35% reduction in code review time, a 67% improvement 

in performance optimisation, and 89% accuracy in technical debt prediction. The framework 

was successfully deployed in production across multiple programming languages and large-

scale codebases, highlighting the practical effectiveness of integrating advanced ML 

techniques into modern software engineering practices. 

 

Barrameda, R. B., & Ballera, M. (2025). Enhancing code quality: A CNN-based 

approach for readability classification and bug localisation in programming 

Barrameda and Ballera (2025) proposed a convolutional neural network (CNN)-based 

approach for automated code readability classification and bug localisation, aimed at 

improving programming education and software quality. The model employs a hybrid 

activation function combining ReLU and Leaky ReLU and processes structured code 

representations derived from lexical and syntactic analysis to extract hierarchical features 

indicative of code quality. Experiments on open-source datasets relevant to beginner 

computer science students achieved a classification accuracy of 82.4%. The study highlights 

the potential of deep learning to provide automated feedback, support scalable code 

evaluation, and enhance bug detection, while noting challenges such as overfitting and 

computational complexity. 

 

2.2 Summary of Literature Review 

S/N Author Title Summary Limitations 

1 Siva et al. 

(2023) 

Automatic 

Software Bug 

Prediction Using 

Adaptive 

Artificial Jelly 

Optimisation 

With LSTM 

Proposed a three-stage 

approach for software 

bug prediction: pre-

processing, feature 

selection using 

adaptive artificial jelly 

optimisation (A2JO), 

and classification using 

Dataset-specific 

performance; 

computational cost 

of LSTM and 

optimisation step; 

generalisation to 

unseen projects 

may be limited. 



International Journal Research Publication Analysis                                   

Copyright@                                                                                                                              Page 26 

LSTM. Experiments on 

Promise and NASA 

datasets achieved 

accuracies of 93.41% 

and 92.8%, 

respectively. 
 

 

2 Khalid et al. 

(2023) 

Software Defect 

Prediction 

Analysis Using 

Machine Learning 

Techniques 

Investigated ML and 

optimised ML models 

for defect prediction 

using K-means for 

label categorisation and 

Particle Swarm 

Optimisation for model 

optimisation. SVM and 

optimised SVM 

achieved accuracies of 

99% and 99.80%. 
 

Reliance on 

specific dataset 

characteristics may 

not generalise well 

to different 

software contexts. 
 

3 
Akhtar et al. 

(2023) 
 

Software Bug 

Prediction and 

Detection Using 

Machine Learning 

and Deep 

Learning 

Reviewed ML and DL 

methods for bug 

prediction and 

detection from code 

repositories and bug 

databases, emphasising 

hybrid approaches that 

leverage multiple 

techniques for 

improved performance. 
 

Broad survey; did 

not propose a 

specific novel 

predictive model. 
 

4 Shaon & Akter 

(2025) 

Modern 

Approaches to 

Software 

Vulnerability 

Detection: A 

Survey of ML, 

DL, and LLMs 

Surveyed ML, DL, and 

LLM-based 

vulnerability detection, 

analysing feature 

representation, fine-

tuning, generative 

methods, and prompt 

engineering. 

Highlighted challenges 

like dataset scarcity, 

class imbalance, and 

interpretability. 
 

Focused on survey; 

practical 

implementation 

and evaluation of 

models were not 

presented. 
 

5 
Yadav et al. 

(2024) 
 

Machine 

Learning-Based 

Methods for Code 

Smell Detection 

Reviewed 42 studies on 

ML techniques for code 

smell detection, 

including SVM, 

Random Forest, J48, 

and Naive Bayes. 

Addressed challenges 

in feature selection, 

It relies on small-

scale datasets; 

generalisation to 

large industrial 

codebases is 

limited. 
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dataset scale, and lack 

of standardised 

definitions. 
 

6 Albattah & 

Alzahrani 

(2024) 

Software Defect 

Prediction Based 

on Machine 

Learning and 

Deep Learning 

Techniques 

Empirical study 

comparing 8 ML and 

DL algorithms using 5 

public datasets with 

~60 software metrics; 

LSTM outperformed 

others with 87% 

accuracy. 
 

Computational cost 

of deep learning; 

performance may 

vary with different 

datasets. 
 

7 Yousofvand et 

al. (2026) 

Graph Neural 

Networks for 

Precise Bug 

Localisation 

Proposed GNN-based 

bug localisation using 

graph representation of 

source code, node 

labelling via Gumtree, 

and supervised 

classification with 

evaluation on accuracy, 

precision, recall, and 

F1-score. 
 

Dataset-dependent 

performance; class 

imbalance 

challenges; 

complexity of 

graph-based 

methods. 
 

8 Abdul Kadar 

(2022) 

Automated Code 

Review and 

Vulnerability 

Detection Using 

GNNs 

Developed a GNN-

based framework for 

automated code review 

and vulnerability 

detection with 93.7% 

accuracy, integrated 

into CI/CD pipelines to 

reduce vulnerabilities 

by 76%. 
 

High 

computational cost; 

may require 

adaptation for 

specific 

programming 

languages or 

environments. 
 

9 Yin et al. (2023) Automatic Code 

Review by 

Learning the 

Structure 

Information of 

Code Graph 

Proposed PDG2Seq 

algorithm to convert 

program dependency 

graphs into sequences; 

CodeBERT-based 

model integrates code 

sequence and structural 

info, improving BLEU, 

Levenshtein, and 

ROUGE-L metrics. 
 

Focused on 

structure-sequence 

fusion; may require 

large datasets for 

fine-tuning. 
 

10 Siachos et al. 

(2025) 

Software Bug 

Prediction Using 

GNNs and Graph-

Based Text 

Representations 

Hybrid approach using 

GATs and graph-based 

text representations 

from issue tracking 

data; improved 

accuracy, precision, 

Limited to textual 

issue data; 

generalisation to 

other datasets or 

programming 

languages may be 
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and recall on GitHub 

and Jira datasets. 
 

limited. 
 

11 Viswanadhapalli 

(2024) 

Automated Bug 

Detection and 

Resolution Using 

Deep Learning 

Reviewed DL 

architectures for bug 

detection (CNN, RNN, 

LSTM, transformers) 

and proposed hybrid 

models; discussed 

transfer learning and 

reinforcement learning 

for automated 

debugging. 
 

High 

computational cost; 

interpretability of 

deep learning 

models; limited 

availability of 

high-quality 

labelled datasets. 
 

12 
Zymawy 

(2025) 
 

Leveraging ML 

for Automated 

Code Quality 

Assessment and 

Optimisation 

Proposed transformer-

based DL framework 

for code review, bug 

detection, performance 

optimisation, and 

technical debt 

management; 

demonstrated 42% 

improvement in bug 

detection and 35% 

reduction in review 

time. 
 

High resource 

requirements; may 

require extensive 

code repositories 

for training. 
 

13 Barrameda & 

Ballera (2025) 

Enhancing Code 

Quality: A CNN-

Based Approach 

for Readability 

Classification and 

Bug Localisation 

CNN-based approach 

with hybrid 

ReLU/Leaky ReLU 

activation for code 

readability classification 

and bug localisation; 

achieved 82.4% 

accuracy on student 

code datasets. 

Focused on 

educational datasets; 

overfitting and 

computational 

complexity are 

challenges. 

 

 

2.3 Knowledge Gap/ Recommendation 

While significant advances have been made in the development of machine learning and deep 

learning-based approaches for automated code review and bug detection, several important 

challenges remain unresolved. One key limitation lies in the insufficient integration of 

semantic and structural information from source code. Many existing methods rely primarily 

on sequential code representations or textual features, which may fail to capture the deeper 

relationships and dependencies within the program, limiting their ability to detect complex 

bugs and design flaws. 
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Additionally, although graph-based models and neural architectures such as Graph Neural 

Networks (GNNs) and transformers have shown promise, their high computational 

requirements and dependence on large, high-quality datasets restrict their practical 

applicability, especially in resource-constrained or real-time environments. Furthermore, 

many studies focus on a narrow set of programming languages or small-scale datasets, raising 

questions about the generalizability of the proposed approaches to diverse software projects 

and industrial-scale codebases. 

Another gap is the limited research on combining different approaches to improve bug 

detection and code review. For example, few studies explore how to effectively use multiple 

types of information from the code, such as its structure, content, and runtime behaviour, 

together. While some work has tried to mix machine learning and deep learning methods, 

there is still a lack of systematic strategies for bringing these different sources of information 

together in a practical way. 

Finally, although evaluation metrics such as accuracy, F1-score, and BLEU are commonly 

reported, there is a lack of standardised benchmarking frameworks for comparing different 

automated code review and bug detection methods. This inconsistency hampers the 

assessment of model robustness, scalability, and effectiveness in real-world software 

development pipelines. 

These unresolved challenges highlight the need for more comprehensive, adaptable, and 

computationally efficient approaches that can effectively leverage structural, semantic, and 

behavioural aspects of code while supporting real-time deployment and cross-project 

generalisation. 
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