
International Journal Research Publication Analysis

Copyright@ Page 1

THEORETICAL REVIEW ON DEEP LEARNING ALGORITHM FOR

AUTOMATED CODE REVIEW AND BUG DETECTION

*1Chika L. Onyagu, 2Odii Maduabuchi 3Ezeamasiobi Chibuzor E., 4Chekwebe

Nwankwo

1Department of Cybersecurity, Delta State University, Delta State, Nigeria.

2 Department of Computer Science, Nnamdi Azikiwe University, Awka, Nigeria.

3 Department of Computer Science, African University of Science and Technology, Abuja.

4 Department of Computer Science, Chukwuemeka Odumegwu University, Uli, Nigeria.

Article Received: 08 December 2025

Article Revised: 28 December 2025

Published on: 16 January 2026

*Corresponding Author: Chika L. Onyagu

Department of Cybersecurity, Delta State University, Delta State, Nigeria.

DIO: https://doi-doi.org/101555/ijrpa.8639

ABSTRACT

This theoretical review examines the application of deep learning algorithms in automated

code review and bug detection, highlighting their potential to improve software quality and

development efficiency. Traditional static and dynamic analysis tools often struggle with

complex code patterns and require extensive manual tuning. Deep learning models,

particularly recurrent neural networks, convolutional architectures, and transformer-based

language models, provide data-driven approaches capable of learning semantic and syntactic

relationships directly from source code. These models enable automated identification of

bugs, code smells, security vulnerabilities, and stylistic inconsistencies with higher accuracy

and adaptability. The review also discusses key challenges, including the need for large, high-

quality labeled datasets, handling diverse programming languages, and ensuring model

interpretability for developers, emphasized by many scholars in this domain. Despite these

limitations, deep learning continues to advance automated code analysis, offering promising

directions for intelligent development environments and continuous integration pipelines.

Overall, the theoretical foundations suggest substantial benefits for future software

engineering practices.

KEYWORDS: Theoretical Review, Deep learning, Algorithm, Automated code review, Bug

detection.

International Journal Research Publication Analysis

2026 Volume: 02 Issue: 01 www.ijrpa.com ISSN 2456-9995 Review Article

Page: 01-32

https://doi-doi.org/101555/ijrpa.8639
http://www.ijrpa.com/

International Journal Research Publication Analysis

Copyright@ Page 2

1.1 INTRODUCTION

Software Quality Assurance (SQA) refers to a systematic set of activities designed to ensure

that software products and development processes meet defined quality standards across the

entire software development life cycle (SDLC). It encompasses planning, design,

implementation, deployment, and maintenance, emphasising preventive practices aimed at

reducing defects, improving reliability, and ensuring that software aligns with user

requirements. Rather than relying solely on defect detection, SQA incorporates proactive,

quality-oriented processes such as audits, metric-driven evaluations, standards compliance,

and continuous monitoring based on frameworks like ISO 9001, CMMI, and IEEE guidelines

to enhance consistency, predictability, and long-term process improvement. These practices

also ensure systematic evaluation of core software quality attributes, including functionality,

performance, reliability, maintainability, portability, and usability.

Within this broader framework, code review remains one of the most essential SQA practices.

Manual code reviews enable early identification of defects, enforcement of coding standards,

and assessment of design decisions. Despite their benefits, manual reviews are often time-

consuming, inconsistent, and heavily dependent on the expertise and availability of

reviewers. As modern software grows in scale and complexity, traditional review methods

increasingly struggle to keep pace with the rapid volume of code changes, limiting their

effectiveness in large, fast-evolving systems.

These limitations have led to the emergence of automated and intelligent techniques for

software quality assurance. Traditional Static Analysis Tools (SATs), linters, and rule-based

engines offer increased efficiency in detecting syntactic issues, stylistic violations, and

common error patterns. However, such tools remain constrained by their reliance on

predefined rules and shallow pattern matching, often failing to capture deeper semantic

relationships within source code or identify subtle context-dependent bugs (Li et al., 2018).

These weaknesses have motivated a growing shift toward data-driven and learning-based

approaches capable of modelling complex program behaviour.

Recent advancements highlight the transformative potential of AI-driven and deep-learning-

based automation frameworks in SQA. Kavuri (2025) emphasises that modern AI-enhanced

systems integrate machine learning (ML), natural language processing (NLP), and deep

learning (DL) to automate critical testing tasks such as test case generation, execution, defect

prediction, and test script maintenance. Through reinforcement learning, these frameworks

can continuously improve test coverage and adapt to evolving software behaviour. NLP-

powered models further enable the conversion of human-readable requirements into

International Journal Research Publication Analysis

Copyright@ Page 3

executable test scripts, significantly reducing manual effort and accelerating validation

processes. Additionally, AI-based defect analytics offer predictive capabilities that allow

teams to prioritise high-risk components, reducing test cycle duration and overall human

workload (Kavuri, 2025).

Deep-learning-based vulnerability detection systems further illustrate the capabilities of

intelligent SQA tools. For example, Li et al. (2018) introduced VulDeePecker, a system that

uses code gadgets, semantically related code segments, to detect subtle vulnerabilities that

traditional static analysis tools often miss. Their experiments demonstrated that deep learning

can substantially reduce false negatives and identify real-world vulnerabilities that were

silently patched but never reported, showcasing the promise of learning-based approaches for

improving automated code review and bug detection.

Despite these advancements, challenges remain. AI-driven SQA systems depend heavily on

high-quality datasets, face interpretability concerns, and often require careful integration into

modern CI/CD pipelines (Kavuri, 2025). However, the growing body of research, including

deep-learning-based vulnerability detection, automated code-review recommendation

systems, and ML-based defect prediction frameworks, demonstrates a clear movement

toward intelligent, scalable, and context-aware quality-assurance tools (Li et al., 2018).

In summary, SQA establishes the essential foundation for developing reliable and high-

quality software systems. While manual code review continues to play a critical role, its

inherent limitations underscore the need for more advanced, adaptable, and automated

approaches. The integration of AI, ML, and deep learning into SQA represents a paradigm

shift toward more efficient, intelligent, and robust code review and bug detection processes.

These emerging technologies not only enhance software dependability but also accelerate

release cycles and support the rapidly evolving demands of modern software development

environments (Kavuri, 2025; Li et al., 2018).

Code review is a fundamental practice in software development aimed at improving code

quality, ensuring compliance with coding standards, and reducing the likelihood of defects in

software systems. It involves the systematic examination of source code by one or more

developers other than the original author to identify issues such as logic errors, inefficiencies,

security vulnerabilities, and poor design decisions. As a core component of Software Quality

Assurance (SQA), code review serves as an early checkpoint in the development workflow,

enabling developers to detect and address defects before they propagate into later stages of

the software life cycle (Fregnan, Petrulio, Di Geronimo, et al., 2022).

International Journal Research Publication Analysis

Copyright@ Page 4

Several techniques have traditionally been used in conducting code reviews, each with its

own strengths and limitations. One of the oldest and most formal approaches is the Fagan

Inspection, a structured review process involving multiple stages such as planning, overview,

preparation, inspection meeting, rework, and follow-up. This technique is highly effective in

identifying deep structural and logical defects but is often time-consuming and resource-

intensive. A more flexible approach is peer review, where developers examine each other’s

code informally, either synchronously (e.g., face-to-face review sessions) or asynchronously

(e.g., comments on version control platforms). Peer reviews encourage knowledge sharing

and team collaboration but may vary in effectiveness depending on reviewer expertise and

availability (Fregnan, Petrulio, & Bacchelli, 2022).

Modern development practices have introduced additional techniques such as pair

programming, where two developers work together at the same workstation, one writes code

while the other reviews in real-time. This method enhances code quality and fosters

collaborative problem-solving, although it may increase development cost. Another widely

used method is tool-assisted code review, supported by version control systems and

collaborative platforms such as GitHub, GitLab, and Gerrit. These platforms enable

asynchronous review, inline comments, automated checks, and integration with Continuous

Integration/Continuous Deployment (CI/CD) pipelines, making the review process more

efficient and scalable (Fregnan, Petrulio, Di Geronimo, et al., 2022).

Underlying these techniques are key principles that guide effective code reviewing. One

essential principle is readability, which emphasises that code should be easy to understand,

well-structured, and properly documented so reviewers can easily identify issues. Another

key principle is maintainability, requiring code to be modular, consistent, and adaptable to

future changes. Consistency with established coding standards and project guidelines ensures

uniformity, reduces technical debt, and facilitates collaborative development. Additionally,

good review practices emphasise constructive feedback, where reviewers provide clear,

actionable, and respectful comments aimed at improving the code rather than criticising the

developer (Fregnan, Petrulio, & Bacchelli, 2022).

Despite the value of traditional techniques, their manual nature poses challenges in large-

scale or fast-paced software environments. Manual reviews can be slow, inconsistent, and

susceptible to human error or oversight. Moreover, as systems grow in complexity,

understanding intricate logic or detecting subtle bugs becomes increasingly difficult, even for

experienced reviewers. Empirical studies indicate that review outcomes often involve

evolvability concerns, with documentation and structural changes being most common, and

International Journal Research Publication Analysis

Copyright@ Page 5

that the number of review changes is influenced by factors such as patch size and added lines

of code rather than reviewer comments alone (Fregnan, Petrulio, & Bacchelli, 2022). These

findings highlight the complexity and limitations of manual review processes and further

motivate the need for automated and intelligent systems.

In modern software engineering, automated code review tools and deep learning-based

systems are emerging as powerful solutions for addressing these limitations, offering faster,

more consistent, and more accurate analysis of source code. Such systems can automatically

classify review changes, providing information that is perceived by practitioners as valuable

for improving the code review process (Fregnan, Petrulio, Di Geronimo, et al., 2022). These

advancements complement traditional practices and represent an important evolution in how

software teams ensure high-quality code.

Software bug detection refers to the process of identifying errors, defects, or anomalies

within a software system that cause incorrect or unexpected behaviour. Effective bug

detection is crucial for ensuring software reliability, security, and performance. Over the

years, various approaches, ranging from manual methods to advanced automated techniques,

have been developed to detect bugs early in the development cycle. These approaches can

generally be categorised into manual, static, dynamic, and intelligent (machine learning–

based) techniques (Akhtar et al., 2023; Shaon & Akter, 2025).

One of the earliest methods for bug detection is manual code review, where developers

examine source code line-by-line to identify logical errors, inconsistencies, and violations of

best practices. Although this method can uncover deep structural issues, it is time-consuming,

susceptible to human bias, and limited in scalability. To address these limitations, automated

techniques have gained prominence, with static and dynamic analysis being the two most

widely adopted approaches.

Static bug detection involves examining source code without executing it. Tools such as

SonarQube, PMD, FindBugs, and ESLint apply rule-based and pattern-matching techniques

to identify potential issues such as null pointer dereferences, unused variables, unreachable

code, code smells, and security vulnerabilities. Static analysis is particularly effective at

detecting syntactic and structural issues early in development and can be integrated into

Continuous Integration (CI) pipelines for automated quality checks. However, rule-based

static analysis tools often suffer from limitations such as high false-positive rates and an

inability to interpret complex program logic or understand deeper semantic relationships

(Akhtar et al., 2023; Shaon & Akter, 2025).

International Journal Research Publication Analysis

Copyright@ Page 6

In contrast, dynamic analysis detects bugs by executing the software and observing its

runtime behaviour. This category includes techniques such as unit testing, integration testing,

fuzz testing, symbolic execution, and runtime monitoring. Dynamic analysis is effective for

identifying issues such as memory leaks, race conditions, buffer overflows, and API misuse.

Tools like Valgrind, AFL (American Fuzzy Lop), and JUnit support various aspects of

dynamic testing. While dynamic analysis can uncover runtime-specific defects that static

tools miss, it requires executable code, comprehensive test coverage, and often significant

computational resources (Akhtar et al., 2023).

Beyond traditional static and dynamic methods, advancements in artificial intelligence have

given rise to machine learning (ML) and deep learning (DL)-based bug detection approaches.

These approaches leverage historical code data, bug reports, and code change patterns to

learn statistical relationships between code characteristics and the presence of defects.

Supervised learning models, for instance, classify code segments as buggy or clean based on

extracted features such as complexity metrics or code tokens. Meanwhile, deep learning

models, including recurrent neural networks (RNNs), convolutional neural networks (CNNs),

transformers, and graph neural networks (GNNs), can automatically learn semantic and

structural representations of code without extensive manual feature engineering (Akhtar et

al., 2023; Shaon & Akter, 2025). These intelligent models have demonstrated improvements

in detection accuracy and reduced the need for manually defined rules.

Another emerging approach involves hybrid bug detection, which combines static analysis,

dynamic testing, and machine learning to leverage the strengths of each method. For

example, hybrid models can use static analysis outputs as features for training machine

learning classifiers or utilise runtime traces to enhance deep learning performance. This

integrated strategy enhances precision and recall, particularly for complex bugs that require

both structural and behavioural understanding (Akhtar et al., 2023).

Despite progress in these techniques, bug detection remains a challenging task due to

evolving software complexity, increasing codebases, and the need to detect subtle logic or

security vulnerabilities. Traditional rule-based tools struggle with scalability and contextual

understanding, while machine learning approaches require large, high-quality datasets and

may face issues such as model interpretability, class imbalance, and limited vulnerability

coverage. Furthermore, modern approaches, including Large Language Models (LLMs),

provide significant potential for capturing both syntactic and semantic properties of code but

introduce challenges such as hallucination and high computational cost (Shaon & Akter,

2025). These limitations motivate ongoing research into more advanced, intelligent, and

International Journal Research Publication Analysis

Copyright@ Page 7

automated methods, including neuro-symbolic hybrid approaches, parameter-efficient fine-

tuning, cross-language generalisation, continual learning, and explainable AI for vulnerability

detection (Shaon & Akter, 2025).

Machine Learning (ML) has emerged as a transformative technology in software engineering,

enabling automated analysis, prediction, optimisation, and decision-making across various

phases of the software development lifecycle. ML techniques leverage data-driven patterns to

understand software artefacts, detect anomalies, recommend improvements, and support tasks

that traditionally require human expertise. As modern software systems become increasingly

complex and data-intensive, ML provides a scalable and intelligent approach to addressing

long-standing challenges related to code quality, bug detection, maintenance, and developer

productivity (Khalid et al., 2023; Yadav et al., 2024).

In software engineering, ML applications can be broadly classified into tasks such as defect

prediction, code classification, effort estimation, automated testing, code recommendation,

and software documentation. These tasks rely on diverse data sources, including source code,

commit histories, code metrics, bug reports, execution logs, and developer interactions. ML

models learn from these artefacts to perform predictions or classifications that assist

developers in making informed decisions. For instance, defect prediction models analyse

historical bug data and software metrics to estimate the likelihood of defects in new code

modules, enabling teams to allocate testing and review resources more effectively (Khalid et

al., 2023).

ML encompasses multiple paradigms, each applicable to different software engineering

problems. Supervised learning is commonly used when labelled datasets exist, such as code

segments labelled as "buggy" or "clean." Models such as decision trees, support vector

machines (SVM), random forests, and neural networks are often employed for defect

prediction, code smell detection, and vulnerability classification. Unsupervised learning

techniques, including clustering and anomaly detection, help discover hidden patterns in code

repositories or identify unusual behaviour in system logs. Reinforcement learning is also

being explored for applications such as automated program repair, compiler optimisation, and

adaptive testing, where the model learns optimal actions through iterative interactions with

the environment (Khalid et al., 2023; Yadav et al., 2024).

A critical component of ML in software engineering is feature engineering, which involves

extracting meaningful representations of code to transform it into a format suitable for ML

models. Traditional approaches rely on manually crafted features such as cyclomatic

complexity, lines of code, coupling, cohesion, and naming conventions. While these features

International Journal Research Publication Analysis

Copyright@ Page 8

are useful, they often fail to capture the deeper semantics and structural relationships in code.

To overcome these limitations, representation learning and deep learning techniques have

gained prominence, enabling models to automatically learn complex features from raw code

data (Yadav et al., 2024).

ML has significantly enhanced automated code review by enabling systems to analyse code

patterns, understand developer intent, and generate context-aware feedback. ML-based

models can learn from historical review comments, commit messages, and review outcomes

to assist reviewers by predicting potential issues, suggesting improvements, or prioritising

code segments requiring attention. Similarly, in bug detection, ML algorithms can identify

recurring defect patterns and generalise beyond predefined rules, offering more flexible and

scalable solutions than traditional static analysis tools (Khalid et al., 2023).

Research demonstrates that optimised ML models can achieve very high accuracy in defect

prediction. For example, SVM and optimised SVM models have achieved accuracies up to

99% and 99.8%, respectively, while other models, such as Naive Bayes, Random Forest, and

ensemble approaches, also perform strongly (Khalid et al., 2023). In code smell detection,

ML has also proven effective, with algorithms like SVM, J48, Naive Bayes, and Random

Forest being widely applied to identify early warning signs of potential software quality

issues. These approaches help developers detect structural or design problems during the

coding phase, supporting higher software quality and maintainability (Yadav et al., 2024).

Despite its advantages, the integration of ML into software engineering faces challenges such

as data scarcity, imbalanced datasets, noisy labels, language diversity, and model

interpretability. Software evolution introduces concept drift, requiring models to adapt

continuously to maintain performance. Nonetheless, ML continues to play a central role in

modern software engineering, providing the foundation for more advanced methods such as

deep learning and hybrid approaches that further enhance automated code review and bug

detection systems (Khalid et al., 2023; Yadav et al., 2024).

Deep Learning (DL) is a subfield of Machine Learning that focuses on neural networks with

multiple hierarchical layers capable of automatically learning complex patterns from data.

Unlike traditional ML approaches that rely heavily on manual feature engineering, deep

learning models extract high-level abstractions directly from raw input, making them

particularly powerful for tasks involving unstructured data such as images, speech, natural

language, and increasingly, source code. DL’s ability to model semantic relationships and

nonlinear dependencies has positioned it as a leading technique in modern artificial

intelligence research and applications (Mienye & Swart, 2024).

International Journal Research Publication Analysis

Copyright@ Page 9

At the core of deep learning lies the artificial neural network (ANN), which consists of

interconnected layers of neurons organised into input, hidden, and output layers. Each neuron

performs a weighted transformation of its inputs followed by a nonlinear activation function,

enabling the network to approximate complex functions. As the number of hidden layers

increases, the network gains the capacity to learn deeper and more abstract features. Training

is achieved using backpropagation and gradient-based optimisation algorithms such as

Stochastic Gradient Descent (SGD), Adam, or RMSprop (Mienye & Swart, 2024).

Several specialised deep learning architectures have been developed to handle different types

of data and tasks. Convolutional Neural Networks (CNNs) are well-suited for grid-like data

and have been widely applied in computer vision. Their ability to learn spatial features

through convolutional operations has also proven useful in source code analysis, particularly

when treating code as token sequences or structural graphs. Recurrent Neural Networks

(RNNs), along with their variants Long Short-Term Memory (LSTM) and Gated Recurrent

Unit (GRU), are designed for sequential data and can capture long-range dependencies. These

models have been used in tasks such as code generation, bug prediction, and automatic

comment generation, where understanding the sequential nature of code tokens is essential

(Mienye & Swart, 2024).

A major breakthrough in deep learning came with the introduction of the Transformer

architecture, built around the concept of self-attention. Transformers, including models such

as BERT, GPT, and their code-specific adaptations (CodeBERT, GraphCodeBERT, CodeT5),

excel at capturing contextual relationships by attending to all parts of an input sequence

simultaneously. This parallelism enables them to process long sequences efficiently and learn

richer semantic representations of code. Transformers have thus become a dominant

architecture in state-of-the-art automated code review and bug detection systems (Mienye &

Swart, 2024).

Graph Neural Networks (GNNs) have also emerged as a crucial tool in deep learning for code

analysis, particularly for tasks that require a structural understanding, such as bug

localisation. Source code naturally forms structures like Abstract Syntax Trees (ASTs),

Control Flow Graphs (CFGs), and data dependency graphs. GNNs propagate information

through graph nodes and edges, enabling the model to capture both syntactic structure and

semantic interactions. This makes GNNs particularly effective for detecting logical bugs,

security vulnerabilities, and structural anomalies. Recent work has demonstrated that graph-

based bug classifiers can accurately identify buggy nodes in code graphs, effectively

International Journal Research Publication Analysis

Copyright@ Page 10

localising a wide range of bug types, including undefined properties, functional errors,

variable naming errors, and variable misuse (Yousofvand et al., 2026).

Training deep learning models typically requires large datasets, high computational power,

and careful tuning of hyperparameters such as learning rate, batch size, number of layers, and

regularisation techniques. Methods such as dropout, batch normalisation, and early stopping

help prevent overfitting and ensure that models generalise well to unseen data. Transfer

learning is increasingly used, allowing pre-trained models to be fine-tuned on domain-

specific code datasets, significantly reducing training costs and improving performance for

specialised tasks (Mienye & Swart, 2024).

Despite these advantages, deep learning models face several challenges. They often require

substantial data to achieve high performance, and their internal mechanisms can be difficult

to interpret, a concern in software engineering where explainability is critical. Poorly trained

models may struggle with code from unfamiliar programming languages or unconventional

coding styles. Nonetheless, the strengths of deep learning, particularly its ability to learn

semantic, contextual, and structural patterns, make it a powerful foundation for automated

code review, bug detection, and code understanding (Mienye & Swart, 2024).

Representation learning for source code refers to the process of transforming program

elements, such as tokens, syntax structures, control flows, and dependency relationships, into

numerical representations that machine learning and deep learning models can effectively

process. Unlike natural language, source code is highly structured, governed by strict

grammar rules, and contains deep semantic dependencies. As a result, effective representation

learning is fundamental to enabling automated code review, bug detection, vulnerability

analysis, code summarisation, and various other intelligent software engineering tasks.

Traditional machine learning techniques rely on manually engineered features derived from

code metrics, token frequencies, or structural characteristics. While these handcrafted features

offer limited insights, they fail to fully capture the rich semantics and hierarchical structure

embedded in modern programming languages. Contemporary approaches overcome these

limitations by learning distributed representations that encode both syntactic and semantic

information in dense vector spaces.

A foundational line of work treats source code as token sequences, similar to natural

language. Embedding techniques such as Word2Vec, GloVe, and FastText have been adapted

to generate vector representations for tokens, identifiers, and keywords, capturing contextual

relationships useful for classification or comment generation tasks. However, token-based

International Journal Research Publication Analysis

Copyright@ Page 11

models often struggle to capture deeper structural dependencies, as the meaning of code

extends beyond linear token order.

To better capture hierarchical structure, many approaches incorporate Abstract Syntax Trees

(ASTs), which represent the syntactic organisation of code. Models such as TreeLSTM and

other recursive neural architectures leverage the parent–child relationships in ASTs to extract

structural information and better understand program logic. A notable advancement in AST-

based learning is code2vec, which represents a code snippet by decomposing it into multiple

paths in its AST and learning embeddings for these paths jointly. These path-based

representations are aggregated to form a single fixed-length vector capable of predicting

semantic properties, such as method names (Alon et al., 2018). The ability of code2vec to

learn representations from millions of methods illustrates the effectiveness of structural

decomposition in capturing semantic regularities across large codebases.

Beyond syntactic structure, more expressive representations incorporate graph-based

semantics. Control Flow Graphs (CFGs) and Data Flow Graphs (DFGs) model execution

order and variable interactions, respectively, enabling deeper analysis of program behavior.

Graph Neural Networks (GNNs), including GCNs, GATs, and MPNNs, have been widely

adopted to learn from these graph structures, capturing both local and global semantic

dependencies essential for tasks such as bug detection and vulnerability discovery. Recent

work further expands this paradigm by integrating multiple forms of program graphs into

unified models. For example, CogCol converts code graphs into unique sequences and

applies supervised contrastive learning to strengthen structural understanding and improve

generalisation across similar code patterns, addressing the limitations of purely syntactic

AST-based approaches (Shi et al., 2024).

Pre-trained language models for code have also transformed representation learning. Trained

on large-scale repositories, these models combine token-level and structure-level information

to produce context-aware embeddings that reflect both syntactic and semantic relationships.

Their effectiveness across tasks like automated code review, defect prediction, and code

retrieval highlights the power of large-scale pre-training for capturing deep code semantics.

An emerging direction is multimodal representation learning, which integrates multiple views

of code, including tokens, ASTs, CFGs, DFGs, and execution traces, into a unified

embedding. These multimodal models leverage complementary structural and semantic

information to achieve greater robustness and improved performance across diverse software

engineering tasks.

International Journal Research Publication Analysis

Copyright@ Page 12

Despite these advancements, several challenges persist. Differences in syntax and semantics

across programming languages complicate cross-language generalisation. Detecting subtle or

logic-dependent bugs often requires modelling complex program dependencies that may not

be fully represented in generic embeddings. In addition, labelled datasets for bug detection

and defect prediction remain limited, hindering the training of high-capacity models.

Nonetheless, ongoing research in structural, semantic, and multimodal representation learning

continues to push the boundaries of automated code understanding, providing a strong

foundation for advanced intelligent systems in software engineering.

Deep learning models for automated code review aim to assist developers in identifying

defects, improving code quality, and ensuring compliance with software engineering

standards through intelligent, machine-driven analysis. Traditional automated review tools

depend heavily on handcrafted rules and heuristics, which are effective at detecting syntactic

issues but struggle to capture deeper semantics and contextual logic. Deep learning provides a

powerful alternative by learning complex patterns from large codebases and enabling models

to reason about structural dependencies, functional intent, and semantic relationships in

source code. Recent studies highlight that graph-based and deep neural models significantly

outperform conventional static analysis tools in vulnerability detection and semantic

understanding (Abdul Kadar, 2022).

Various neural architectures have been explored for automated code review, each offering

unique strengths. Sequence-based models such as RNNs, LSTMs, and GRUs treat code as

token sequences and learn contextual dependencies across statements. These architectures

have been applied to tasks such as predicting review comments, detecting code smells, and

identifying stylistic inconsistencies. However, because they rely on sequential token

representations, these models often struggle with long-range dependencies and the rich

structural complexity inherent in modern programming languages (Yin et al., 2023).

Transformer-based models have become the dominant approach for code intelligence due to

their ability to capture global context through self-attention mechanisms. Pretrained models

such as CodeBERT, CodeT5, PLBART, GraphCodeBERT, and CodeGPT have demonstrated

state-of-the-art performance across code review tasks by learning powerful semantic and

contextual representations from massive open-source repositories. These models support fine-

tuning for domain-specific code review scenarios, allowing high accuracy even with

relatively small datasets. For example, models that fuse structural information, such as

program dependency graphs, with sequence-based representations within transformer

architectures have shown notable improvements in accuracy and robustness (Yin et al., 2023).

International Journal Research Publication Analysis

Copyright@ Page 13

Graph-based deep learning models represent another important paradigm in automated code

review. By expressing software as Abstract Syntax Trees (ASTs), Control Flow Graphs

(CFGs), Data Flow Graphs (DFGs), or Program Dependency Graphs (PDGs), Graph Neural

Networks (GNNs) capture rich semantic and structural information that sequential models

often overlook. Studies have shown that GNN-based representations significantly enhance

vulnerability detection, providing notable gains in accuracy, context awareness, and reduction

of false positives compared to traditional tools and earlier neural approaches (Abdul Kadar,

2022). Program dependency graph serialisation methods, such as PDG2Seq, further improve

representational quality by converting complex semantic graphs into unique sequences while

preserving structure and meaning, enabling models like CodeBERT-based architectures to

more effectively detect and correct defects (Yin et al., 2023).

Hybrid and multimodal deep learning approaches combine multiple representational views,

including token sequences, ASTs, CFGs, and PDGs, to achieve more robust automated code

review. These models often integrate transformers with GNNs to capture both semantic

context and structural dependencies, improving the detection of subtle issues such as variable

misuse, logical inconsistencies, or resource mismanagement. The fusion of sequence and

structural representations has proven especially valuable for tasks requiring nuanced

reasoning, such as automated fix suggestion or context-aware comment generation.

Deep learning has also enabled systems to generate natural-language review comments

derived from historical pull request discussions and developer feedback. These models can

articulate issues and propose improvements in human-readable form, reducing cognitive load

and enhancing the collaborative review process. Attention mechanisms further improve

interpretability by highlighting influential regions of the code, addressing concerns about

transparency and model explainability, both important in professional software engineering

contexts.

Despite substantial progress, challenges remain. Deep learning models require large, high-

quality datasets containing code and corresponding review annotations; yet, these datasets are

difficult to curate due to privacy constraints, inconsistency in review styles, and the labour-

intensive nature of labelling. Moreover, the opaque inner workings of deep neural models

raise concerns about trust and explainability, especially when automated feedback influences

production systems. Ensuring that automated code review systems provide reliable,

actionable, and transparent insights remains an ongoing research priority.

Deep learning has significantly transformed the landscape of software bug detection by

enabling automated systems to learn patterns of defective code directly from large datasets.

International Journal Research Publication Analysis

Copyright@ Page 14

Unlike traditional rule-based or heuristic methods, deep learning approaches possess the

ability to capture complex semantic relationships, structural dependencies, and contextual

patterns within source code. This makes them particularly effective for detecting subtle bugs,

logic errors, and security vulnerabilities that may not be easily identifiable through static

analysis tools or manual code review. Recent work also shows that deep learning models

benefit from considering not only code features but also inter-module dependencies, as

treating software systems as interconnected graphs can yield improved defect prediction

performance (Cui et al., 2022).

One of the earliest deep learning approaches for bug detection involves sequence-based

models, where source code is treated as a sequence of tokens similar to natural language.

Models such as Recurrent Neural Networks (RNNs), Long Short-Term Memory networks

(LSTMs), and Gated Recurrent Units (GRUs) are commonly used in this paradigm. These

models learn long-range dependencies within code, allowing them to detect patterns

associated with common bug types, such as incorrect API usage or logical inconsistencies.

Although effective in modelling token-level context, sequence-based methods sometimes

struggle with structural complexity, as raw token sequences cannot fully capture the

hierarchical and graph-oriented nature of source code. This limitation has also been observed

in modern issue-tracking datasets, where text-based bug reports require richer structural

modelling to improve prediction accuracy (Siachos et al., 2025).

To overcome the limitations of sequential processing, convolutional neural networks (CNNs)

have also been employed in bug detection tasks. CNNs, while traditionally used in image

analysis, can be adapted to operate on encoded representations of code, such as token

embeddings or serialised abstract syntax trees (ASTs). Their strength lies in detecting local

patterns, enabling the identification of small but critical code fragments associated with

defects. However, CNNs are less effective when deeper semantic understanding or global

context is required, especially for complex bugs involving long-range dependencies or multi-

module interactions.

A breakthrough in deep learning for bug detection came with the introduction of transformer-

based architectures, which use self-attention mechanisms to model global dependencies

within code sequences. Models such as CodeBERT, CodeT5, GraphCodeBERT, and

DeepBugs have achieved state-of-the-art performance in numerous bug detection tasks.

Transformers excel in capturing the contextual relationships between variables, function

calls, and control flows, making them highly effective for identifying complex logical bugs

and security vulnerabilities. Pre-training on massive code corpora allows these models to

International Journal Research Publication Analysis

Copyright@ Page 15

generalise across programming languages and defect types. Fine-tuning on bug-specific

datasets further improves predictive performance by addressing domain-specific

characteristics.

Another influential direction in deep learning-based bug detection is the use of Graph Neural

Networks (GNNs). Many software bugs arise from improper data flows, variable misuse, or

broken control paths, patterns that are naturally represented as graph structures. GNNs

operate on representations such as Abstract Syntax Trees (ASTs), Control Flow Graphs

(CFGs), Data Flow Graphs (DFGs), and Program Dependency Graphs (PDGs), propagating

information across nodes and edges to capture both syntactic and semantic properties of code.

This graph-centric perspective aligns with emerging research that models entire software

systems as complex networks, treating classes or modules as nodes and their dependencies as

edges, enabling more accurate defect prediction through improved structural representations

(Cui et al., 2022). Additionally, hybrid graph-text models leveraging Graph Attention

Networks (GATs) have demonstrated strong performance in predicting bugs from textual

issue descriptions by combining semantic embeddings with graph-based relationships

(Siachos et al., 2025).

In addition to standalone architectures, hybrid deep learning models integrate multiple

representations of code—tokens, ASTs, CFGs, embeddings, and execution traces—to provide

a more robust understanding of program behaviour. Such models leverage the complementary

strengths of different views to detect subtle bugs that might be missed by single-

representation approaches. For instance, a hybrid model may combine a transformer to

capture high-level semantics with a GNN to analyse data dependencies, yielding more

accurate predictions of variable misuse or incorrect control flow.

Moreover, deep learning has enabled anomaly detection approaches, in which autoencoders

or variational autoencoders (VAEs) learn latent representations of “normal” code behaviour

and detect deviations that may signify defects. These methods are particularly valuable when

labelled datasets are scarce, allowing unsupervised or semi-supervised learning to identify

unusual patterns resembling potential bugs.

Despite the remarkable progress, deep learning approaches for bug detection face challenges

such as data imbalance, limited availability of high-quality labelled datasets, and difficulties

related to model interpretability. Software systems vary widely in language, architectural

style, and programming practices, making generalisation across domains difficult.

Furthermore, developers often require transparent explanations for identified bugs, yet deep

models typically operate as black boxes, complicating real-world adoption.

International Journal Research Publication Analysis

Copyright@ Page 16

Nevertheless, deep learning continues to push the boundaries of automated bug detection,

offering scalable, accurate, and intelligent solutions that complement human expertise and

traditional tools. With ongoing advancements in graph-based modelling, multimodal learning,

and transformer architectures, deep learning is expected to play an increasingly central role in

next-generation software quality assurance systems (Cui et al., 2022; Siachos et al., 2025).

Evaluation metrics play a critical role in assessing the performance, reliability, and

effectiveness of automated code review and bug detection systems. These metrics provide

quantitative measures that help researchers and practitioners determine how well a model

identifies defects, classifies code segments, generates review comments, or supports decision-

making during software development. Choosing appropriate metrics ensures fair comparisons

between techniques and provides insights into their strengths and limitations (Albattah &

Alzahrani, 2024).

For classification-based tasks, such as distinguishing buggy from non-buggy code, commonly

used metrics include Accuracy, Precision, Recall, and F1-Score. Accuracy measures the

proportion of correct predictions made by the model; however, it becomes less reliable when

datasets are imbalanced, which is often the case in bug detection, where non-defective code

typically outnumbers defective code. In such cases, a model could achieve high accuracy

while failing to detect actual defects. To address this, Precision and Recall offer more

nuanced evaluation. Precision measures the proportion of correctly identified buggy instances

among all predicted buggy instances, which is essential when minimising false positives is a

priority. Recall measures the proportion of actual buggy instances correctly detected,

reducing false negatives and ensuring critical defects are not overlooked. The F1-Score, the

harmonic mean of Precision and Recall, balances these concerns, providing a single metric

that reflects overall predictive quality (Albattah & Alzahrani, 2024).

The Confusion Matrix is often employed to provide a comprehensive view of model

performance by summarising true positives, true negatives, false positives, and false

negatives. It enables deeper analysis of model behaviour and facilitates identification of

specific error patterns. Similarly, the Receiver Operating Characteristic – Area Under the

Curve (ROC-AUC) evaluates the trade-off between true positive and false positive rates

across varying thresholds. ROC curves are particularly useful for defect prediction models, as

they provide an overall assessment of classifier performance across all possible threshold

values, helping to identify optimal operational points for practical use (Morasca & Lavazza,

2020).

International Journal Research Publication Analysis

Copyright@ Page 17

When automated code review systems generate natural-language comments or suggestions,

evaluation metrics shift toward language quality and semantic relevance. Metrics such as

BLEU (Bilingual Evaluation Understudy), ROUGE (Recall-Oriented Understudy for Gisting

Evaluation), and METEOR assess the similarity between generated and reference comments,

analysing aspects such as n-gram overlap, word precision and recall, and semantic alignment.

Although originally developed for machine translation and summarisation, these metrics are

now standard for evaluating textual feedback in code review environments (Albattah &

Alzahrani, 2024).

For ranking or prioritisation tasks, such as recommending which files or lines require urgent

attention, metrics like Mean Average Precision (MAP) and Mean Reciprocal Rank (MRR) are

employed. These assess a model’s ability to correctly rank buggy or problematic code higher,

which is crucial for helping developers focus their efforts efficiently. In industrial contexts,

additional metrics related to software quality may be considered, including reductions in

post-release defects, review latency, developer productivity, and maintainability indices.

Though harder to quantify, these metrics reflect the real-world impact of automated review

and bug detection tools (Albattah & Alzahrani, 2024).

Selecting appropriate metrics depends on the goals of the system being developed. For

instance, a bug detection model aimed at minimising missed defects may prioritise Recall,

whereas a static analyser integrated into a continuous integration pipeline may emphasise

Precision to reduce unnecessary alerts. Similarly, natural-language comment generation

models rely on linguistic metrics, while structural defect detection models depend on

classification metrics such as Accuracy, F1-Score, or ROC-AUC (Morasca & Lavazza, 2020;

Albattah & Alzahrani, 2024).

Despite significant progress in applying deep learning to automated code review and bug

detection, several challenges and limitations continue to constrain the effectiveness,

reliability, and adoption of these systems. These challenges stem from the complexity of

software systems, the evolving nature of programming languages, and inherent limitations in

machine learning methodologies. Understanding these issues is essential for guiding future

research and improving system performance (Viswanadhapalli, 2024).

One major challenge is the inherent complexity and variability of source code. Unlike natural

language, code is highly structured and governed by strict grammatical and semantic rules.

Small changes in syntax can drastically alter program behaviour, making it difficult for deep

learning models to capture exact semantics. While modern models effectively learn statistical

patterns, they may fail to understand deeper logic, data flow, or interactions between

International Journal Research Publication Analysis

Copyright@ Page 18

components, leading to incorrect predictions or shallow analyses. This limitation becomes

even more pronounced in large-scale or highly modular projects where context extends across

multiple files (Viswanadhapalli, 2024; Golovnev, Starovoytov, & Staroletov, 2025).

Another critical limitation is the scarcity of high-quality, well-labelled datasets. Although

numerous code datasets exist, many suffer from label noise, incomplete bug descriptions, or

inconsistent annotations. For bug detection tasks, the imbalance between buggy and non-

buggy samples often causes models to exhibit poor recall, failing to detect rare but significant

defects. Furthermore, datasets sourced from open-source repositories may not be

representative of proprietary or domain-specific software, limiting the generalizability of

trained models (Viswanadhapalli, 2024; Golovnev et al., 2025).

The dynamic and evolving nature of software development introduces additional challenges.

Programming languages, frameworks, and libraries are continually updated, causing models

trained on older data to become outdated. Emerging coding patterns, new vulnerabilities, and

evolving best practices require ongoing retraining and dataset updates. Failure to adapt can

result in outdated or irrelevant recommendations, reducing trust in automated systems

(Viswanadhapalli, 2024).

Interpretability is another significant concern. Deep learning models, particularly large neural

architectures, often operate as black boxes, providing little insight into why a specific piece

of code is flagged as defective. Developers require clear, interpretable explanations to trust

automated suggestions. Without transparency, these systems may be perceived as unreliable

or overly cautious, which can limit adoption in professional environments (Viswanadhapalli,

2024; Golovnev et al., 2025).

False positives and false negatives present additional obstacles. Excessive false positives can

overwhelm developers with unnecessary warnings, reducing productivity and discouraging

tool usage. Conversely, false negatives may allow critical defects to remain undetected.

Balancing precision and recall is especially challenging for complex bugs that require deep

semantic reasoning or contextual understanding across multiple files (Viswanadhapalli,

2024).

Integrating automated code review tools into existing development workflows also presents

difficulties. Many organisations involve multiple stakeholders, diverse tools, and varying

coding standards. Automated systems must be highly adaptable to different project structures,

codebases, and review cultures. Poor integration can disrupt workflows, create redundancy,

or conflict with human reviewers’ judgments (Golovnev et al., 2025).

International Journal Research Publication Analysis

Copyright@ Page 19

Deep learning models also demand substantial computational resources for training and

inference. Large models can be expensive to train and maintain, particularly in continuous

integration pipelines where rapid feedback is essential. Resource constraints may prevent

smaller teams or organisations from deploying advanced models, limiting their practicality

(Viswanadhapalli, 2024).

Detecting semantic, logical, or context-dependent bugs, such as concurrency issues, race

conditions, or security vulnerabilities that depend on runtime behaviour, remains particularly

difficult. Static code alone may not reveal these defects, and current deep learning models

struggle to infer dynamic behaviour without execution traces or symbolic analysis tools

(Viswanadhapalli, 2024; Golovnev et al., 2025).

Ethical concerns also arise, including potential bias embedded in training data, which may

cause models to favour certain coding styles, patterns, or developer practices. This can lead to

non-uniform treatment of contributions and inadvertently introduce unfairness

(Viswanadhapalli, 2024).

Finally, developer trust and acceptance continue to be major barriers. Developers may resist

tools that generate unclear, incorrect, or overly aggressive suggestions. Building trust requires

consistent performance, interpretability, and the ability to complement rather than replace

human expertise (Viswanadhapalli, 2024; Golovnev et al., 2025).

In summary, while deep learning has significantly advanced automated code review and bug

detection, challenges ranging from dataset limitations and interpretability issues to workflow

integration and computational constraints continue to limit the effectiveness and scalability of

these systems. Addressing these challenges is essential for developing robust, trustworthy,

and practical solutions capable of supporting modern software engineering processes

(Viswanadhapalli, 2024; Golovnev et al., 2025).

2.1 Review of Related Works

The increasing complexity of software systems has made manual code review and bug

detection both time-consuming and error-prone, prompting significant research into

automated approaches. Traditional static and rule-based analysis tools, such as SonarQube

and FindBugs, have been widely used to detect code smells and potential bugs, but they often

fail to capture deeper semantic or context-specific issues. Consequently, researchers have

turned to deep learning techniques to improve automated code analysis. Recent studies have

explored sequence-based models, such as LSTMs, to learn patterns from historical code

changes and suggest corrections or detect anomalies. More recently, transformer-based

International Journal Research Publication Analysis

Copyright@ Page 20

models, including CodeBERT and GraphCodeBERT, have leveraged large code corpora and

structural representations to achieve state-of-the-art performance in tasks like code review,

bug detection, and code summarisation. While these deep learning approaches show

considerable promise, challenges remain in terms of dataset requirements, generalisation

across diverse projects, and computational cost. This section reviews related work in deep

learning-based automated code review and bug detection, with particular attention to models

that capture semantic and structural aspects of source code.

Siva et al (2023). Automatic software bug prediction using adaptive artificial jelly

optimisation with long short-term memory.

Siva et al. (2023) proposed a deep learning-based framework for software bug prediction,

aiming to improve software quality and reliability by detecting defects at early stages of

development. The approach consisted of three key stages: pre-processing to remove duplicate

data, feature selection using an adaptive artificial jelly optimisation algorithm (A2JO) to

reduce complexity and prevent overfitting, and classification using a long short-term memory

(LSTM) model to predict defective and non-defective code. Experiments were conducted on

publicly available datasets, including Promise and NASA repositories, and the model was

evaluated using metrics such as accuracy, F-measure, G-measure, and Matthews Correlation

Coefficient (MCC). The results demonstrated high predictive performance, achieving

accuracies of 93.41% and 92.8% for the Promise and NASA datasets, respectively. While the

study highlighted the effectiveness of combining feature optimisation with LSTM-based

prediction, its applicability may be influenced by dataset characteristics and the

computational cost of model training. Nevertheless, it provides a valuable contribution to

automated bug detection research by integrating deep learning with feature selection

techniques.

Khalid et al. (2023) Software Defect Prediction Analysis Using Machine Learning

Techniques

Khalid et al. (2023) investigated machine learning (ML) techniques for software defect

prediction, focusing on improving model accuracy and precision on publicly available

datasets. The study applied K-means clustering to categorise class labels and employed

various classification models on selected features. To further enhance model performance,

Particle Swarm Optimisation (PSO) was used to optimise the ML models. The models were

evaluated using metrics including accuracy, precision, recall, F-measure, error metrics, and

International Journal Research Publication Analysis

Copyright@ Page 21

confusion matrices. Results indicated that all ML and optimised ML models performed well,

with Support Vector Machine (SVM) and optimised SVM achieving the highest accuracies of

99% and 99.80%, respectively. Other models, including Naive Bayes, Random Forest, and

ensemble methods, also showed strong performance. While the study demonstrates the

effectiveness of combining feature selection and model optimisation for defect prediction, its

reliance on specific dataset characteristics may influence generalizability. Nonetheless, it

contributes significantly to advancing automated bug detection techniques with high-

accuracy ML approaches.

Akhtar, N., Rana, A., Deshpande, P. P., Kumar, M., Parida, P. K., & Bajaj, K. K. (2023).

Software bug prediction and detection using machine learning and deep learning.

International Journal of Intelligent Systems and Applications in Engineering

Akhtar et al. (2023) conducted a comprehensive study on the application of machine learning

(ML) and deep learning (DL) techniques for software bug prediction and detection. The

research focused on analysing data from code repositories, bug databases, and other software-

related sources to identify patterns linking code attributes to defect occurrence. The study

included a comparative evaluation of various ML and DL approaches, emphasising the

importance of publicly accessible datasets and model interpretability. The authors highlighted

the potential of hybrid methodologies that combine machine learning and deep learning to

improve prediction accuracy and detection capabilities. While the paper provided a broad

overview of existing techniques and their practical implications for software development, it

also discussed current limitations and identified future research directions in automated bug

detection and prediction.

Shaon, M. S. H., & Akter, M. S. (2025). Modern Approaches to Software Vulnerability

Detection: A Survey of Machine Learning, Deep Learning, and Large Language Models

Shaon and Akter (2025) presented a comprehensive survey of modern approaches for

automated software vulnerability detection, focusing on machine learning (ML), deep

learning (DL), and large language model (LLM) techniques. The study analysed recent

advances in feature representation, fine-tuning, generative methods, and prompt engineering,

highlighting their ability to capture both syntactic and semantic aspects of source code. Key

challenges, including limited real-world datasets, class imbalance, interpretability issues, and

high computational costs, were critically discussed. The authors also outlined promising

future directions, such as neuro-symbolic hybrid methods, parameter-efficient fine-tuning,

International Journal Research Publication Analysis

Copyright@ Page 22

cross-language generalisation, continual learning, and explainable AI. By bridging the gap

between classical feature-based methods and LLM-driven frameworks, the survey provides

valuable insights for developing scalable, accurate, and interpretable vulnerability detection

systems.

Yadav, P. S., Rao, R. S., Mishra, A., & Gupta, M. (2024). Machine Learning-Based

Methods for Code Smell Detection

Yadav et al. (2024) conducted a comprehensive survey of machine learning (ML) techniques

for code smell detection, which serve as early indicators of potential software quality issues.

The study reviewed 42 relevant works from 2005 to 2024, covering a range of ML algorithms

including Support Vector Machines, J48, Naive Bayes, and Random Forest, as well as

traditional methods such as rule-based and Bayesian approaches. The authors highlighted

challenges in code smell detection, including the lack of standardized definitions, difficulty in

feature selection, and handling large-scale datasets. By evaluating multiple contributing

factors and presenting class-wise distributions of ML algorithms, the study demonstrated the

potential of ML methods to improve software design and development practices. The findings

emphasize the practical value of ML in anticipating and addressing software design flaws,

ultimately enhancing software quality and maintainability.

Albattah, W., & Alzahrani, M. (2024). Software Defect Prediction Based on Machine

Learning and Deep Learning Techniques

Albattah and Alzahrani (2024) investigated machine learning (ML) and deep learning (DL)

techniques for software defect prediction, emphasizing early-stage bug detection to enhance

software reliability and reduce maintenance costs. The study evaluated eight widely used ML

and DL algorithms using a large dataset compiled from five publicly available bug

repositories, comprising around 60 software metrics such as cohesion, coupling, complexity,

documentation, inheritance, and class size. Models were compared using performance

metrics including accuracy, macro F1 score, weighted F1 score, and binary F1 score. Results

indicated that the deep learning model, particularly LSTM, outperformed traditional ML

algorithms, achieving an accuracy of 87%. The study highlights the effectiveness of

combining extensive software metrics with deep learning approaches for early and accurate

defect prediction, contributing to improved software quality and maintainability.

International Journal Research Publication Analysis

Copyright@ Page 23

Yousofvand, L., Soleimani, S., Rafe, V., & et al. (2026). Graph neural networks for

precise bug localisation through structural program analysis

Yousofvand et al. (2026) proposed a graph neural network (GNN)-based approach for precise

bug localisation, addressing the challenge of identifying code segments responsible for

program failures in increasingly complex software systems. The method represents source

code as graphs encoding syntactic and semantic structures, labelling nodes using the Gumtree

algorithm, and classifying them with a supervised GNN model into buggy or bug-free nodes.

To handle class imbalance, the approach was evaluated using accuracy, precision, recall, and

F1-score metrics. Experimental results demonstrated that the proposed method outperformed

existing techniques, effectively localising a wide range of bug types, including undefined

properties, functional bugs, variable naming errors, and variable misuse. This study

highlights the potential of structural program analysis and graph-based deep learning models

for automated, high-precision bug detection.

Abdul Kadar, M. (2022). Automated code review and vulnerability detection using

graph neural networks

Abdul Kadar (2022) proposed a graph neural network (GNN)-based framework for

automated code review and vulnerability detection, focusing on improving software security

within modern development workflows, including DevSecOps. The approach represents

source code as structural graphs to capture semantic relationships and extracts features for

GNN-based classification of security vulnerabilities and code quality issues. The model

achieved 93.7% accuracy across multiple programming languages, outperforming traditional

static analysis tools by 27% and conventional deep learning approaches by 18%. When

integrated into CI/CD pipelines, the system provided real-time feedback during code

commits, reducing vulnerabilities by 76% and decreasing false positives by 41%. This study

demonstrates the effectiveness of combining structural code representation with deep learning

to enhance automated vulnerability detection and streamline code review processes.

Yin, Y., Zhao, Y., Sun, Y., & Chen, C. (2023). Automatic Code Review by Learning the

Structure Information of Code Graph. Sensors

Yin et al. (2023) proposed an automated code review model that leverages structural

information from code graphs to improve review efficiency. The study introduced the

PDG2Seq algorithm, which converts program dependency graphs into unique sequences

while preserving structural and semantic information. The model builds on the pre-trained

International Journal Research Publication Analysis

Copyright@ Page 24

CodeBERT architecture, integrating both code sequence and structure information, and is

fine-tuned for practical code review scenarios. Experimental results demonstrated significant

improvements over baseline methods, as measured by BLEU, Levenshtein distance, and

ROUGE-L metrics. This work highlights the potential of combining graph-based structural

representations with deep learning models to enhance automated code review processes.

Siachos, I., Kanakaris, N., & Karacapilidis, N. (2025). Software bug prediction using

graph neural networks and graph-based text representations

Siachos et al. (2025) proposed a hybrid approach for software bug prediction that combines

graph-based text representations, word embeddings, and graph neural networks (GNNs) to

leverage both structural and semantic information. Unlike prior methods that focus on

individual components, the approach models textual data from issue tracking platforms as

graphs and applies Graph Attention Networks (GATs) to predict software bugs. Experiments

on four publicly available datasets from GitHub and Jira demonstrated improvements in

accuracy, precision, and recall compared to existing graph-based machine learning models.

This study underscores the potential of integrating textual information and graph-based

learning for enhanced bug prediction in open-source software development environments.

Viswanadhapalli, V. (2024). Automated bug detection and resolution using deep

learning: A new paradigm in software engineering

Viswanadhapalli (2024) presented an in-depth analysis of deep learning techniques for

automated bug detection and resolution, highlighting their potential to improve software

reliability and reduce debugging time. The study reviewed neural network architectures,

including CNNs for token-based code analysis, RNNs and LSTMs for capturing sequential

dependencies, and transformer-based models such as CodeBERT and GPT-4 for large-scale

code understanding. The paper also discussed transfer learning and reinforcement learning

approaches to enhance model adaptability and optimise corrective actions. While deep

learning methods significantly improve accuracy and efficiency compared to traditional static

and dynamic analysis, challenges remain, including the scarcity of high-quality labelled

datasets, interpretability issues, and high computational costs. The study further proposed a

hybrid deep learning approach combining multiple architectures to leverage their strengths

and mitigate individual limitations, providing a promising direction for more effective

automated bug detection and resolution in modern software engineering.

International Journal Research Publication Analysis

Copyright@ Page 25

Zymawy, H. (2025). Leveraging machine learning for automated code quality

assessment and optimisation in modern software development

Zymawy (2025) proposed a comprehensive machine learning-based framework for

automated code quality assessment, optimisation, and intelligent software development

workflows. The study employed transformer-based deep learning models trained on large-

scale code repositories to perform automated code review, predictive bug detection,

performance optimisation, and technical debt management. Experimental results

demonstrated substantial improvements over traditional static analysis tools, including a 42%

increase in bug detection accuracy, a 35% reduction in code review time, a 67% improvement

in performance optimisation, and 89% accuracy in technical debt prediction. The framework

was successfully deployed in production across multiple programming languages and large-

scale codebases, highlighting the practical effectiveness of integrating advanced ML

techniques into modern software engineering practices.

Barrameda, R. B., & Ballera, M. (2025). Enhancing code quality: A CNN-based

approach for readability classification and bug localisation in programming

Barrameda and Ballera (2025) proposed a convolutional neural network (CNN)-based

approach for automated code readability classification and bug localisation, aimed at

improving programming education and software quality. The model employs a hybrid

activation function combining ReLU and Leaky ReLU and processes structured code

representations derived from lexical and syntactic analysis to extract hierarchical features

indicative of code quality. Experiments on open-source datasets relevant to beginner

computer science students achieved a classification accuracy of 82.4%. The study highlights

the potential of deep learning to provide automated feedback, support scalable code

evaluation, and enhance bug detection, while noting challenges such as overfitting and

computational complexity.

2.2 Summary of Literature Review

S/N Author Title Summary Limitations

1 Siva et al.

(2023)

Automatic

Software Bug

Prediction Using

Adaptive

Artificial Jelly

Optimisation

With LSTM

Proposed a three-stage

approach for software

bug prediction: pre-

processing, feature

selection using

adaptive artificial jelly

optimisation (A2JO),

and classification using

Dataset-specific

performance;

computational cost

of LSTM and

optimisation step;

generalisation to

unseen projects

may be limited.

International Journal Research Publication Analysis

Copyright@ Page 26

LSTM. Experiments on

Promise and NASA

datasets achieved

accuracies of 93.41%

and 92.8%,

respectively.

2 Khalid et al.

(2023)

Software Defect

Prediction

Analysis Using

Machine Learning

Techniques

Investigated ML and

optimised ML models

for defect prediction

using K-means for

label categorisation and

Particle Swarm

Optimisation for model

optimisation. SVM and

optimised SVM

achieved accuracies of

99% and 99.80%.

Reliance on

specific dataset

characteristics may

not generalise well

to different

software contexts.

3
Akhtar et al.

(2023)

Software Bug

Prediction and

Detection Using

Machine Learning

and Deep

Learning

Reviewed ML and DL

methods for bug

prediction and

detection from code

repositories and bug

databases, emphasising

hybrid approaches that

leverage multiple

techniques for

improved performance.

Broad survey; did

not propose a

specific novel

predictive model.

4 Shaon & Akter

(2025)

Modern

Approaches to

Software

Vulnerability

Detection: A

Survey of ML,

DL, and LLMs

Surveyed ML, DL, and

LLM-based

vulnerability detection,

analysing feature

representation, fine-

tuning, generative

methods, and prompt

engineering.

Highlighted challenges

like dataset scarcity,

class imbalance, and

interpretability.

Focused on survey;

practical

implementation

and evaluation of

models were not

presented.

5
Yadav et al.

(2024)

Machine

Learning-Based

Methods for Code

Smell Detection

Reviewed 42 studies on

ML techniques for code

smell detection,

including SVM,

Random Forest, J48,

and Naive Bayes.

Addressed challenges

in feature selection,

It relies on small-

scale datasets;

generalisation to

large industrial

codebases is

limited.

International Journal Research Publication Analysis

Copyright@ Page 27

dataset scale, and lack

of standardised

definitions.

6 Albattah &

Alzahrani

(2024)

Software Defect

Prediction Based

on Machine

Learning and

Deep Learning

Techniques

Empirical study

comparing 8 ML and

DL algorithms using 5

public datasets with

~60 software metrics;

LSTM outperformed

others with 87%

accuracy.

Computational cost

of deep learning;

performance may

vary with different

datasets.

7 Yousofvand et

al. (2026)

Graph Neural

Networks for

Precise Bug

Localisation

Proposed GNN-based

bug localisation using

graph representation of

source code, node

labelling via Gumtree,

and supervised

classification with

evaluation on accuracy,

precision, recall, and

F1-score.

Dataset-dependent

performance; class

imbalance

challenges;

complexity of

graph-based

methods.

8 Abdul Kadar

(2022)

Automated Code

Review and

Vulnerability

Detection Using

GNNs

Developed a GNN-

based framework for

automated code review

and vulnerability

detection with 93.7%

accuracy, integrated

into CI/CD pipelines to

reduce vulnerabilities

by 76%.

High

computational cost;

may require

adaptation for

specific

programming

languages or

environments.

9 Yin et al. (2023) Automatic Code

Review by

Learning the

Structure

Information of

Code Graph

Proposed PDG2Seq

algorithm to convert

program dependency

graphs into sequences;

CodeBERT-based

model integrates code

sequence and structural

info, improving BLEU,

Levenshtein, and

ROUGE-L metrics.

Focused on

structure-sequence

fusion; may require

large datasets for

fine-tuning.

10 Siachos et al.

(2025)

Software Bug

Prediction Using

GNNs and Graph-

Based Text

Representations

Hybrid approach using

GATs and graph-based

text representations

from issue tracking

data; improved

accuracy, precision,

Limited to textual

issue data;

generalisation to

other datasets or

programming

languages may be

International Journal Research Publication Analysis

Copyright@ Page 28

and recall on GitHub

and Jira datasets.

limited.

11 Viswanadhapalli

(2024)

Automated Bug

Detection and

Resolution Using

Deep Learning

Reviewed DL

architectures for bug

detection (CNN, RNN,

LSTM, transformers)

and proposed hybrid

models; discussed

transfer learning and

reinforcement learning

for automated

debugging.

High

computational cost;

interpretability of

deep learning

models; limited

availability of

high-quality

labelled datasets.

12
Zymawy

(2025)

Leveraging ML

for Automated

Code Quality

Assessment and

Optimisation

Proposed transformer-

based DL framework

for code review, bug

detection, performance

optimisation, and

technical debt

management;

demonstrated 42%

improvement in bug

detection and 35%

reduction in review

time.

High resource

requirements; may

require extensive

code repositories

for training.

13 Barrameda &

Ballera (2025)

Enhancing Code

Quality: A CNN-

Based Approach

for Readability

Classification and

Bug Localisation

CNN-based approach

with hybrid

ReLU/Leaky ReLU

activation for code

readability classification

and bug localisation;

achieved 82.4%

accuracy on student

code datasets.

Focused on

educational datasets;

overfitting and

computational

complexity are

challenges.

2.3 Knowledge Gap/ Recommendation

While significant advances have been made in the development of machine learning and deep

learning-based approaches for automated code review and bug detection, several important

challenges remain unresolved. One key limitation lies in the insufficient integration of

semantic and structural information from source code. Many existing methods rely primarily

on sequential code representations or textual features, which may fail to capture the deeper

relationships and dependencies within the program, limiting their ability to detect complex

bugs and design flaws.

International Journal Research Publication Analysis

Copyright@ Page 29

Additionally, although graph-based models and neural architectures such as Graph Neural

Networks (GNNs) and transformers have shown promise, their high computational

requirements and dependence on large, high-quality datasets restrict their practical

applicability, especially in resource-constrained or real-time environments. Furthermore,

many studies focus on a narrow set of programming languages or small-scale datasets, raising

questions about the generalizability of the proposed approaches to diverse software projects

and industrial-scale codebases.

Another gap is the limited research on combining different approaches to improve bug

detection and code review. For example, few studies explore how to effectively use multiple

types of information from the code, such as its structure, content, and runtime behaviour,

together. While some work has tried to mix machine learning and deep learning methods,

there is still a lack of systematic strategies for bringing these different sources of information

together in a practical way.

Finally, although evaluation metrics such as accuracy, F1-score, and BLEU are commonly

reported, there is a lack of standardised benchmarking frameworks for comparing different

automated code review and bug detection methods. This inconsistency hampers the

assessment of model robustness, scalability, and effectiveness in real-world software

development pipelines.

These unresolved challenges highlight the need for more comprehensive, adaptable, and

computationally efficient approaches that can effectively leverage structural, semantic, and

behavioural aspects of code while supporting real-time deployment and cross-project

generalisation.

REFERENCES

1. Kavuri, S. (2025). AI-driven test automation frameworks: Enhancing efficiency and

accuracy in software quality assurance. International Journal of Applied

Mathematics, 38(10s), 699–710. https://doi.org/10.12732/ijam.v38i10s.990

2. Cheng, J. (2025). Research on improving the credibility and reliability of industrial

Internet software testing quality assurance based on a digital twin. Journal of Technology

Innovation and Engineering, 1(2). https://doi.org/10.63887/jtie.2025.1.2.2

3. Li, Z., Zou, D., Xu, S., Ou, X., Jin, H., Wang, S., Deng, Z., & Zhong, Y. (2018).

VulDeePecker: A deep learning-based system for vulnerability detection [Preprint].

Submitted January 5, 2018.

https://doi.org/10.12732/ijam.v38i10s.990
https://doi.org/10.63887/jtie.2025.1.2.2

International Journal Research Publication Analysis

Copyright@ Page 30

4. Siva, R., S K., Hariharan, B., & et al. (2023). Automatic software bug prediction using

adaptive artificial jelly optimisation with long short-term memory. Wireless Personal

Communications, 132, 1975–1998. https://doi.org/10.1007/s11277-023-10694-9

5. Fregnan, E., Petrulio, F., Di Geronimo, L., et al. (2022). What happens in my code

reviews? An investigation into automatically classifying review changes. Empirical

Software Engineering, 27, 89. https://doi.org/10.1007/s10664-021-10075-5

6. Fregnan, E., Petrulio, F., & Bacchelli, A. (2022). The evolution of the code during

review: An investigation on review changes. Empirical Software Engineering, 27, 177.

https://doi.org/10.1007/s10664-022-10205-7

7. Akhtar, N., Rana, A., Deshpande, P. P., Kumar, M., Parida, P. K., & Bajaj, K. K. (2023).

Software bug prediction and detection using machine learning and deep learning.

International Journal of Intelligent Systems and Applications in Engineering, 12(9s),

301–308. https://ijisae.org/index.php/IJISAE/article/view/4277

8. Shaon, M. S. H., & Akter, M. S. (2025). Modern Approaches to Software Vulnerability

Detection: A Survey of Machine Learning, Deep Learning, and Large Language

Models. Electronics, 14(22), 4449. https://doi.org/10.3390/electronics14224449

9. Meher, J. P., Biswas, S., & Mall, R. (2024). Deep learning-based software bug

classification. Information and Software Technology, 166, 107350.

https://doi.org/10.1016/j.infsof.2023.107350

10. Khalid, A., Badshah, G., Ayub, N., Shiraz, M., & Ghouse, M. (2023). Software Defect

Prediction Analysis Using Machine Learning Techniques. Sustainability, 15(6), 5517.

https://doi.org/10.3390/su15065517

11. Yadav, P. S., Rao, R. S., Mishra, A., & Gupta, M. (2024). Machine Learning-Based

Methods for Code Smell Detection: A Survey. Applied Sciences, 14(14), 6149.

https://doi.org/10.3390/app14146149

12. Albattah, W., & Alzahrani, M. (2024). Software Defect Prediction Based on Machine

Learning and Deep Learning Techniques: An Empirical Approach. AI, 5(4), 1743-1758.

https://doi.org/10.3390/ai5040086

13. Mienye, I. D., & Swart, T. G. (2024). A Comprehensive Review of Deep Learning:

Architectures, Recent Advances, and Applications. Information, 15(12), 755.

https://doi.org/10.3390/info15120755

14. Yousofvand, L., Soleimani, S., Rafe, V., & et al. (2026). Graph neural networks for

precise bug localisation through structural program analysis. Automated Software

Engineering, 33, 17. https://doi.org/10.1007/s10515-025-00556-y

https://doi.org/10.1007/s11277-023-10694-9
https://doi.org/10.1007/s10664-021-10075-5
https://doi.org/10.1007/s10664-022-10205-7
https://ijisae.org/index.php/IJISAE/article/view/4277
https://doi.org/10.3390/electronics14224449
https://doi.org/10.1016/j.infsof.2023.107350
https://doi.org/10.3390/su15065517
https://doi.org/10.3390/app14146149
https://doi.org/10.3390/ai5040086
https://doi.org/10.3390/info15120755
https://doi.org/10.1007/s10515-025-00556-y

International Journal Research Publication Analysis

Copyright@ Page 31

15. Shi, Y., Yin, Y., Yu, M., & Chu, L. (2024). CogCol: Code Graph-Based Contrastive

Learning Model for Code Summarisation. Electronics, 13(10), 1816.

https://doi.org/10.3390/electronics13101816

16. Alon, U., Zilberstein, M., Levy, O., & Yahav, E. (2018). code2vec: Learning distributed

representations of code. arXiv. https://doi.org/10.48550/arXiv.1803.09473

17. Abdul Kadar, M. (2022). Automated code review and vulnerability detection using graph

neural networks: Enhancing DevSecOps workflows. World Journal of Advanced

Engineering Technology and Sciences, 5(1), 113–122.

https://doi.org/10.30574/wjaets.2022.5.1.0031

18. Yin, Y., Zhao, Y., Sun, Y., & Chen, C. (2023). Automatic Code Review by Learning the

Structure Information of Code Graph. Sensors, 23(5), 2551.

https://doi.org/10.3390/s23052551

19. Cui, M., Long, S., Jiang, Y., & Na, X. (2022). Research on Software Defect Prediction

Model Based on Complex Network and Graph Neural Network. Entropy, 24(10), 1373.

https://doi.org/10.3390/e24101373

20. Siachos, I., Kanakaris, N., & Karacapilidis, N. (2025). Software bug prediction using

graph neural networks and graph-based text representations. Expert Systems with

Applications, 240, 125290. https://doi.org/10.1016/j.eswa.2024.125290

21. Morasca, S., & Lavazza, L. (2020). On the assessment of software defect prediction

models via ROC curves. Empirical Software Engineering, 25, 3977–4019.

https://doi.org/10.1007/s10664-020-09861-4

22. Golovnev, N., Starovoytov, N., & Staroletov, S. (2025, June). Challenges in automating

error-fixing commit classification for Linux Kernel and cyber-physical systems. In 2025

IEEE 26th International Conference of Young Professionals in Electron Devices and

Materials (EDM). https://doi.org/10.1109/EDM65517.2025.11096858

23. Viswanadhapalli, V. (2024). Automated bug detection and resolution using deep learning:

A new paradigm in software engineering. International Journal of Engineering and

Computer Science, 13. https://doi.org/10.18535/ijecs/v13i04.4816

24. Zymawy, H. (2025). Leveraging machine learning for automated code quality assessment

and optimisation in modern software development: A comprehensive framework for

intelligent software engineering (Report No. 007). Goldsmiths University of London.

https://doi.org/10.13140/RG.2.2.16288.24320

https://doi.org/10.3390/electronics13101816
https://doi.org/10.48550/arXiv.1803.09473
https://doi.org/10.30574/wjaets.2022.5.1.0031
https://doi.org/10.3390/s23052551
https://doi.org/10.3390/e24101373
https://doi.org/10.1016/j.eswa.2024.125290
https://doi.org/10.1007/s10664-020-09861-4
https://doi.org/10.1109/EDM65517.2025.11096858
https://doi.org/10.18535/ijecs/v13i04.4816
https://doi.org/10.13140/RG.2.2.16288.24320

International Journal Research Publication Analysis

Copyright@ Page 32

25. Barrameda, R. B., & Ballera, M. (2025). Enhancing code quality: A CNN-based

approach for readability classification and bug localisation in programming. In Computer

and Electrical Engineering. https://doi.org/10.3233/ATDE250732

https://doi.org/10.3233/ATDE250732

