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ABSTRACT 

In this work, we introduce a novel analysis framework for studying and comparing brain MRI 

data from non-standard animal models, such as sheep, without the use of predefined 

neuroanatomical priors. The proposed pipeline integrates automated MRI segmentation with 

graph neural networks (GNNs) to address the shortcomings of conventional approaches. 

Traditional neuroimaging methods typically rely on fixed anatomical atlases and struggle to 

generalize to developing brains or atypical species. By deriving regions of interest directly 

from MRI data and representing the brain as a graph, our method reduces template-induced 

bias and increases adaptability. Experimental results demonstrate that the GNN-based 

pipeline achieves higher accuracy in an age prediction task (63.22%) than a standard 

convolutional neural network (CNN) model (59.77%). In addition to improved performance, 

GNNs enhance model interpretability and effectively capture complex relationships between 

brain regions. These findings highlight the potential of the proposed framework as a flexible, 

unbiased, and interpretable solution for brain MRI analysis in developmental and non-

conventional animal studies. 
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INTRODUCTION 

Automated approaches have greatly advanced brain MRI analysis, particularly in human 

studies and widely used laboratory animals (Kaur and Gaba, 2021; Park and Friston, 2013). 

Nevertheless, equivalent tools remain scarce for investigations involving immature brains or 

less common animal models such as sheep. Consequently, brain structure delineation in these 

contexts often relies on manual annotation or automated segmentation driven by signal 

intensity and existing templates, when such resources exist (Nitzsche et al., 2015; Ella et al., 

2017). These strategies are heavily reliant on prior anatomical knowledge and atlas quality, 

which may inadequately represent inter-individual variability or pathological alterations. The 

problem is further compounded in developing brains, where low tissue contrast, 

heterogeneous maturation, and incomplete structural visibility pose significant challenges (Li 

et al., 2019). Moreover, the use of predefined anatomical regions can restrict exploratory 

analyses and hinder the identification of previously unrecognized brain features associated 

with disease. 

In this study, we introduce a processing framework designed to mitigate both segmentation-

related biases and the inherent limitations of convolutional neural networks. Our approach 

constructs regions of interest (ROIs) without the use of predefined neuroanatomical 

information. Specifically, voxel intensity–based information is leveraged to produce 

segmented images using two distinct segmentation techniques. Furthermore, we employ 

graph neural networks (GNNs) to detect and analyse anatomical patterns by representing the 

brain as a network of interconnected patches, thereby enabling the modeling of complex 

inter-regional relationships (Cui et al., 2021; Li et al., 2021; Ravinder et al., 2023). By 

eliminating dependence on anatomical atlases, this strategy supports a more adaptable, data-

driven investigation of brain organization. 

 

RELATED WORKS 

2.1 CLASSICAL APPROACHES USED ON BRAIN MRI 

The literature primarily focuses on two major objectives: image or brain segmentation 

(Coupeau et al., 2022) and image or brain classification (Srinivasan et al., 2024; Kaur and 

Gaba, 2021; Poriya, 2023). In both contexts, machine learning methods particularly 

convolutional neural networks (CNNs) and graph convolutional networks (GCNs) offer 

robust frameworks capable of automatically learning the most informative features. 

Regardless of whether CNNs or GNNs are employed, several essential steps are required, 

including image pre-processing and patch extraction. MRI pre-processing procedures such as 
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denoising and intensity normalization aim to standardize voxel intensity distributions and 

improve comparability across datasets. Images are typically resampled to achieve uniform 

voxel resolution, and registration may be applied to align scans within a common anatomical 

space, often using a reference template. In addition, non-brain structures such as the skull and 

scalp are removed through cropping and skull-stripping to isolate brain tissue for subsequent 

analysis. 

 

2.1.1. SEGMENTATION 

The purpose of segmentation is to define and label anatomical regions of interest (ROIs) 

within brain MRI scans, with the resulting segmented images serving as the basis for 

constructing graph-based representations. This process can be carried out through manual 

annotation or by using atlas-based methods derived from individual brain images or 

standardized templates (Van Essen and Drury, 1997; Yang et al., 2020; Fil et al., 2021). Such 

approaches enable the identification and delineation of multiple brain regions and structures, 

and they also provide reference frameworks for registering individual MRI scans into a 

shared spatial coordinate system. This alignment supports consistent and reliable comparisons 

across subjects. 

 

2.1.2.CNN DESIGN 

A convolutional neural network (CNN) is generally composed of stacked layers such as 

convolutional, pooling, and fully connected layers. The adoption of sophisticated CNN 

architectures, including AlexNet (Krizhevsky et al., 2012) and ResNet (He et al., 2016), has 

substantially improved the ability to capture complex image features and achieve strong 

performance across a range of MRI analysis tasks, such as classification and clustering. The 

integration of biological knowledge through the use of brain atlases can further enhance these 

approaches by increasing robustness, accuracy, and reproducibility in MRI studies. In the 

specific context of brain age estimation, multiple CNN-based models have been introduced, 

notably VGG, ResNet, and DenseNet architectures (Cole et al., 2017; Jiang et al., 2020). 

More recent developments incorporate attention mechanisms to strengthen feature 

representation and further improve predictive accuracy (Lam et al., 2020; Cheng et al., 2021). 

 

2.1.3.GRAPH DESIGN 

In graph-based brain representations, nodes are most often defined at the regional scale, with 

each node corresponding to a specific brain area. The choice of regions depends strongly on 

the objectives of the study and may represent elements ranging from individual neurons and 
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voxels to broader anatomical structures or tissue types. From an anatomical perspective, node 

attributes can encode spatial information such as centroid coordinates and orientation, as well 

as morphological characteristics including volume and shape metrics. Signal intensity–based 

features are also commonly used to describe tissue composition. In addition, graph-

theoretical measures, such as centrality or node strength, can be incorporated to further 

characterize regional importance. Edges can be constructed in multiple ways and 

parameterized according to the study’s goals, with three main categories typically considered: 

structural, functional, and effective connectivity (Fedorov et al., 2012). Edge attributes may 

include measures such as Euclidean distance, tract length, or connection cost (Bullmore and 

Bassett, 2011; Sporns, 2018). Defining edges is often the most challenging step in building 

brain networks. While fully connected graphs are possible, achieving an interpretable and 

computationally efficient representation generally requires reducing edge density to retain 

only meaningful connections. This is commonly done by applying thresholds to eliminate 

weak or irrelevant edges, although determining appropriate thresholding strategies whether 

statistical, expert-driven, or customized remains an open research problem. 

 

2.1.4. GNN DESIGN 

After representing the brain as a graph, graph neural networks (GNNs) are applied to learn 

from these structures and to model complex interactions and variability in brain organization 

(Li et al., 2021; Ravinder et al., 2023; Srinivasan et al., 2024; Coupe au et al., 2022). In the 

context of brain age estimation, GNN-based models have been introduced to more effectively 

leverage inter-regional dependencies, such as architectures that analyze diffusion MRI based 

connectivity while accounting for the local topology of brain networks (Sporns, 2007). More 

advanced approaches, including multi-hop graph attention mechanisms and graph 

Transformer models, typically depend on well-defined graph structures, such as tractography-

derived networks, or on the alignment of multi-modal imaging data to a common reference 

space using standardized brain templates (Lim et al., 2024; Cai et al., 2023). 

 

2.2. APPROACHES FOR BRAIN IN DEVELOPMENT AND NON-CONVENTIONAL  

ANIMAL MODEL 

Analyzing developing brains or brains from non-traditional animal models presents a number 

of challenges that differ substantially from those encountered in adult human neuroimaging 

studies. Key difficulties include pronounced anatomical variability, the absence of 

standardized atlases and analysis tools, and the frequent limitation of small sample sizes. In 
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many non-conventional animal models, brain segmentation is still performed manually—a 

labor-intensive process that requires specialized neuroanatomical knowledge and is prone to 

significant operator-dependent bias due to inter-observer variability (Fedorov et al., 2012). 

Atlas-based registration offers an alternative approach, whereby a representative template is 

constructed by aligning and normalizing multiple MRI scans into a shared space using affine 

transformations. The template is then segmented and the resulting labels are propagated back 

to individual scans (De Vico Fallani et al., 2017). Although this strategy facilitates the 

simultaneous processing of large datasets, additional post-processing steps are often 

necessary to ensure accurate alignment with individual anatomical features. More recently, 

automatic and incremental segmentation methods incorporating biological priors have been 

proposed as complementary solutions (Galisot et al., 2022). 

 

3.THE PROPOSED PIPELINE 

3.1. FROM 3D MR IMEGES TO GRAPHS 

We introduce a general-purpose framework for converting 3D brain MR images from 

developing brains and non-conventional animal models into graph representations. The goal 

of this approach is to construct graphs that retain as much relevant information as possible 

from the original images, allowing the graph neural network to autonomously identify and 

exploit the most informative features during learning. 

 

3.2. PREPROCESSING 

The pre-processing stage consists of skull stripping and z-score intensity normalization. Z-

score normalization is commonly preferred in brain MRI studies, especially for machine 

learning applications, as it preserves the relative alignment of intensity distributions 

corresponding to white matter, grey matter, and cerebrospinal fluid (Schmid, 2023). 

Following pre-processing, graph construction proceeds in two main steps: the definition of 

nodes and the establishment of edges. 

 

3.3. NODES AND EDGES CREATION 

Node creation is based on the segmentation of regions of interest (ROIs) (Figure 2). To 

analyze developing brains of non-conventional animal models, we employ a segmentation 

strategy that does not rely on biological priors, treating the MRI data purely as conventional 

images rather than pre-labeled brain structures. For this study, we tested two approaches: a 

histogram-based clustering algorithm and a “split and merge” algorithm. The histogram-

based method divides the intensity range into N equal segments, with the challenge being the 



Copyright

@ 

   Page 6 

International Journal Research Publication Analysis  

 

selection of optimal parameters depending on the study goals and the desired level of detail. 

This approach is illustrated in Image 1. The second method, the “split and merge” algorithm 

(Gonzalez and Woods, 2017), functions in two phases. During the split phase, the image is 

recursively divided into smaller, more homogeneous regions (“cubes”) according to a user-

defined homogeneity criterion and a minimum region size, where homogeneity is measured 

by the intensity range within the region. In the subsequent merge phase, adjacent regions are 

combined if their union satisfies a separate homogeneity criterion. 

 

 

 

3.4.GRAPH ANALYSIS AND CLASSIFICATION 

As previously noted, graph neural networks (GNNs) are particularly effective for analyzing 

brain MRI data because they can capture complex relationships between distinct brain ROIs. 

Unlike convolutional neural networks, which primarily extract features from local voxel 

neighborhoods, GNNs operate at a higher organizational level, where nodes correspond to 

brain regions or subregions and edges represent the connections between them. This 

relational modeling enables predictions that are often both more accurate and easier to 

interpret. In our experiments, the proposed GNN architecture leverages these strengths to 

estimate the age of sheep brains by framing the problem as a graph classification task across 

K discrete age categories. 

 

3.4.1.GRAPH CONVOLUTION LAYERS 

To enable information flow across the graph, we employ a sequence of three graph 

convolutional layers. Although many convolutional architectures are available, our dataset is 

relatively limited, containing around 200 graphs. Therefore, implementing a highly complex 

network with large or intricate layers would be unsuitable and could lead to overfitting. 

 First set of parameters: The model begins by transforming the 7 initial features into 8 

features using the first GCNConv layer. This output is then passed to a second GCNConv 

layer, which further transforms it to 16 features. Finally, a third GCNConv layer transforms 
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the features to 32 dimensions. Each layer applies a learned linear transformation followed 

by an activation function (ReLU in our case), enabling the network to progressively 

capture complex patterns in the data. 

 Second set of parameters: Instead of incremental changes, the model starts with 7 

features and dou- bles the number of dimensions at each layer: from 7 to 16, then to 32, 

and finally to 64. This more aggressive dimensionality increase aims to test the model’s 

ability to learn richer representations. 

 

3.4.2. POOLING AND FULLY CONNECTED LAYERS 

 A global mean pooling and a global max pooling were tested to capture interesting 

information while taking into account the small amount of data. The pooled features are then 

passed through three fully connected (FC) layers (fc1, fc2 and fc3) to per- form the 

classification 

 

 

 

4. EXPERIMENTS AND RESULTS 

We performed a series of experiments testing various CNN and GNN architectures to 

determine which models are most effective for predicting the age of brains from non-

conventional animal models, such as sheep. The experiments were carried out on a system 

with an Intel Core i7-11850H CPU at 2.50 GHz, 32 GB of RAM, and an NVIDIA GeForce 

RTX A3000 Laptop GPU. All analyses and computations were implemented using Python. 
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5. CONCLUSION AND PERSPECTIVES 

In this study, we propose a novel pipeline to predict the brain age of nonconventional 

animal models without relying on neuro-anatomical pri- ors to not bias the analysis.  

We provide an open access generic graph generation tool from 3D images available at this 

URL: https://scm.univ- tours.fr/projetspublics/lifat/3dbrainminer. Our pro- posed GNN 

pipeline provides better results in terms of accuracy than a traditional CNN pipeline. The 

process starts with automatic MRI segmentation, fol- lowed by graph transformation and 

analysed using a GNN model. We compared 2 segmentation algo- rithms with different 

parameters and GNN architec- tures. 
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