esearch
o"’\‘l <

2026 Volume: 02 Issue: 01 WW\W.IJrpa.com 1ISSN 2456-9995 Review Article

\“‘eﬂ\allon I"o
* Z
n

International Journal Research Publication Analysis

%, &
\3
sfe uy WX

Page: 01-32
THEORETICAL REVIEW ON DEEP LEARNING ALGORITHM FOR
AUTOMATED CODE REVIEW AND BUG DETECTION

“1Chika L. Onyagu, ?Odii Maduabuchi 2Ezeamasiobi Chibuzor E., *Chekwebe

Nwankwo

!Department of Cybersecurity, Delta State University, Delta State, Nigeria.
2 Department of Computer Science, Nnamdi Azikiwe University, Awka, Nigeria.
3 Department of Computer Science, African University of Science and Technology, Abuja.

4 Department of Computer Science, Chukwuemeka Odumegwu University, Uli, Nigeria.

Article Received: 08 December 2025 *Corresponding Author: Chika L. Onyagu
Avrticle Revised: 28 December 2025 Department of Cybersecurity, Delta State University, Delta State, Nigeria.
Published on: 16 January 2026 DIO: https://doi-doi.org/101555/ijrpa.8639

ABSTRACT

This theoretical review examines the application of deep learning algorithms in automated
code review and bug detection, highlighting their potential to improve software quality and
development efficiency. Traditional static and dynamic analysis tools often struggle with
complex code patterns and require extensive manual tuning. Deep learning models,
particularly recurrent neural networks, convolutional architectures, and transformer-based
language models, provide data-driven approaches capable of learning semantic and syntactic
relationships directly from source code. These models enable automated identification of
bugs, code smells, security vulnerabilities, and stylistic inconsistencies with higher accuracy
and adaptability. The review also discusses key challenges, including the need for large, high-
quality labeled datasets, handling diverse programming languages, and ensuring model
interpretability for developers, emphasized by many scholars in this domain. Despite these
limitations, deep learning continues to advance automated code analysis, offering promising
directions for intelligent development environments and continuous integration pipelines.
Overall, the theoretical foundations suggest substantial benefits for future software

engineering practices.

KEYWORDS: Theoretical Review, Deep learning, Algorithm, Automated code review, Bug
detection.

Copyright@ Page 1

https://doi-doi.org/101555/ijrpa.8639
http://www.ijrpa.com/

International Journal Research Publication Analysis

1.1 INTRODUCTION

Software Quality Assurance (SQA) refers to a systematic set of activities designed to ensure
that software products and development processes meet defined quality standards across the
entire software development life cycle (SDLC). It encompasses planning, design,
implementation, deployment, and maintenance, emphasising preventive practices aimed at
reducing defects, improving reliability, and ensuring that software aligns with user
requirements. Rather than relying solely on defect detection, SQA incorporates proactive,
quality-oriented processes such as audits, metric-driven evaluations, standards compliance,
and continuous monitoring based on frameworks like ISO 9001, CMMI, and IEEE guidelines
to enhance consistency, predictability, and long-term process improvement. These practices
also ensure systematic evaluation of core software quality attributes, including functionality,
performance, reliability, maintainability, portability, and usability.

Within this broader framework, code review remains one of the most essential SQA practices.
Manual code reviews enable early identification of defects, enforcement of coding standards,
and assessment of design decisions. Despite their benefits, manual reviews are often time-
consuming, inconsistent, and heavily dependent on the expertise and availability of
reviewers. As modern software grows in scale and complexity, traditional review methods
increasingly struggle to keep pace with the rapid volume of code changes, limiting their
effectiveness in large, fast-evolving systems.

These limitations have led to the emergence of automated and intelligent techniques for
software quality assurance. Traditional Static Analysis Tools (SATSs), linters, and rule-based
engines offer increased efficiency in detecting syntactic issues, stylistic violations, and
common error patterns. However, such tools remain constrained by their reliance on
predefined rules and shallow pattern matching, often failing to capture deeper semantic
relationships within source code or identify subtle context-dependent bugs (Li et al., 2018).
These weaknesses have motivated a growing shift toward data-driven and learning-based
approaches capable of modelling complex program behaviour.

Recent advancements highlight the transformative potential of Al-driven and deep-learning-
based automation frameworks in SQA. Kavuri (2025) emphasises that modern Al-enhanced
systems integrate machine learning (ML), natural language processing (NLP), and deep
learning (DL) to automate critical testing tasks such as test case generation, execution, defect
prediction, and test script maintenance. Through reinforcement learning, these frameworks
can continuously improve test coverage and adapt to evolving software behaviour. NLP-

powered models further enable the conversion of human-readable requirements into

Copyright@ Page 2

International Journal Research Publication Analysis

executable test scripts, significantly reducing manual effort and accelerating validation
processes. Additionally, Al-based defect analytics offer predictive capabilities that allow
teams to prioritise high-risk components, reducing test cycle duration and overall human
workload (Kavuri, 2025).

Deep-learning-based vulnerability detection systems further illustrate the capabilities of
intelligent SQA tools. For example, Li et al. (2018) introduced VulDeePecker, a system that
uses code gadgets, semantically related code segments, to detect subtle vulnerabilities that
traditional static analysis tools often miss. Their experiments demonstrated that deep learning
can substantially reduce false negatives and identify real-world vulnerabilities that were
silently patched but never reported, showcasing the promise of learning-based approaches for
improving automated code review and bug detection.

Despite these advancements, challenges remain. Al-driven SQA systems depend heavily on
high-quality datasets, face interpretability concerns, and often require careful integration into
modern CI/CD pipelines (Kavuri, 2025). However, the growing body of research, including
deep-learning-based vulnerability detection, automated code-review recommendation
systems, and ML-based defect prediction frameworks, demonstrates a clear movement
toward intelligent, scalable, and context-aware quality-assurance tools (Li et al., 2018).

In summary, SQA establishes the essential foundation for developing reliable and high-
quality software systems. While manual code review continues to play a critical role, its
inherent limitations underscore the need for more advanced, adaptable, and automated
approaches. The integration of Al, ML, and deep learning into SQA represents a paradigm
shift toward more efficient, intelligent, and robust code review and bug detection processes.
These emerging technologies not only enhance software dependability but also accelerate
release cycles and support the rapidly evolving demands of modern software development
environments (Kavuri, 2025; Li et al., 2018).

Code review is a fundamental practice in software development aimed at improving code
quality, ensuring compliance with coding standards, and reducing the likelihood of defects in
software systems. It involves the systematic examination of source code by one or more
developers other than the original author to identify issues such as logic errors, inefficiencies,
security vulnerabilities, and poor design decisions. As a core component of Software Quality
Assurance (SQA), code review serves as an early checkpoint in the development workflow,
enabling developers to detect and address defects before they propagate into later stages of

the software life cycle (Fregnan, Petrulio, Di Geronimo, et al., 2022).

Copyright@ Page 3

International Journal Research Publication Analysis

Several techniques have traditionally been used in conducting code reviews, each with its
own strengths and limitations. One of the oldest and most formal approaches is the Fagan
Inspection, a structured review process involving multiple stages such as planning, overview,
preparation, inspection meeting, rework, and follow-up. This technique is highly effective in
identifying deep structural and logical defects but is often time-consuming and resource-
intensive. A more flexible approach is peer review, where developers examine each other’s
code informally, either synchronously (e.g., face-to-face review sessions) or asynchronously
(e.g., comments on version control platforms). Peer reviews encourage knowledge sharing
and team collaboration but may vary in effectiveness depending on reviewer expertise and
availability (Fregnan, Petrulio, & Bacchelli, 2022).

Modern development practices have introduced additional techniques such as pair
programming, where two developers work together at the same workstation, one writes code
while the other reviews in real-time. This method enhances code quality and fosters
collaborative problem-solving, although it may increase development cost. Another widely
used method is tool-assisted code review, supported by version control systems and
collaborative platforms such as GitHub, GitLab, and Gerrit. These platforms enable
asynchronous review, inline comments, automated checks, and integration with Continuous
Integration/Continuous Deployment (CI/CD) pipelines, making the review process more
efficient and scalable (Fregnan, Petrulio, Di Geronimo, et al., 2022).

Underlying these techniques are key principles that guide effective code reviewing. One
essential principle is readability, which emphasises that code should be easy to understand,
well-structured, and properly documented so reviewers can easily identify issues. Another
key principle is maintainability, requiring code to be modular, consistent, and adaptable to
future changes. Consistency with established coding standards and project guidelines ensures
uniformity, reduces technical debt, and facilitates collaborative development. Additionally,
good review practices emphasise constructive feedback, where reviewers provide clear,
actionable, and respectful comments aimed at improving the code rather than criticising the
developer (Fregnan, Petrulio, & Bacchelli, 2022).

Despite the value of traditional techniques, their manual nature poses challenges in large-
scale or fast-paced software environments. Manual reviews can be slow, inconsistent, and
susceptible to human error or oversight. Moreover, as systems grow in complexity,
understanding intricate logic or detecting subtle bugs becomes increasingly difficult, even for
experienced reviewers. Empirical studies indicate that review outcomes often involve

evolvability concerns, with documentation and structural changes being most common, and

Copyright@ Page 4

International Journal Research Publication Analysis

that the number of review changes is influenced by factors such as patch size and added lines
of code rather than reviewer comments alone (Fregnan, Petrulio, & Bacchelli, 2022). These
findings highlight the complexity and limitations of manual review processes and further
motivate the need for automated and intelligent systems.

In modern software engineering, automated code review tools and deep learning-based
systems are emerging as powerful solutions for addressing these limitations, offering faster,
more consistent, and more accurate analysis of source code. Such systems can automatically
classify review changes, providing information that is perceived by practitioners as valuable
for improving the code review process (Fregnan, Petrulio, Di Geronimo, et al., 2022). These
advancements complement traditional practices and represent an important evolution in how
software teams ensure high-quality code.

Software bug detection refers to the process of identifying errors, defects, or anomalies
within a software system that cause incorrect or unexpected behaviour. Effective bug
detection is crucial for ensuring software reliability, security, and performance. Over the
years, various approaches, ranging from manual methods to advanced automated techniques,
have been developed to detect bugs early in the development cycle. These approaches can
generally be categorised into manual, static, dynamic, and intelligent (machine learning—
based) techniques (Akhtar et al., 2023; Shaon & Akter, 2025).

One of the earliest methods for bug detection is manual code review, where developers
examine source code line-by-line to identify logical errors, inconsistencies, and violations of
best practices. Although this method can uncover deep structural issues, it is time-consuming,
susceptible to human bias, and limited in scalability. To address these limitations, automated
techniques have gained prominence, with static and dynamic analysis being the two most
widely adopted approaches.

Static bug detection involves examining source code without executing it. Tools such as
SonarQube, PMD, FindBugs, and ESLint apply rule-based and pattern-matching techniques
to identify potential issues such as null pointer dereferences, unused variables, unreachable
code, code smells, and security vulnerabilities. Static analysis is particularly effective at
detecting syntactic and structural issues early in development and can be integrated into
Continuous Integration (CI) pipelines for automated quality checks. However, rule-based
static analysis tools often suffer from limitations such as high false-positive rates and an
inability to interpret complex program logic or understand deeper semantic relationships
(Akhtar et al., 2023; Shaon & Akter, 2025).

Copyright@ Page 5

International Journal Research Publication Analysis

In contrast, dynamic analysis detects bugs by executing the software and observing its
runtime behaviour. This category includes techniques such as unit testing, integration testing,
fuzz testing, symbolic execution, and runtime monitoring. Dynamic analysis is effective for
identifying issues such as memory leaks, race conditions, buffer overflows, and APl misuse.
Tools like Valgrind, AFL (American Fuzzy Lop), and JUnit support various aspects of
dynamic testing. While dynamic analysis can uncover runtime-specific defects that static
tools miss, it requires executable code, comprehensive test coverage, and often significant
computational resources (Akhtar et al., 2023).

Beyond traditional static and dynamic methods, advancements in artificial intelligence have
given rise to machine learning (ML) and deep learning (DL)-based bug detection approaches.
These approaches leverage historical code data, bug reports, and code change patterns to
learn statistical relationships between code characteristics and the presence of defects.
Supervised learning models, for instance, classify code segments as buggy or clean based on
extracted features such as complexity metrics or code tokens. Meanwhile, deep learning
models, including recurrent neural networks (RNNSs), convolutional neural networks (CNNSs),
transformers, and graph neural networks (GNNs), can automatically learn semantic and
structural representations of code without extensive manual feature engineering (Akhtar et
al., 2023; Shaon & Akter, 2025). These intelligent models have demonstrated improvements
in detection accuracy and reduced the need for manually defined rules.

Another emerging approach involves hybrid bug detection, which combines static analysis,
dynamic testing, and machine learning to leverage the strengths of each method. For
example, hybrid models can use static analysis outputs as features for training machine
learning classifiers or utilise runtime traces to enhance deep learning performance. This
integrated strategy enhances precision and recall, particularly for complex bugs that require
both structural and behavioural understanding (Akhtar et al., 2023).

Despite progress in these techniques, bug detection remains a challenging task due to
evolving software complexity, increasing codebases, and the need to detect subtle logic or
security vulnerabilities. Traditional rule-based tools struggle with scalability and contextual
understanding, while machine learning approaches require large, high-quality datasets and
may face issues such as model interpretability, class imbalance, and limited vulnerability
coverage. Furthermore, modern approaches, including Large Language Models (LLMs),
provide significant potential for capturing both syntactic and semantic properties of code but
introduce challenges such as hallucination and high computational cost (Shaon & Akter,

2025). These limitations motivate ongoing research into more advanced, intelligent, and

Copyright@ Page 6

International Journal Research Publication Analysis

automated methods, including neuro-symbolic hybrid approaches, parameter-efficient fine-
tuning, cross-language generalisation, continual learning, and explainable Al for vulnerability
detection (Shaon & Akter, 2025).

Machine Learning (ML) has emerged as a transformative technology in software engineering,
enabling automated analysis, prediction, optimisation, and decision-making across various
phases of the software development lifecycle. ML techniques leverage data-driven patterns to
understand software artefacts, detect anomalies, recommend improvements, and support tasks
that traditionally require human expertise. As modern software systems become increasingly
complex and data-intensive, ML provides a scalable and intelligent approach to addressing
long-standing challenges related to code quality, bug detection, maintenance, and developer
productivity (Khalid et al., 2023; Yadav et al., 2024).

In software engineering, ML applications can be broadly classified into tasks such as defect
prediction, code classification, effort estimation, automated testing, code recommendation,
and software documentation. These tasks rely on diverse data sources, including source code,
commit histories, code metrics, bug reports, execution logs, and developer interactions. ML
models learn from these artefacts to perform predictions or classifications that assist
developers in making informed decisions. For instance, defect prediction models analyse
historical bug data and software metrics to estimate the likelihood of defects in new code
modules, enabling teams to allocate testing and review resources more effectively (Khalid et
al., 2023).

ML encompasses multiple paradigms, each applicable to different software engineering
problems. Supervised learning is commonly used when labelled datasets exist, such as code
segments labelled as "buggy" or "clean." Models such as decision trees, support vector
machines (SVM), random forests, and neural networks are often employed for defect
prediction, code smell detection, and vulnerability classification. Unsupervised learning
techniques, including clustering and anomaly detection, help discover hidden patterns in code
repositories or identify unusual behaviour in system logs. Reinforcement learning is also
being explored for applications such as automated program repair, compiler optimisation, and
adaptive testing, where the model learns optimal actions through iterative interactions with
the environment (Khalid et al., 2023; Yadav et al., 2024).

A critical component of ML in software engineering is feature engineering, which involves
extracting meaningful representations of code to transform it into a format suitable for ML
models. Traditional approaches rely on manually crafted features such as cyclomatic

complexity, lines of code, coupling, cohesion, and naming conventions. While these features

Copyright@ Page 7

International Journal Research Publication Analysis

are useful, they often fail to capture the deeper semantics and structural relationships in code.
To overcome these limitations, representation learning and deep learning techniques have
gained prominence, enabling models to automatically learn complex features from raw code
data (Yadav et al., 2024).

ML has significantly enhanced automated code review by enabling systems to analyse code
patterns, understand developer intent, and generate context-aware feedback. ML-based
models can learn from historical review comments, commit messages, and review outcomes
to assist reviewers by predicting potential issues, suggesting improvements, or prioritising
code segments requiring attention. Similarly, in bug detection, ML algorithms can identify
recurring defect patterns and generalise beyond predefined rules, offering more flexible and
scalable solutions than traditional static analysis tools (Khalid et al., 2023).

Research demonstrates that optimised ML models can achieve very high accuracy in defect
prediction. For example, SVM and optimised SVM models have achieved accuracies up to
99% and 99.8%, respectively, while other models, such as Naive Bayes, Random Forest, and
ensemble approaches, also perform strongly (Khalid et al., 2023). In code smell detection,
ML has also proven effective, with algorithms like SVM, J48, Naive Bayes, and Random
Forest being widely applied to identify early warning signs of potential software quality
issues. These approaches help developers detect structural or design problems during the
coding phase, supporting higher software quality and maintainability (YYadav et al., 2024).
Despite its advantages, the integration of ML into software engineering faces challenges such
as data scarcity, imbalanced datasets, noisy labels, language diversity, and model
interpretability. Software evolution introduces concept drift, requiring models to adapt
continuously to maintain performance. Nonetheless, ML continues to play a central role in
modern software engineering, providing the foundation for more advanced methods such as
deep learning and hybrid approaches that further enhance automated code review and bug
detection systems (Khalid et al., 2023; Yadav et al., 2024).

Deep Learning (DL) is a subfield of Machine Learning that focuses on neural networks with
multiple hierarchical layers capable of automatically learning complex patterns from data.
Unlike traditional ML approaches that rely heavily on manual feature engineering, deep
learning models extract high-level abstractions directly from raw input, making them
particularly powerful for tasks involving unstructured data such as images, speech, natural
language, and increasingly, source code. DL’s ability to model semantic relationships and
nonlinear dependencies has positioned it as a leading technique in modern artificial

intelligence research and applications (Mienye & Swart, 2024).

Copyright@ Page 8

International Journal Research Publication Analysis

At the core of deep learning lies the artificial neural network (ANN), which consists of
interconnected layers of neurons organised into input, hidden, and output layers. Each neuron
performs a weighted transformation of its inputs followed by a nonlinear activation function,
enabling the network to approximate complex functions. As the number of hidden layers
increases, the network gains the capacity to learn deeper and more abstract features. Training
is achieved using backpropagation and gradient-based optimisation algorithms such as
Stochastic Gradient Descent (SGD), Adam, or RMSprop (Mienye & Swart, 2024).

Several specialised deep learning architectures have been developed to handle different types
of data and tasks. Convolutional Neural Networks (CNNs) are well-suited for grid-like data
and have been widely applied in computer vision. Their ability to learn spatial features
through convolutional operations has also proven useful in source code analysis, particularly
when treating code as token sequences or structural graphs. Recurrent Neural Networks
(RNNSs), along with their variants Long Short-Term Memory (LSTM) and Gated Recurrent
Unit (GRU), are designed for sequential data and can capture long-range dependencies. These
models have been used in tasks such as code generation, bug prediction, and automatic
comment generation, where understanding the sequential nature of code tokens is essential
(Mienye & Swart, 2024).

A major breakthrough in deep learning came with the introduction of the Transformer
architecture, built around the concept of self-attention. Transformers, including models such
as BERT, GPT, and their code-specific adaptations (CodeBERT, GraphCodeBERT, CodeT5),
excel at capturing contextual relationships by attending to all parts of an input sequence
simultaneously. This parallelism enables them to process long sequences efficiently and learn
richer semantic representations of code. Transformers have thus become a dominant
architecture in state-of-the-art automated code review and bug detection systems (Mienye &
Swart, 2024).

Graph Neural Networks (GNNs) have also emerged as a crucial tool in deep learning for code
analysis, particularly for tasks that require a structural understanding, such as bug
localisation. Source code naturally forms structures like Abstract Syntax Trees (ASTS),
Control Flow Graphs (CFGs), and data dependency graphs. GNNs propagate information
through graph nodes and edges, enabling the model to capture both syntactic structure and
semantic interactions. This makes GNNs particularly effective for detecting logical bugs,
security vulnerabilities, and structural anomalies. Recent work has demonstrated that graph-

based bug classifiers can accurately identify buggy nodes in code graphs, effectively

Copyright@ Page 9

International Journal Research Publication Analysis

localising a wide range of bug types, including undefined properties, functional errors,
variable naming errors, and variable misuse (Yousofvand et al., 2026).

Training deep learning models typically requires large datasets, high computational power,
and careful tuning of hyperparameters such as learning rate, batch size, number of layers, and
regularisation techniques. Methods such as dropout, batch normalisation, and early stopping
help prevent overfitting and ensure that models generalise well to unseen data. Transfer
learning is increasingly used, allowing pre-trained models to be fine-tuned on domain-
specific code datasets, significantly reducing training costs and improving performance for
specialised tasks (Mienye & Swart, 2024).

Despite these advantages, deep learning models face several challenges. They often require
substantial data to achieve high performance, and their internal mechanisms can be difficult
to interpret, a concern in software engineering where explainability is critical. Poorly trained
models may struggle with code from unfamiliar programming languages or unconventional
coding styles. Nonetheless, the strengths of deep learning, particularly its ability to learn
semantic, contextual, and structural patterns, make it a powerful foundation for automated
code review, bug detection, and code understanding (Mienye & Swart, 2024).

Representation learning for source code refers to the process of transforming program
elements, such as tokens, syntax structures, control flows, and dependency relationships, into
numerical representations that machine learning and deep learning models can effectively
process. Unlike natural language, source code is highly structured, governed by strict
grammar rules, and contains deep semantic dependencies. As a result, effective representation
learning is fundamental to enabling automated code review, bug detection, vulnerability
analysis, code summarisation, and various other intelligent software engineering tasks.
Traditional machine learning techniques rely on manually engineered features derived from
code metrics, token frequencies, or structural characteristics. While these handcrafted features
offer limited insights, they fail to fully capture the rich semantics and hierarchical structure
embedded in modern programming languages. Contemporary approaches overcome these
limitations by learning distributed representations that encode both syntactic and semantic
information in dense vector spaces.

A foundational line of work treats source code as token sequences, similar to natural
language. Embedding techniques such as Word2Vec, GloVe, and FastText have been adapted
to generate vector representations for tokens, identifiers, and keywords, capturing contextual

relationships useful for classification or comment generation tasks. However, token-based

Copyright@ Page 10

International Journal Research Publication Analysis

models often struggle to capture deeper structural dependencies, as the meaning of code
extends beyond linear token order.

To better capture hierarchical structure, many approaches incorporate Abstract Syntax Trees
(ASTSs), which represent the syntactic organisation of code. Models such as TreeLSTM and
other recursive neural architectures leverage the parent—child relationships in ASTs to extract
structural information and better understand program logic. A notable advancement in AST-
based learning is code2vec, which represents a code snippet by decomposing it into multiple
paths in its AST and learning embeddings for these paths jointly. These path-based
representations are aggregated to form a single fixed-length vector capable of predicting
semantic properties, such as method names (Alon et al., 2018). The ability of code2vec to
learn representations from millions of methods illustrates the effectiveness of structural
decomposition in capturing semantic regularities across large codebases.

Beyond syntactic structure, more expressive representations incorporate graph-based
semantics. Control Flow Graphs (CFGs) and Data Flow Graphs (DFGs) model execution
order and variable interactions, respectively, enabling deeper analysis of program behavior.
Graph Neural Networks (GNNs), including GCNs, GATs, and MPNNs, have been widely
adopted to learn from these graph structures, capturing both local and global semantic
dependencies essential for tasks such as bug detection and vulnerability discovery. Recent
work further expands this paradigm by integrating multiple forms of program graphs into
unified models. For example, CogCol converts code graphs into unique sequences and
applies supervised contrastive learning to strengthen structural understanding and improve
generalisation across similar code patterns, addressing the limitations of purely syntactic
AST-based approaches (Shi et al., 2024).

Pre-trained language models for code have also transformed representation learning. Trained
on large-scale repositories, these models combine token-level and structure-level information
to produce context-aware embeddings that reflect both syntactic and semantic relationships.
Their effectiveness across tasks like automated code review, defect prediction, and code
retrieval highlights the power of large-scale pre-training for capturing deep code semantics.
An emerging direction is multimodal representation learning, which integrates multiple views
of code, including tokens, ASTs, CFGs, DFGs, and execution traces, into a unified
embedding. These multimodal models leverage complementary structural and semantic
information to achieve greater robustness and improved performance across diverse software

engineering tasks.

Copyright@ Page 11

International Journal Research Publication Analysis

Despite these advancements, several challenges persist. Differences in syntax and semantics
across programming languages complicate cross-language generalisation. Detecting subtle or
logic-dependent bugs often requires modelling complex program dependencies that may not
be fully represented in generic embeddings. In addition, labelled datasets for bug detection
and defect prediction remain limited, hindering the training of high-capacity models.
Nonetheless, ongoing research in structural, semantic, and multimodal representation learning
continues to push the boundaries of automated code understanding, providing a strong
foundation for advanced intelligent systems in software engineering.

Deep learning models for automated code review aim to assist developers in identifying
defects, improving code quality, and ensuring compliance with software engineering
standards through intelligent, machine-driven analysis. Traditional automated review tools
depend heavily on handcrafted rules and heuristics, which are effective at detecting syntactic
issues but struggle to capture deeper semantics and contextual logic. Deep learning provides a
powerful alternative by learning complex patterns from large codebases and enabling models
to reason about structural dependencies, functional intent, and semantic relationships in
source code. Recent studies highlight that graph-based and deep neural models significantly
outperform conventional static analysis tools in vulnerability detection and semantic
understanding (Abdul Kadar, 2022).

Various neural architectures have been explored for automated code review, each offering
unique strengths. Sequence-based models such as RNNs, LSTMs, and GRUs treat code as
token sequences and learn contextual dependencies across statements. These architectures
have been applied to tasks such as predicting review comments, detecting code smells, and
identifying stylistic inconsistencies. However, because they rely on sequential token
representations, these models often struggle with long-range dependencies and the rich
structural complexity inherent in modern programming languages (Yin et al., 2023).
Transformer-based models have become the dominant approach for code intelligence due to
their ability to capture global context through self-attention mechanisms. Pretrained models
such as CodeBERT, CodeT5, PLBART, GraphCodeBERT, and CodeGPT have demonstrated
state-of-the-art performance across code review tasks by learning powerful semantic and
contextual representations from massive open-source repositories. These models support fine-
tuning for domain-specific code review scenarios, allowing high accuracy even with
relatively small datasets. For example, models that fuse structural information, such as
program dependency graphs, with sequence-based representations within transformer

architectures have shown notable improvements in accuracy and robustness (Yin et al., 2023).

Copyright@ Page 12

International Journal Research Publication Analysis

Graph-based deep learning models represent another important paradigm in automated code
review. By expressing software as Abstract Syntax Trees (ASTs), Control Flow Graphs
(CFGs), Data Flow Graphs (DFGs), or Program Dependency Graphs (PDGs), Graph Neural
Networks (GNNs) capture rich semantic and structural information that sequential models
often overlook. Studies have shown that GNN-based representations significantly enhance
vulnerability detection, providing notable gains in accuracy, context awareness, and reduction
of false positives compared to traditional tools and earlier neural approaches (Abdul Kadar,
2022). Program dependency graph serialisation methods, such as PDG2Seq, further improve
representational quality by converting complex semantic graphs into unique sequences while
preserving structure and meaning, enabling models like CodeBERT-based architectures to
more effectively detect and correct defects (Yin et al., 2023).

Hybrid and multimodal deep learning approaches combine multiple representational views,
including token sequences, ASTs, CFGs, and PDGs, to achieve more robust automated code
review. These models often integrate transformers with GNNs to capture both semantic
context and structural dependencies, improving the detection of subtle issues such as variable
misuse, logical inconsistencies, or resource mismanagement. The fusion of sequence and
structural representations has proven especially valuable for tasks requiring nuanced
reasoning, such as automated fix suggestion or context-aware comment generation.

Deep learning has also enabled systems to generate natural-language review comments
derived from historical pull request discussions and developer feedback. These models can
articulate issues and propose improvements in human-readable form, reducing cognitive load
and enhancing the collaborative review process. Attention mechanisms further improve
interpretability by highlighting influential regions of the code, addressing concerns about
transparency and model explainability, both important in professional software engineering
contexts.

Despite substantial progress, challenges remain. Deep learning models require large, high-
quality datasets containing code and corresponding review annotations; yet, these datasets are
difficult to curate due to privacy constraints, inconsistency in review styles, and the labour-
intensive nature of labelling. Moreover, the opaque inner workings of deep neural models
raise concerns about trust and explainability, especially when automated feedback influences
production systems. Ensuring that automated code review systems provide reliable,
actionable, and transparent insights remains an ongoing research priority.

Deep learning has significantly transformed the landscape of software bug detection by

enabling automated systems to learn patterns of defective code directly from large datasets.

Copyright@ Page 13

International Journal Research Publication Analysis

Unlike traditional rule-based or heuristic methods, deep learning approaches possess the
ability to capture complex semantic relationships, structural dependencies, and contextual
patterns within source code. This makes them particularly effective for detecting subtle bugs,
logic errors, and security vulnerabilities that may not be easily identifiable through static
analysis tools or manual code review. Recent work also shows that deep learning models
benefit from considering not only code features but also inter-module dependencies, as
treating software systems as interconnected graphs can yield improved defect prediction
performance (Cui et al., 2022).

One of the earliest deep learning approaches for bug detection involves sequence-based
models, where source code is treated as a sequence of tokens similar to natural language.
Models such as Recurrent Neural Networks (RNNs), Long Short-Term Memory networks
(LSTMs), and Gated Recurrent Units (GRUs) are commonly used in this paradigm. These
models learn long-range dependencies within code, allowing them to detect patterns
associated with common bug types, such as incorrect APl usage or logical inconsistencies.
Although effective in modelling token-level context, sequence-based methods sometimes
struggle with structural complexity, as raw token sequences cannot fully capture the
hierarchical and graph-oriented nature of source code. This limitation has also been observed
in modern issue-tracking datasets, where text-based bug reports require richer structural
modelling to improve prediction accuracy (Siachos et al., 2025).

To overcome the limitations of sequential processing, convolutional neural networks (CNNSs)
have also been employed in bug detection tasks. CNNs, while traditionally used in image
analysis, can be adapted to operate on encoded representations of code, such as token
embeddings or serialised abstract syntax trees (ASTs). Their strength lies in detecting local
patterns, enabling the identification of small but critical code fragments associated with
defects. However, CNNs are less effective when deeper semantic understanding or global
context is required, especially for complex bugs involving long-range dependencies or multi-
module interactions.

A breakthrough in deep learning for bug detection came with the introduction of transformer-
based architectures, which use self-attention mechanisms to model global dependencies
within code sequences. Models such as CodeBERT, CodeT5, GraphCodeBERT, and
DeepBugs have achieved state-of-the-art performance in numerous bug detection tasks.
Transformers excel in capturing the contextual relationships between variables, function
calls, and control flows, making them highly effective for identifying complex logical bugs

and security vulnerabilities. Pre-training on massive code corpora allows these models to

Copyright@ Page 14

International Journal Research Publication Analysis

generalise across programming languages and defect types. Fine-tuning on bug-specific
datasets further improves predictive performance by addressing domain-specific
characteristics.

Another influential direction in deep learning-based bug detection is the use of Graph Neural
Networks (GNNs). Many software bugs arise from improper data flows, variable misuse, or
broken control paths, patterns that are naturally represented as graph structures. GNNs
operate on representations such as Abstract Syntax Trees (ASTs), Control Flow Graphs
(CFGs), Data Flow Graphs (DFGs), and Program Dependency Graphs (PDGs), propagating
information across nodes and edges to capture both syntactic and semantic properties of code.
This graph-centric perspective aligns with emerging research that models entire software
systems as complex networks, treating classes or modules as nodes and their dependencies as
edges, enabling more accurate defect prediction through improved structural representations
(Cui et al.,, 2022). Additionally, hybrid graph-text models leveraging Graph Attention
Networks (GATs) have demonstrated strong performance in predicting bugs from textual
issue descriptions by combining semantic embeddings with graph-based relationships
(Siachos et al., 2025).

In addition to standalone architectures, hybrid deep learning models integrate multiple
representations of code—tokens, ASTs, CFGs, embeddings, and execution traces—to provide
a more robust understanding of program behaviour. Such models leverage the complementary
strengths of different views to detect subtle bugs that might be missed by single-
representation approaches. For instance, a hybrid model may combine a transformer to
capture high-level semantics with a GNN to analyse data dependencies, yielding more
accurate predictions of variable misuse or incorrect control flow.

Moreover, deep learning has enabled anomaly detection approaches, in which autoencoders
or variational autoencoders (VAEs) learn latent representations of “normal” code behaviour
and detect deviations that may signify defects. These methods are particularly valuable when
labelled datasets are scarce, allowing unsupervised or semi-supervised learning to identify
unusual patterns resembling potential bugs.

Despite the remarkable progress, deep learning approaches for bug detection face challenges
such as data imbalance, limited availability of high-quality labelled datasets, and difficulties
related to model interpretability. Software systems vary widely in language, architectural
style, and programming practices, making generalisation across domains difficult.
Furthermore, developers often require transparent explanations for identified bugs, yet deep

models typically operate as black boxes, complicating real-world adoption.

Copyright@ Page 15

International Journal Research Publication Analysis

Nevertheless, deep learning continues to push the boundaries of automated bug detection,
offering scalable, accurate, and intelligent solutions that complement human expertise and
traditional tools. With ongoing advancements in graph-based modelling, multimodal learning,
and transformer architectures, deep learning is expected to play an increasingly central role in
next-generation software quality assurance systems (Cui et al., 2022; Siachos et al., 2025).
Evaluation metrics play a critical role in assessing the performance, reliability, and
effectiveness of automated code review and bug detection systems. These metrics provide
quantitative measures that help researchers and practitioners determine how well a model
identifies defects, classifies code segments, generates review comments, or supports decision-
making during software development. Choosing appropriate metrics ensures fair comparisons
between techniques and provides insights into their strengths and limitations (Albattah &
Alzahrani, 2024).

For classification-based tasks, such as distinguishing buggy from non-buggy code, commonly
used metrics include Accuracy, Precision, Recall, and F1-Score. Accuracy measures the
proportion of correct predictions made by the model; however, it becomes less reliable when
datasets are imbalanced, which is often the case in bug detection, where non-defective code
typically outnumbers defective code. In such cases, a model could achieve high accuracy
while failing to detect actual defects. To address this, Precision and Recall offer more
nuanced evaluation. Precision measures the proportion of correctly identified buggy instances
among all predicted buggy instances, which is essential when minimising false positives is a
priority. Recall measures the proportion of actual buggy instances correctly detected,
reducing false negatives and ensuring critical defects are not overlooked. The F1-Score, the
harmonic mean of Precision and Recall, balances these concerns, providing a single metric
that reflects overall predictive quality (Albattah & Alzahrani, 2024).

The Confusion Matrix is often employed to provide a comprehensive view of model
performance by summarising true positives, true negatives, false positives, and false
negatives. It enables deeper analysis of model behaviour and facilitates identification of
specific error patterns. Similarly, the Receiver Operating Characteristic — Area Under the
Curve (ROC-AUC) evaluates the trade-off between true positive and false positive rates
across varying thresholds. ROC curves are particularly useful for defect prediction models, as
they provide an overall assessment of classifier performance across all possible threshold
values, helping to identify optimal operational points for practical use (Morasca & Lavazza,
2020).

Copyright@ Page 16

International Journal Research Publication Analysis

When automated code review systems generate natural-language comments or suggestions,
evaluation metrics shift toward language quality and semantic relevance. Metrics such as
BLEU (Bilingual Evaluation Understudy), ROUGE (Recall-Oriented Understudy for Gisting
Evaluation), and METEOR assess the similarity between generated and reference comments,
analysing aspects such as n-gram overlap, word precision and recall, and semantic alignment.
Although originally developed for machine translation and summarisation, these metrics are
now standard for evaluating textual feedback in code review environments (Albattah &
Alzahrani, 2024).

For ranking or prioritisation tasks, such as recommending which files or lines require urgent
attention, metrics like Mean Average Precision (MAP) and Mean Reciprocal Rank (MRR) are
employed. These assess a model’s ability to correctly rank buggy or problematic code higher,
which is crucial for helping developers focus their efforts efficiently. In industrial contexts,
additional metrics related to software quality may be considered, including reductions in
post-release defects, review latency, developer productivity, and maintainability indices.
Though harder to quantify, these metrics reflect the real-world impact of automated review
and bug detection tools (Albattah & Alzahrani, 2024).

Selecting appropriate metrics depends on the goals of the system being developed. For
instance, a bug detection model aimed at minimising missed defects may prioritise Recall,
whereas a static analyser integrated into a continuous integration pipeline may emphasise
Precision to reduce unnecessary alerts. Similarly, natural-language comment generation
models rely on linguistic metrics, while structural defect detection models depend on
classification metrics such as Accuracy, F1-Score, or ROC-AUC (Morasca & Lavazza, 2020;
Albattah & Alzahrani, 2024).

Despite significant progress in applying deep learning to automated code review and bug
detection, several challenges and limitations continue to constrain the effectiveness,
reliability, and adoption of these systems. These challenges stem from the complexity of
software systems, the evolving nature of programming languages, and inherent limitations in
machine learning methodologies. Understanding these issues is essential for guiding future
research and improving system performance (Viswanadhapalli, 2024).

One major challenge is the inherent complexity and variability of source code. Unlike natural
language, code is highly structured and governed by strict grammatical and semantic rules.
Small changes in syntax can drastically alter program behaviour, making it difficult for deep
learning models to capture exact semantics. While modern models effectively learn statistical

patterns, they may fail to understand deeper logic, data flow, or interactions between

Copyright@ Page 17

International Journal Research Publication Analysis

components, leading to incorrect predictions or shallow analyses. This limitation becomes
even more pronounced in large-scale or highly modular projects where context extends across
multiple files (Viswanadhapalli, 2024; Golovnev, Starovoytov, & Staroletov, 2025).

Another critical limitation is the scarcity of high-quality, well-labelled datasets. Although
numerous code datasets exist, many suffer from label noise, incomplete bug descriptions, or
inconsistent annotations. For bug detection tasks, the imbalance between buggy and non-
buggy samples often causes models to exhibit poor recall, failing to detect rare but significant
defects. Furthermore, datasets sourced from open-source repositories may not be
representative of proprietary or domain-specific software, limiting the generalizability of
trained models (Viswanadhapalli, 2024; Golovnev et al., 2025).

The dynamic and evolving nature of software development introduces additional challenges.
Programming languages, frameworks, and libraries are continually updated, causing models
trained on older data to become outdated. Emerging coding patterns, new vulnerabilities, and
evolving best practices require ongoing retraining and dataset updates. Failure to adapt can
result in outdated or irrelevant recommendations, reducing trust in automated systems
(Viswanadhapalli, 2024).

Interpretability is another significant concern. Deep learning models, particularly large neural
architectures, often operate as black boxes, providing little insight into why a specific piece
of code is flagged as defective. Developers require clear, interpretable explanations to trust
automated suggestions. Without transparency, these systems may be perceived as unreliable
or overly cautious, which can limit adoption in professional environments (Viswanadhapalli,
2024; Golovnev et al., 2025).

False positives and false negatives present additional obstacles. Excessive false positives can
overwhelm developers with unnecessary warnings, reducing productivity and discouraging
tool usage. Conversely, false negatives may allow critical defects to remain undetected.
Balancing precision and recall is especially challenging for complex bugs that require deep
semantic reasoning or contextual understanding across multiple files (Viswanadhapalli,
2024).

Integrating automated code review tools into existing development workflows also presents
difficulties. Many organisations involve multiple stakeholders, diverse tools, and varying
coding standards. Automated systems must be highly adaptable to different project structures,
codebases, and review cultures. Poor integration can disrupt workflows, create redundancy,

or conflict with human reviewers’ judgments (Golovnev et al., 2025).

Copyright@ Page 18

International Journal Research Publication Analysis

Deep learning models also demand substantial computational resources for training and
inference. Large models can be expensive to train and maintain, particularly in continuous
integration pipelines where rapid feedback is essential. Resource constraints may prevent
smaller teams or organisations from deploying advanced models, limiting their practicality
(Viswanadhapalli, 2024).

Detecting semantic, logical, or context-dependent bugs, such as concurrency issues, race
conditions, or security vulnerabilities that depend on runtime behaviour, remains particularly
difficult. Static code alone may not reveal these defects, and current deep learning models
struggle to infer dynamic behaviour without execution traces or symbolic analysis tools
(Viswanadhapalli, 2024; Golovnev et al., 2025).

Ethical concerns also arise, including potential bias embedded in training data, which may
cause models to favour certain coding styles, patterns, or developer practices. This can lead to
non-uniform treatment of contributions and inadvertently introduce unfairness
(Viswanadhapalli, 2024).

Finally, developer trust and acceptance continue to be major barriers. Developers may resist
tools that generate unclear, incorrect, or overly aggressive suggestions. Building trust requires
consistent performance, interpretability, and the ability to complement rather than replace
human expertise (Viswanadhapalli, 2024; Golovnev et al., 2025).

In summary, while deep learning has significantly advanced automated code review and bug
detection, challenges ranging from dataset limitations and interpretability issues to workflow
integration and computational constraints continue to limit the effectiveness and scalability of
these systems. Addressing these challenges is essential for developing robust, trustworthy,
and practical solutions capable of supporting modern software engineering processes
(Viswanadhapalli, 2024; Golovnev et al., 2025).

2.1 Review of Related Works
The increasing complexity of software systems has made manual code review and bug

detection both time-consuming and error-prone, prompting significant research into
automated approaches. Traditional static and rule-based analysis tools, such as SonarQube
and FindBugs, have been widely used to detect code smells and potential bugs, but they often
fail to capture deeper semantic or context-specific issues. Consequently, researchers have
turned to deep learning techniques to improve automated code analysis. Recent studies have
explored sequence-based models, such as LSTMs, to learn patterns from historical code

changes and suggest corrections or detect anomalies. More recently, transformer-based

Copyright@ Page 19

International Journal Research Publication Analysis

models, including CodeBERT and GraphCodeBERT, have leveraged large code corpora and
structural representations to achieve state-of-the-art performance in tasks like code review,
bug detection, and code summarisation. While these deep learning approaches show
considerable promise, challenges remain in terms of dataset requirements, generalisation
across diverse projects, and computational cost. This section reviews related work in deep
learning-based automated code review and bug detection, with particular attention to models

that capture semantic and structural aspects of source code.

Siva et al (2023). Automatic software bug prediction using adaptive artificial jelly
optimisation with long short-term memory.

Siva et al. (2023) proposed a deep learning-based framework for software bug prediction,
aiming to improve software quality and reliability by detecting defects at early stages of
development. The approach consisted of three key stages: pre-processing to remove duplicate
data, feature selection using an adaptive artificial jelly optimisation algorithm (A2JO) to
reduce complexity and prevent overfitting, and classification using a long short-term memory
(LSTM) model to predict defective and non-defective code. Experiments were conducted on
publicly available datasets, including Promise and NASA repositories, and the model was
evaluated using metrics such as accuracy, F-measure, G-measure, and Matthews Correlation
Coefficient (MCC). The results demonstrated high predictive performance, achieving
accuracies of 93.41% and 92.8% for the Promise and NASA datasets, respectively. While the
study highlighted the effectiveness of combining feature optimisation with LSTM-based
prediction, its applicability may be influenced by dataset characteristics and the
computational cost of model training. Nevertheless, it provides a valuable contribution to
automated bug detection research by integrating deep learning with feature selection

techniques.

Khalid et al. (2023) Software Defect Prediction Analysis Using Machine Learning
Techniques

Khalid et al. (2023) investigated machine learning (ML) techniques for software defect
prediction, focusing on improving model accuracy and precision on publicly available
datasets. The study applied K-means clustering to categorise class labels and employed
various classification models on selected features. To further enhance model performance,
Particle Swarm Optimisation (PSO) was used to optimise the ML models. The models were

evaluated using metrics including accuracy, precision, recall, F-measure, error metrics, and

Copyright@ Page 20

International Journal Research Publication Analysis

confusion matrices. Results indicated that all ML and optimised ML models performed well,
with Support Vector Machine (SVM) and optimised SVM achieving the highest accuracies of
99% and 99.80%, respectively. Other models, including Naive Bayes, Random Forest, and
ensemble methods, also showed strong performance. While the study demonstrates the
effectiveness of combining feature selection and model optimisation for defect prediction, its
reliance on specific dataset characteristics may influence generalizability. Nonetheless, it
contributes significantly to advancing automated bug detection techniques with high-

accuracy ML approaches.

Akhtar, N., Rana, A., Deshpande, P. P., Kumar, M., Parida, P. K., & Bajaj, K. K. (2023).
Software bug prediction and detection using machine learning and deep learning.
International Journal of Intelligent Systems and Applications in Engineering

Akhtar et al. (2023) conducted a comprehensive study on the application of machine learning
(ML) and deep learning (DL) techniques for software bug prediction and detection. The
research focused on analysing data from code repositories, bug databases, and other software-
related sources to identify patterns linking code attributes to defect occurrence. The study
included a comparative evaluation of various ML and DL approaches, emphasising the
importance of publicly accessible datasets and model interpretability. The authors highlighted
the potential of hybrid methodologies that combine machine learning and deep learning to
improve prediction accuracy and detection capabilities. While the paper provided a broad
overview of existing techniques and their practical implications for software development, it
also discussed current limitations and identified future research directions in automated bug

detection and prediction.

Shaon, M. S. H., & Akter, M. S. (2025). Modern Approaches to Software Vulnerability
Detection: A Survey of Machine Learning, Deep Learning, and Large Language Models
Shaon and Akter (2025) presented a comprehensive survey of modern approaches for
automated software vulnerability detection, focusing on machine learning (ML), deep
learning (DL), and large language model (LLM) techniques. The study analysed recent
advances in feature representation, fine-tuning, generative methods, and prompt engineering,
highlighting their ability to capture both syntactic and semantic aspects of source code. Key
challenges, including limited real-world datasets, class imbalance, interpretability issues, and
high computational costs, were critically discussed. The authors also outlined promising
future directions, such as neuro-symbolic hybrid methods, parameter-efficient fine-tuning,

Copyright@ Page 21

International Journal Research Publication Analysis

cross-language generalisation, continual learning, and explainable Al. By bridging the gap
between classical feature-based methods and LLM-driven frameworks, the survey provides
valuable insights for developing scalable, accurate, and interpretable vulnerability detection

systems.

Yadav, P. S., Rao, R. S., Mishra, A., & Gupta, M. (2024). Machine Learning-Based
Methods for Code Smell Detection

Yadav et al. (2024) conducted a comprehensive survey of machine learning (ML) techniques
for code smell detection, which serve as early indicators of potential software quality issues.
The study reviewed 42 relevant works from 2005 to 2024, covering a range of ML algorithms
including Support Vector Machines, J48, Naive Bayes, and Random Forest, as well as
traditional methods such as rule-based and Bayesian approaches. The authors highlighted
challenges in code smell detection, including the lack of standardized definitions, difficulty in
feature selection, and handling large-scale datasets. By evaluating multiple contributing
factors and presenting class-wise distributions of ML algorithms, the study demonstrated the
potential of ML methods to improve software design and development practices. The findings
emphasize the practical value of ML in anticipating and addressing software design flaws,

ultimately enhancing software quality and maintainability.

Albattah, W., & Alzahrani, M. (2024). Software Defect Prediction Based on Machine
Learning and Deep Learning Techniques

Albattah and Alzahrani (2024) investigated machine learning (ML) and deep learning (DL)
techniques for software defect prediction, emphasizing early-stage bug detection to enhance
software reliability and reduce maintenance costs. The study evaluated eight widely used ML
and DL algorithms using a large dataset compiled from five publicly available bug
repositories, comprising around 60 software metrics such as cohesion, coupling, complexity,
documentation, inheritance, and class size. Models were compared using performance
metrics including accuracy, macro F1 score, weighted F1 score, and binary F1 score. Results
indicated that the deep learning model, particularly LSTM, outperformed traditional ML
algorithms, achieving an accuracy of 87%. The study highlights the effectiveness of
combining extensive software metrics with deep learning approaches for early and accurate

defect prediction, contributing to improved software quality and maintainability.

Copyright@ Page 22

International Journal Research Publication Analysis

Yousofvand, L., Soleimani, S., Rafe, V., & et al. (2026). Graph neural networks for
precise bug localisation through structural program analysis

Yousofvand et al. (2026) proposed a graph neural network (GNN)-based approach for precise
bug localisation, addressing the challenge of identifying code segments responsible for
program failures in increasingly complex software systems. The method represents source
code as graphs encoding syntactic and semantic structures, labelling nodes using the Gumtree
algorithm, and classifying them with a supervised GNN model into buggy or bug-free nodes.
To handle class imbalance, the approach was evaluated using accuracy, precision, recall, and
F1-score metrics. Experimental results demonstrated that the proposed method outperformed
existing techniques, effectively localising a wide range of bug types, including undefined
properties, functional bugs, variable naming errors, and variable misuse. This study
highlights the potential of structural program analysis and graph-based deep learning models

for automated, high-precision bug detection.

Abdul Kadar, M. (2022). Automated code review and vulnerability detection using
graph neural networks

Abdul Kadar (2022) proposed a graph neural network (GNN)-based framework for
automated code review and vulnerability detection, focusing on improving software security
within modern development workflows, including DevSecOps. The approach represents
source code as structural graphs to capture semantic relationships and extracts features for
GNN-based classification of security vulnerabilities and code quality issues. The model
achieved 93.7% accuracy across multiple programming languages, outperforming traditional
static analysis tools by 27% and conventional deep learning approaches by 18%. When
integrated into CI/CD pipelines, the system provided real-time feedback during code
commits, reducing vulnerabilities by 76% and decreasing false positives by 41%. This study
demonstrates the effectiveness of combining structural code representation with deep learning

to enhance automated vulnerability detection and streamline code review processes.

Yin, Y., Zhao, Y., Sun, Y., & Chen, C. (2023). Automatic Code Review by Learning the
Structure Information of Code Graph. Sensors

Yin et al. (2023) proposed an automated code review model that leverages structural
information from code graphs to improve review efficiency. The study introduced the
PDG2Seq algorithm, which converts program dependency graphs into unique sequences

while preserving structural and semantic information. The model builds on the pre-trained

Copyright@ Page 23

International Journal Research Publication Analysis

CodeBERT architecture, integrating both code sequence and structure information, and is
fine-tuned for practical code review scenarios. Experimental results demonstrated significant
improvements over baseline methods, as measured by BLEU, Levenshtein distance, and
ROUGE-L metrics. This work highlights the potential of combining graph-based structural

representations with deep learning models to enhance automated code review processes.

Siachos, 1., Kanakaris, N., & Karacapilidis, N. (2025). Software bug prediction using
graph neural networks and graph-based text representations

Siachos et al. (2025) proposed a hybrid approach for software bug prediction that combines
graph-based text representations, word embeddings, and graph neural networks (GNNs) to
leverage both structural and semantic information. Unlike prior methods that focus on
individual components, the approach models textual data from issue tracking platforms as
graphs and applies Graph Attention Networks (GATS) to predict software bugs. Experiments
on four publicly available datasets from GitHub and Jira demonstrated improvements in
accuracy, precision, and recall compared to existing graph-based machine learning models.
This study underscores the potential of integrating textual information and graph-based

learning for enhanced bug prediction in open-source software development environments.

Viswanadhapalli, V. (2024). Automated bug detection and resolution using deep
learning: A new paradigm in software engineering

Viswanadhapalli (2024) presented an in-depth analysis of deep learning techniques for
automated bug detection and resolution, highlighting their potential to improve software
reliability and reduce debugging time. The study reviewed neural network architectures,
including CNNs for token-based code analysis, RNNs and LSTMs for capturing sequential
dependencies, and transformer-based models such as CodeBERT and GPT-4 for large-scale
code understanding. The paper also discussed transfer learning and reinforcement learning
approaches to enhance model adaptability and optimise corrective actions. While deep
learning methods significantly improve accuracy and efficiency compared to traditional static
and dynamic analysis, challenges remain, including the scarcity of high-quality labelled
datasets, interpretability issues, and high computational costs. The study further proposed a
hybrid deep learning approach combining multiple architectures to leverage their strengths
and mitigate individual limitations, providing a promising direction for more effective

automated bug detection and resolution in modern software engineering.

Copyright@ Page 24

International Journal Research Publication Analysis

Zymawy, H. (2025). Leveraging machine learning for automated code quality
assessment and optimisation in modern software development

Zymawy (2025) proposed a comprehensive machine learning-based framework for
automated code quality assessment, optimisation, and intelligent software development
workflows. The study employed transformer-based deep learning models trained on large-
scale code repositories to perform automated code review, predictive bug detection,
performance optimisation, and technical debt management. Experimental results
demonstrated substantial improvements over traditional static analysis tools, including a 42%
increase in bug detection accuracy, a 35% reduction in code review time, a 67% improvement
in performance optimisation, and 89% accuracy in technical debt prediction. The framework
was successfully deployed in production across multiple programming languages and large-
scale codebases, highlighting the practical effectiveness of integrating advanced ML

techniques into modern software engineering practices.

Barrameda, R. B., & Ballera, M. (2025). Enhancing code quality: A CNN-based
approach for readability classification and bug localisation in programming

Barrameda and Ballera (2025) proposed a convolutional neural network (CNN)-based
approach for automated code readability classification and bug localisation, aimed at
improving programming education and software quality. The model employs a hybrid
activation function combining ReLU and Leaky ReLU and processes structured code
representations derived from lexical and syntactic analysis to extract hierarchical features
indicative of code quality. Experiments on open-source datasets relevant to beginner
computer science students achieved a classification accuracy of 82.4%. The study highlights
the potential of deep learning to provide automated feedback, support scalable code
evaluation, and enhance bug detection, while noting challenges such as overfitting and

computational complexity.

2.2 Summary of Literature Review

S/IN | Author Title Summary Limitations
1 |Siva et al | Automatic Proposed a three-stage | Dataset-specific
(2023) Software Bug | approach for software | performance;
Prediction Using | bug prediction: pre- | computational cost
Adaptive processing, feature | of LSTM and
Artificial Jelly | selection using | optimisation step;
Optimisation adaptive artificial jelly | generalisation to
With LSTM optimisation (A2JO), | unseen projects
and classification using | may be limited.

Copyright@ Page 25

International Journal Research Publication Analysis

LSTM. Experiments on

Promise and NASA
datasets achieved
accuracies of 93.41%
and 92.8%,

respectively.

2 | Khalid et al |Software Defect | |nvestigated ML and | Reliance on
(2023) Prediction optimised ML models | specific dataset
Analysis Using | for defect prediction | characteristics may
Machine Learning | using K-means for | not generalise well
Techniques label categorisation and | to different
Particle Swarm | software contexts.
Optimisation for model
optimisation. SVM and
optimised SVM
achieved accuracies of
99% and 99.80%.
3 | Akhtar et al | SOftware Bug | Reviewed ML and DL | Broad survey; did
(2023) Prediction and methods ~ for bug | not propose a
Detection Using | prediction and | specific novel
Machine Learning | detection from code | predictive model.
and Deep | repositories and bug
Learning databases, emphasising
hybrid approaches that
leverage multiple
techniques for
improved performance.
4 Shaon & Akter | Modern

Surveyed ML, DL, and

Focused on survey;

(2025) Approaches to | |LM-based practical
Software vulnerability detection, | implementation
Vulnerability analysing feature | and evaluation of
Detection: A | representation, fine- | models were not
Survey of ML, | tuning, generative | presented.
DL, and LLMs methods, and prompt
engineering.
Highlighted challenges
like dataset scarcity,
class imbalance, and
interpretability.
5 | Vaday et al | Machine Reviewed 42 studies on | It relies on small-
(2024) " | Learning-Based ML techniques for code | scale datasets;
Methods for Code | smell detection, | generalisation to
Smell Detection | including SVM, | large industrial
Random Forest, J48, | codebases IS
and Naive Bayes. | limited.
Addressed challenges
in feature selection,
Copyright@ Page 26

International Journal Research Publication Analysis

dataset scale, and lack

of standardised
definitions.

6 | Albattah & | Software Defect | Empirical study | Computational cost
Alzahrani Prediction Based | comparing 8 ML and | of deep learning;
(2024) on Machine | DL algorithms using 5 | performance may

Learning a_md public datasets with | vary with different
Deep Learning | ~60 software metrics; | datasets.
Techniques LSTM outperformed

others with 87%

accuracy.

7 | Yousofvand et | Graph Neural | Proposed GNN-based | Dataset-dependent

al. (2026) Networks for | bug localisation using | performance; class
Precise ~ Bug | graph representation of | imbalance
Localisation source code, node | challenges;
labelling via Gumtree, | complexity of
and supervised | graph-based
classification with | methods.
evaluation on accuracy,
precision, recall, and
F1-score.
8 Abdul Kadar | Automated Code | Developed a GNN- | High
(2022) Review and | based framework for | computational cost;
Vulnerability automated code review | may require
Detection Using | and vulnerability | adaptation for
GNNs detection with 93.7% | specific
accuracy, integrated | programming
into CI/CD pipelines to | languages or
reduce vulnerabilities | environments.
by 76%.
9 Yin et 8].(2023) Automatic Code Proposed PDG2Seq Focused on
Review by | algorithm to convert | structure-sequence
Learning the | program dependency | fusion; may require
Structure graphs into sequences; | large datasets for
Information of | CodeBERT-based fine-tuning.
Code Graph model integrates code
sequence and structural
info, improving BLEU,
Levenshtein, and
ROUGE-L metrics.
10 | Siachos et al. | Software Bug | Hybrid approach using | Limited to textual

(2025) Prediction Using | GATs and graph-based | issue data;
GNNs and Graph- | text representations | generalisation to
Based Text | from issue tracking | other datasets or
Representations data; improved | programming
accuracy, precision, | languages may be
Copyright@ Page 27

International Journal Research Publication Analysis

and recall on GitHub | limited.
and Jira datasets.
11 | Viswanadhapalli | Automated Bug | Reviewed DL | High
(2024) Detection ~ and | architectures for bug | computational cost;
Resolution Using | detection (CNN, RNN, | interpretability of
Deep Learning LSTM, transformers) | deep learning
and proposed hybrid | models; limited
models; discussed | availability of
transfer learning and | high-quality
reinforcement learning | labelled datasets.
for automated
debugging.
12 Zymawy :c_everaging ML | Proposed transformer- High resource
(2025) or Automated | pased DL framework | requirements; may
Code Quality | for code review, bug | require extensive
Assessment and | detection, performance | code repositories
Optimisation optimisation, and | for training.
technical debt
management;
demonstrated 42%
improvement in bug
detection and 35%
reduction in review
time.
13 | Barrameda & | Enhancing Code | CNN-based approach | Focused on
Ballera (2025) | Quality: A CNN- | with hybrid | educational datasets;
Based Approach | ReLU/Leaky RelLU | overfitting and
for Readability | activation for code | computational
Classification and | readability classification | complexity are
Bug Localisation |and bug localisation; | challenges.
achieved 82.4%
accuracy on student

code datasets.

2.3 Knowledge Gap/ Recommendation

While significant advances have been made in the development of machine learning and deep

learning-based approaches for automated code review and bug detection, several important

challenges remain unresolved. One key limitation lies in the insufficient integration of

semantic and structural information from source code. Many existing methods rely primarily

on sequential code representations or textual features, which may fail to capture the deeper

relationships and dependencies within the program, limiting their ability to detect complex

bugs and design flaws.

Copyright@

Page 28

International Journal Research Publication Analysis

Additionally, although graph-based models and neural architectures such as Graph Neural
Networks (GNNs) and transformers have shown promise, their high computational
requirements and dependence on large, high-quality datasets restrict their practical
applicability, especially in resource-constrained or real-time environments. Furthermore,
many studies focus on a narrow set of programming languages or small-scale datasets, raising
questions about the generalizability of the proposed approaches to diverse software projects
and industrial-scale codebases.

Another gap is the limited research on combining different approaches to improve bug
detection and code review. For example, few studies explore how to effectively use multiple
types of information from the code, such as its structure, content, and runtime behaviour,
together. While some work has tried to mix machine learning and deep learning methods,
there is still a lack of systematic strategies for bringing these different sources of information
together in a practical way.

Finally, although evaluation metrics such as accuracy, F1-score, and BLEU are commonly
reported, there is a lack of standardised benchmarking frameworks for comparing different
automated code review and bug detection methods. This inconsistency hampers the
assessment of model robustness, scalability, and effectiveness in real-world software
development pipelines.

These unresolved challenges highlight the need for more comprehensive, adaptable, and
computationally efficient approaches that can effectively leverage structural, semantic, and
behavioural aspects of code while supporting real-time deployment and cross-project

generalisation.

REFERENCES

1. Kavuri, S. (2025). Al-driven test automation frameworks: Enhancing efficiency and
accuracy in software quality assurance. International Journal of Applied
Mathematics, 38(10s), 699-710. https://doi.org/10.12732/ijam.v38i10s.990

2. Cheng, J. (2025). Research on improving the credibility and reliability of industrial
Internet software testing quality assurance based on a digital twin. Journal of Technology
Innovation and Engineering, 1(2). https://doi.org/10.63887/jtie.2025.1.2.2

3. Li, Z., Zou, D., Xu, S., Ou, X., Jin, H., Wang, S., Deng, Z., & Zhong, Y. (2018).
VulDeePecker: A deep learning-based system for vulnerability detection [Preprint].
Submitted January 5, 2018.

Copyright@ Page 29

https://doi.org/10.12732/ijam.v38i10s.990
https://doi.org/10.63887/jtie.2025.1.2.2

International Journal Research Publication Analysis

10.

11.

12.

13.

14.

Siva, R., S K., Hariharan, B., & et al. (2023). Automatic software bug prediction using
adaptive artificial jelly optimisation with long short-term memory. Wireless Personal
Communications, 132, 1975-1998. https://doi.org/10.1007/s11277-023-10694-9
Fregnan, E., Petrulio, F., Di Geronimo, L., et al. (2022). What happens in my code
reviews? An investigation into automatically classifying review changes. Empirical
Software Engineering, 27, 89. https://doi.org/10.1007/s10664-021-10075-5

Fregnan, E., Petrulio, F., & Bacchelli, A. (2022). The evolution of the code during
review: An investigation on review changes. Empirical Software Engineering, 27, 177.
https://doi.org/10.1007/s10664-022-10205-7

Akhtar, N., Rana, A., Deshpande, P. P., Kumar, M., Parida, P. K., & Bajaj, K. K. (2023).
Software bug prediction and detection using machine learning and deep learning.
International Journal of Intelligent Systems and Applications in Engineering, 12(9s),
301-308. https://ijisae.org/index.php/IJISAE/article/view/4277

Shaon, M. S. H., & Akter, M. S. (2025). Modern Approaches to Software Vulnerability
Detection: A Survey of Machine Learning, Deep Learning, and Large Language
Models. Electronics, 14(22), 4449. https://doi.org/10.3390/electronics14224449

Meher, J. P, Biswas, S., & Mall, R. (2024). Deep learning-based software bug
classification. Information and Software Technology, 166, 107350.
https://doi.org/10.1016/j.infsof.2023.107350

Khalid, A., Badshah, G., Ayub, N., Shiraz, M., & Ghouse, M. (2023). Software Defect
Prediction Analysis Using Machine Learning Techniques. Sustainability, 15(6), 5517.
https://doi.org/10.3390/su15065517

Yadav, P. S., Rao, R. S., Mishra, A., & Gupta, M. (2024). Machine Learning-Based
Methods for Code Smell Detection: A Survey. Applied Sciences, 14(14), 6149.
https://doi.org/10.3390/app14146149

Albattah, W., & Alzahrani, M. (2024). Software Defect Prediction Based on Machine
Learning and Deep Learning Techniques: An Empirical Approach. Al, 5(4), 1743-1758.
https://doi.org/10.3390/ai5040086

Mienye, I. D., & Swart, T. G. (2024). A Comprehensive Review of Deep Learning:
Architectures, Recent Advances, and Applications. Information, 15(12), 755.
https://doi.org/10.3390/info15120755

Yousofvand, L., Soleimani, S., Rafe, V., & et al. (2026). Graph neural networks for
precise bug localisation through structural program analysis. Automated Software
Engineering, 33, 17. https://doi.org/10.1007/s10515-025-00556-y

Copyright@ Page 30

https://doi.org/10.1007/s11277-023-10694-9
https://doi.org/10.1007/s10664-021-10075-5
https://doi.org/10.1007/s10664-022-10205-7
https://ijisae.org/index.php/IJISAE/article/view/4277
https://doi.org/10.3390/electronics14224449
https://doi.org/10.1016/j.infsof.2023.107350
https://doi.org/10.3390/su15065517
https://doi.org/10.3390/app14146149
https://doi.org/10.3390/ai5040086
https://doi.org/10.3390/info15120755
https://doi.org/10.1007/s10515-025-00556-y

International Journal Research Publication Analysis

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

Shi, Y, Yin, Y., Yu, M., & Chu, L. (2024). CogCol: Code Graph-Based Contrastive
Learning Model for Code Summarisation. Electronics, 13(10), 1816.
https://doi.org/10.3390/electronics13101816

Alon, U., Zilberstein, M., Levy, O., & Yahav, E. (2018). code2vec: Learning distributed
representations of code. arXiv. https://doi.org/10.48550/arXiv.1803.09473

Abdul Kadar, M. (2022). Automated code review and vulnerability detection using graph
neural networks: Enhancing DevSecOps workflows. World Journal of Advanced
Engineering Technology and Sciences, 5(1), 113-122.
https://doi.org/10.30574/wjaets.2022.5.1.0031

Yin, Y., Zhao, Y., Sun, Y., & Chen, C. (2023). Automatic Code Review by Learning the
Structure Information of Code Graph. Sensors, 23(5), 2551.
https://doi.org/10.3390/s23052551

Cui, M., Long, S., Jiang, Y., & Na, X. (2022). Research on Software Defect Prediction
Model Based on Complex Network and Graph Neural Network. Entropy, 24(10), 1373.
https://doi.org/10.3390/e24101373

Siachos, 1., Kanakaris, N., & Karacapilidis, N. (2025). Software bug prediction using
graph neural networks and graph-based text representations. Expert Systems with
Applications, 240, 125290. https://doi.org/10.1016/j.eswa.2024.125290

Morasca, S., & Lavazza, L. (2020). On the assessment of software defect prediction
models via ROC curves. Empirical Software Engineering, 25, 3977-40109.
https://doi.org/10.1007/s10664-020-09861-4

Golovnev, N., Starovoytov, N., & Staroletov, S. (2025, June). Challenges in automating
error-fixing commit classification for Linux Kernel and cyber-physical systems. In 2025
IEEE 26th International Conference of Young Professionals in Electron Devices and
Materials (EDM). https://doi.org/10.1109/EDM65517.2025.11096858

Viswanadhapalli, V. (2024). Automated bug detection and resolution using deep learning:
A new paradigm in software engineering. International Journal of Engineering and
Computer Science, 13. https://doi.org/10.18535/ijecs/v13i04.4816

Zymawy, H. (2025). Leveraging machine learning for automated code quality assessment
and optimisation in modern software development: A comprehensive framework for
intelligent software engineering (Report No. 007). Goldsmiths University of London.
https://doi.org/10.13140/RG.2.2.16288.24320

Copyright@ Page 31

https://doi.org/10.3390/electronics13101816
https://doi.org/10.48550/arXiv.1803.09473
https://doi.org/10.30574/wjaets.2022.5.1.0031
https://doi.org/10.3390/s23052551
https://doi.org/10.3390/e24101373
https://doi.org/10.1016/j.eswa.2024.125290
https://doi.org/10.1007/s10664-020-09861-4
https://doi.org/10.1109/EDM65517.2025.11096858
https://doi.org/10.18535/ijecs/v13i04.4816
https://doi.org/10.13140/RG.2.2.16288.24320

International Journal Research Publication Analysis

25. Barrameda, R. B., & Ballera, M. (2025). Enhancing code quality: A CNN-based
approach for readability classification and bug localisation in programming. In Computer
and Electrical Engineering. https://doi.org/10.3233/ATDE250732

Copyright@ Page 32

https://doi.org/10.3233/ATDE250732

