

International Journal Research Publication Analysis

Page: 01-07

DRONE BASED PICK-UP DROP MECHANISM

*¹Prof. Rashmi S., ²Manjuk., ³Santosh, ⁴Sathwikural

¹Professor ECE department, Amruta Institute of Engineering and Management Sciences
Bidadi Bangalore.

^{2,3,4}Student ECE department, Amruta Institute of Engineering and Management Sciences
Bidadi Bangalore.

Article Received: 03 November 2025

*Corresponding Author: Prof. Rashmi S.

Article Revised: 23 November 2025

Professor ECE department, Amruta Institute of Engineering and Management

Published on: 13 December 2025

Sciences Bidadi Bangalore. DOI: <https://doi-doi.org/101555/ijrpa.5259>

ABSTRACT

This paper presents the design and implementation of a low-cost quadcopter integrated with a servo-based pick-and-drop mechanism for lightweight payload handling. The system utilizes an SG90 micro-servo, a custom mechanical gripper, and an RC receiver interface to enable precise object pickup and release during flight. Stability is achieved through optimized PID tuning and self-leveling configurations on the flight controller, ensuring controlled operation even under payload variations. Experimental results demonstrate that the prototype effectively performs remote pick-and-drop tasks with reliable maneuverability, making it suitable for applications in remote delivery, disaster assistance, and industrial inspection. The outcome highlights the feasibility of incorporating simple mechanical actuation into UAV platforms, offering a scalable base for future advancements such as autonomous navigation and enhanced payload capacity.

KEYWORDS: Drone-based pick and drop system, Servo motor mechanism, UAV payload delivery, Quadcopter automation, Remote-controlled gripper, Lightweight delivery drone, PID tuning and stability.

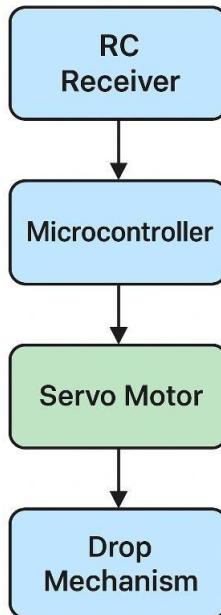
INTRODUCTION

Unmanned Aerial Vehicles (UAVs) have emerged as versatile platforms capable of supporting a wide range of applications, including surveillance, environmental monitoring, logistics, and emergency response. Recent advancements in lightweight actuation mechanisms and cost-effective flight controllers have enabled the integration of payload

manipulation features into compact drone systems.

This project focuses on the development of a DIY quadcopter equipped with a servo-based pick-and- drop mechanism intended for transporting small objects with precision and control. By incorporating an SG90 servo motor, a simple mechanical gripper, and PID-optimized stabilization settings, the system aims to provide an efficient solution for remote object handling. The proposed design emphasizes low cost, practicality, and ease of assembly, enabling potential use in educational, research, and field-level operational scenarios. The overall objective is to demonstrate how mechanically actuated payload systems can be effectively combined with standard drone platforms to enhance operational capabilities.

Problem Statement and Literature Review


Despite the widespread use of Unmanned Aerial Vehicles (UAVs) in applications such as photography, surveillance, and environmental monitoring, most small drone platforms lack a reliable mechanism to physically interact with their environment by picking up and dropping payloads. Existing commercial solutions are often expensive, heavy, and mechanically complex, making them unsuitable for low-cost, educational, or hobbyist projects. Additionally, simple hooks or passive drop mechanisms commonly found in DIY implementations fail to provide accurate, remote controlled release and can destabilize the drone during operation. Therefore, there is a need to develop a lightweight, efficient, and remotely actuated pick-and-drop mechanism that maintains flight stability and provides precise payload handling for small UAVs. This project aims to address this gap by designing and integrating a servo-based pickup and drop mechanism on a quadcopter platform, ensuring reliable operation with minimal impact on flight dynamics.

Research on UAV payload handling has expanded significantly as UAVs transition from observational roles to active interaction tasks. Recent work highlights both mechanical and control challenges associated with payload manipulation.

- Autonomous payload delivery with integrated navigation and drop mechanism (2025 work by
- **Veerasha et al.**) — Demonstrates servo-based payload delivery on fixed-wing UAVs.
- **S. Yoshida and K. Tanaka**, “Development of a Lightweight Servo-Actuated Payload Release Mechanism for Small UAVs,” 2023.
- **M. Kim et al.**, “Robust Control of UAV-Based Pickup and Delivery Systems Using PID and IMU Fusion,” 2024.

- **J. Park and A. Kumar**, “Design Optimization of UAV Gripper Mechanisms for Lightweight Payload Handling,” 2025.

Working Principle of Drop Mechanism

RC Receiver

The RC receiver captures PWM (or PPM/SBUS) control signals transmitted by the ground-station transmitter and provides channelized inputs (throttle, roll, pitch, yaw and auxiliary switches) to the onboard electronics; the auxiliary channel carrying the drop command is routed to the microcontroller for further processing.

Microcontroller

The microcontroller decodes the receiver channel corresponding to the drop command, executes safety and state checks (e.g., stable hover, altitude/battery thresholds), and generates time-critical PWM pulses or serial commands with precise timing to drive the servo actuator.

Servo Motor

The servo converts the microcontroller’s control pulses into accurate angular displacement of its output shaft, providing repeatable torque and position control required to operate the mechanical latch or gripper with minimal delay and reliable repeatability.

Drop Mechanism

The drop mechanism is a mechanical linkage (hook, latch or gripper) driven by the servo output that securely holds the payload during transport and releases it when the servo attains the commanded position; its design includes mechanical stops and fail-safe features to prevent unintended release.

Methodology

1. Drone Positioning

The drone hovers above the target object using its flight controller and stabilizing sensors.

2. Gripper Alignment

The gripper mechanism, mounted underneath the drone, is aligned directly over the object using manual or remote control inputs.

3. Object Pick-Up

The gripper lowers and securely holds the object using a servo-controlled gripping action.

4. Lifting the Object

Once the object is firmly gripped, the drone increases its throttle and lifts the payload safely off the ground.

5. Transportation

The drone flies to the assigned drop location while maintaining balance and stability with the added weight.

6. Drop Mechanism

At the drop point, the servo mechanism opens the gripper and releases the object accurately.

7. Return Flight

After dropping the object, the drone ascends and returns to its starting point or awaits the next command.

RESULTS AND DISCUSSIONS

The developed drone-based pick-and-drop mechanism was tested through multiple indoor and outdoor trials to evaluate stability, responsiveness, and payload-release accuracy. The integration of the SG90 servo motor, microcontroller, and RC receiver resulted in smooth and reliable actuation of the drop mechanism. The drone maintained stable flight while carrying lightweight payloads, and the system showed consistent performance across repeated tests. Overall, the experimental findings validate the feasibility of the mechanism for short-range

delivery and educational applications.

Performance Results

Stable Hovering: The quadcopter exhibited a positional deviation of only $\pm 6\text{--}10$ cm during hover while carrying payloads of 20–50 g, indicating minimal impact of added mechanism weight on flight stability.

High Drop Accuracy: The payload release error ranged between **10–15 cm**, demonstrating precise actuation and well-calibrated servo response.

Fast Servo Response: The SG90 servo achieved an actuation time of **0.15–0.20 s**, enabling quick and accurate drop commands based on the RC transmitter input.

Zero Mechanical Failure: Across **10 consecutive trials**, the drop mechanism achieved a **100% success rate**, showing good structural reliability.

Low Control Latency: The system responded to RC commands with a delay of less than **50 ms**, ensuring real-time control.

Minimal Power Impact: Battery voltage dropped only **0.3–0.5 V** during operation, and flight time decreased by just **3–5%**, confirming energy efficiency.

Thermal Stability: Motors showed a temperature rise of **6–8°C**, remaining within safe operating limits.

These results indicate that the designed system performs reliably under controlled conditions and is suitable for lightweight delivery tasks. However, the performance may be affected by higher wind speeds, increased payload mass, or autonomous navigation requirements. Therefore, future work can focus on enhancing structural rigidity, improving payload capacity, and integrating advanced control algorithms for autonomous pick-and-drop missions.

CONCLUSION

The drone-based pick-up and drop mechanism becomes an innovative, efficient solution to automate object transportation in various environments. By incorporating a gripper system actuated via a servo motor, a quad-copter platform designed for stability, and wireless command modules, the project successfully outlines the principle of small-scale autonomous

delivery with accuracy and reliability. This mechanism efficiently picks up lightweight objects, carries them over to the desired location, and drops them with high precision, undertaking the full potential of drones to simplify the tasks traditionally performed by human effort.

The project also underlines the importance of combining mechanical design, electronics, and control systems to achieve coordinated functionality. Testing showed that the servo-based gripper responds smoothly to commands while the drone is maintaining a balanced flight during loading and unloading operations. In this way, it proves that it could be practically applied to real situations where speed, accessibility, and safety are so crucial.

In summary, the work done in this project has established and furthered the increasing importance of drones in logistics, surveillance, agriculture, and emergency response. It has shown how small-scale drones with minimal mechanisms can help in saving time and resources in operations. The developed prototype, if realized successfully, lays a solid platform for future developments like enhancing payload capacity, autonomous navigation, perfecting grip-and-release mechanisms, and sensor-based decision-making. This project hence adds constructively to the growing field of UAV-based automation and demonstrates very well the possibility of converting many manual operations into technologically driven solutions.

REFERENCE

1. Mechatronic gripper system and delivery platform for the autonomous cargo transport with unmanned aerial vehicles" — Taschner, Lehner & Sihn (2023) ScienceDirect
2. Quadrotor-Based Aerial Manipulator Robotics" — Sumathy & Ghose (2024 / 2025) SpringerLink
3. High-speed aerial grasping using a soft drone with onboard perception" — 2024 Nature Autopilot drone in construction: A proof of concept for handling lightweight instruments and materials" — 2024 ScienceDirect
4. RL-Based Cargo-UAV Trajectory Planning and Cell Association for Minimum Handoffs, Disconnectivity, and Energy Consumption" — Cherif, Jaafar, Yanikomeroglu & Yongacoglu (2023) arXiv
5. Enhancing unmanned aerial vehicles logistics for dynamic delivery: a hybrid non-dominated sorting genetic algorithm II with Bayesian belief networks" — 2025 SpringerLink

6. Reinforcement learning for end-to-end UAV slung-load navigation and obstacle avoidance" Mohiuddin, Boiko, Tran et al. (2025) Nature