
International Journal Research Publication Analysis

Copyright@ Page 1

“INFRASTRUCTURE AS CODE (IAC) – AUTOMATING CLOUD

INFRASTRUCTURE WITH TERRAFORM AND ANSIBLE”

*Anurag Poddar, Prof. Santhosh Kumar, Dr.Vishal Shrivastava

Computer Science & Engineering, Arya College of Engineering & I.T. Jaipur, India.

Article Received: 16 October 2025

Article Revised: 05 November 2025

Published on: 25 November 2025

*Corresponding Author: Anurag Poddar

Computer Science & Engineering, Arya College of Engineering & I.T.

Jaipur, India. DOI: https://doi-doi.org/101555/ijrpa.9535

ABSTRACT

Infrastructure as Code (IaC) is revolutionizing the way organizations design, deploy, and

manage cloud environments by replacing manual infrastructure provisioning with

automation-driven approaches. This paper focuses on automating cloud infrastructure using

two leading IaC tools—Terraform and Ansible. Terraform is used to define and provision

cloud resources declaratively, ensuring consistency and repeatability across environments,

while Ansible is employed for post-provisioning configuration, software installation, and

security hardening. Together, these tools enable scalable, reliable, and cost-efficient

infrastructure management that aligns with modern DevOps practices. The paper discusses

the architecture, workflow integration, and benefits of combining Terraform and Ansible,

along with challenges such as state management and security handling. The findings

highlight how IaC enhances deployment speed, reduces errors, and improves collaboration,

thereby transforming cloud infrastructure operations.

KEYWORDS: Infrastructure as Code (IaC), Terraform, Ansible, Cloud Automation,

Configuration Management, DevOps, Provisioning, Scalability, Cloud Infrastructure,

Deployment Automation.

1. INTRODUCTION

The rapid growth of cloud computing has transformed the way organizations build, scale, and

manage IT infrastructure. Traditional approaches to provisioning infrastructure rely heavily

on manual processes, graphical interfaces, or ad-hoc scripts, which are often error-prone,

time-consuming, and difficult to reproduce consistently across environments. As businesses

International Journal Research Publication Analysis

2025 Volume: 01 Issue: 06 www.ijrpa.com ISSN 2456-9995 Research Article

Page: 1-11

https://doi-doi.org/101555/ijrpa.9535
http://www.ijrpa.com/

International Journal Research Publication Analysis

Copyright@ Page 2

increasingly adopt DevOps practices, there is a growing need for automation-driven

approaches that enable faster, more reliable, and scalable infrastructure

management.Infrastructure as Code (IaC) has emerged as a solution to this challenge. IaC

allows infrastructure to be defined and managed using machine-readable configuration files,

ensuring repeatability, consistency, and version control. By treating infrastructure in the same

way as application code, teams can automate deployments, reduce human error, and improve

collaboration between developers and operations.

This paper focuses on Terraform and Ansible, two widely used tools for implementing IaC.

Terraform is a declarative provisioning tool that enables users to define cloud resources such

as servers, networks, and storage across multiple providers. Ansible, on the other hand, is an

automation and configuration management tool that simplifies the process of installing

software, applying updates, and enforcing security policies. Together, these tools form a

powerful combination for building scalable and automated cloud environments.

The goal of this study is to explore how Terraform and Ansible can be integrated to automate

cloud infrastructure provisioning and configuration. This paper presents the architecture,

workflow, benefits, and challenges of using Terraform and Ansible in tandem, and highlights

their potential to transform modern infrastructure management by aligning with DevOps

principles.

Table 1: Summary of Current Researches and Studies on IaC Tools.

Study / Dataset

Name

Tool /

Architecture
Category Strength Limitations

AWS

CloudFormation vs

Terraform (2019)

Terraform vs

CloudFormation

Provisioning

comparison

Multi-cloud

support

(Terraform)

CloudFormation

limited to AWS

DevOps IaC Case

Study – Netflix

(2020)

Terraform

Large-scale

cloud

automation

Scalable,

reusable modules

State management

complexity

IaC for Hybrid

Cloud (2021)

Terraform +

Ansible

Provisioning

&

configuration

Unified

automation

across hybrid

environments

Requires

integration

expertise

International Journal Research Publication Analysis

Copyright@ Page 3

Study / Dataset

Name

Tool /

Architecture
Category Strength Limitations

Ansible for

Configuration

Mgmt. (2020)

Ansible

Playbooks

Post-

deployment

automation

Agentless, simple

YAML syntax

Performance slows

in very large

clusters

Terraform +

Jenkins CI/CD

(2022)

Terraform +

CI/CD pipelines

Continuous

deployment

Automates infra

provisioning in

CI/CD pipelines

Needs secret

management

strategy

IaC Security Study

(2022)

Terraform +

Ansible + Vault

Cloud security

automation

Automates policy

enforcement

Complex initial

setup

Table 2: Research Based on IaC Automation Techniques.

Study / Case
Tool /

Architecture
Category Strength Limitations

AWS IaC

Templates (2020)
CloudFormation

Cloud

provisioning

Deep integration

with AWS

services

Not multi-cloud

Cross-Cloud IaC

(2021)

Terraform

Modules

Multi-cloud

infrastructure

Reusable

modules, portable

code

Requires careful

state mgmt.

Configuration as

Code (2020)

Ansible

Playbooks

Server

configuration

Agentless, easy

YAML syntax

Slower with

large-scale infra

IaC with

Kubernetes

(2022)

Helm +

Terraform

Containerized

deployments

Automates infra +

K8s workloads

Complexity in

hybrid infra

Security

Automation

(2022)

Ansible + Vault
Policy

enforcement

Automates secrets

& compliance

Initial

complexity

International Journal Research Publication Analysis

Copyright@ Page 4

Table 3: State-of-the-art Studies Using Advanced IaC Approaches

Study / Case
Tool /

Architecture
Category Strength Limitations

Multi-Cloud

Provisioning

(2021)

Terraform +

Providers

Cross-cloud

deployment

Supports AWS,

Azure, GCP in one

workflow

Complex

provider

versioning

Hybrid Cloud

Automation

(2022)

Terraform +

Ansible

Infra + config

automation

Unified infra + app

setup

Requires strong

team expertise

Immutable

Infrastructure

Study (2020)

Terraform +

Packer

Server image

automation

Ensures

consistency across

deployments

Image rebuild

overhead

IaC Security

Enforcement

(2022)

Terraform +

Sentinel (Policy as

Code)

Governance &

compliance

Automates policy

enforcement

Steep learning

curve

CI/CD Integration

for IaC (2023)

Terraform +

Jenkins + Ansible

Continuous

provisioning

Enables full infra

pipeline

automation

Secret

management

challenge

Table 4: Researches Using Modern IaC and DevOps Frameworks.

Study / Case
Tool /

Architecture
Category Strength Limitations

Kubernetes

IaC (2021)
Terraform + Helm

Container

orchestration

automation

Automates infra +

Kubernetes

deployments

Complex YAML

configurations

Cloud-Native

IaC (2022)

Pulumi (IaC with

programming

languages)

Multi-cloud

provisioning

Supports

TypeScript,

Python, Go for IaC

Smaller

community than

Terraform

Crossplane

IaC (2022)

Kubernetes-native

IaC

Cloud resource

management via

K8s

Manages cloud

infra via

Kubernetes API

High learning

curve

International Journal Research Publication Analysis

Copyright@ Page 5

Study / Case
Tool /

Architecture
Category Strength Limitations

Terraform +

GitOps (2023)

Terraform +

ArgoCD

Continuous

delivery

Declarative infra

with Git-based

workflows

Requires GitOps

expertise

Serverless IaC

(2021)

AWS SAM /

Serverless

Framework

Serverless cloud

deployments

Automates

Lambda, API

Gateway,

DynamoDB

Limited to

serverless

environments

Table 5: Researches Using Lightweight and Fast IaC Approaches.

Study / Case
Tool /

Architecture
Category Strength Limitations

Rapid Infra

Deployment

(2020)

Terraform +

Pre-Built

Modules

Quick

provisioning

High-speed infra

setup with

reusable code

Limited flexibility for

custom setups

Ansible with

Feature Flags

(2021)

Ansible +

Config Mgmt.

Adaptive

configuration

Instant adaptation

to environment

changes

No native state

management

Server

Bootstrapping

(2020)

Terraform +

Ansible Roles
Hybrid IaC

Reduces

provisioning time

drastically

Hard to debug in

failures

IaC with

Pretrained

Policies (2022)

Terraform +

Sentinel Policies

Policy

enforcement

Uses predefined

compliance

policies

Not domain-specific

across industries

Lightweight IaC

for SMEs (2023)

Pulumi

(Go/Python) +

Cloud APIs

Small business

automation

Faster deployment

via programming

languages

Smaller ecosystem vs

Terraform/Ansible

2 Related Works

In recent years, Infrastructure as Code (IaC) has emerged as a key practice in DevOps,

enabling the automation of provisioning, configuration, and management of cloud resources.

International Journal Research Publication Analysis

Copyright@ Page 6

Several studies and industrial implementations have highlighted the effectiveness of IaC in

improving scalability, reducing deployment errors, and enhancing collaboration.

2.1 Cloud Provisioning with IaC

Terraform has become one of the most widely adopted IaC tools due to its provider-agnostic

approach. HashiCorp’s research [1] demonstrates how Terraform enables reproducible and

version-controlled cloud deployments across AWS, Azure, and GCP. Studies also highlight

its modular design, which promotes reusability of infrastructure components. However,

challenges such as state management and drift detection remain.

2.2 Configuration Management Tools

Ansible is often compared with other configuration management tools like Puppet and Chef.

According to Red Hat’s Ansible case studies [2], its YAML-based playbooks and agentless

architecture make it lightweight and easier to adopt. Research in cloud orchestration shows

Ansible’s effectiveness in managing post-provisioning tasks such as software installation,

patching, and security compliance.

2.3 Integration of Terraform and Ansible

Recent works [3] have proposed combining Terraform and Ansible for end-to-end cloud

automation. Terraform is used for declarative provisioning of infrastructure resources, while

Ansible manages configuration and application deployment. This hybrid approach reduces

deployment time, increases maintainability, and aligns with CI/CD practices.

2.4 Policy and Security in IaC

Research on IaC security automation [4] highlights the integration of tools like HashiCorp

Sentinel, Vault, and Ansible Vault to enforce compliance and secure secrets. These studies

emphasize the importance of embedding “security as code” in IaC workflows to mitigate

risks associated with misconfigurations.

2.5 Limitations of Existing Approaches

Despite its advantages, IaC still faces challenges such as:

 Lack of standardization across tools

 State drift in large deployments

 Complexity in hybrid/multi-cloud setups

 Need for skilled practitioners to write and manage IaC scripts

This study explores how the integration of Terraform and Ansible can overcome some of

these limitations by combining provisioning and configuration management into a

streamlined workflow.

International Journal Research Publication Analysis

Copyright@ Page 7

The core objective of this project is to demonstrate how Infrastructure as Code (IaC) can

automate cloud infrastructure provisioning and configuration using Terraform and Ansible.

The approach focuses on creating scalable, reproducible, and secure deployments while

reducing manual effort and minimizing human error.

3.1 System Architecture

The system architecture is designed with five major interconnected modules (refer Figure

1):

 Terraform Provisioning Layer: Defines and provisions cloud infrastructure resources

(e.g., VMs, networks, load balancers, storage) in AWS/Azure/GCP using HCL scripts.

 State Management Module: Maintains a state file to track infrastructure changes and

ensure consistency between declared and actual resources.

 Ansible Configuration Layer: Configures provisioned servers, installs required software

(web servers, databases), and enforces security baselines.

 CI/CD Pipeline: Integrates with Jenkins/GitHub Actions for automated builds, tests, and

deployments.

 Monitoring & Feedback Module: Uses Prometheus/Grafana for real-time monitoring

and feeds back performance data for scaling decisions.

3.2 Automation Workflow

Terraform and Ansible are integrated into a two-stage automation pipeline:

 Stage 1 (Terraform – Provisioning):

o Input: Terraform .tf files defining cloud infrastructure.

o Process: Terraform creates infrastructure resources via cloud provider APIs.

o Output: Infrastructure (e.g., EC2 instances, VPC, storage) is provisioned.

 Stage 2 (Ansible – Configuration):

o Input: Terraform outputs (IP addresses, resource IDs) passed to Ansible inventory.

o Process: Ansible Playbooks configure servers, deploy applications, and enforce policies.

o Output: Fully configured, production-ready cloud environment.

3.3 Example Use Case

A sample use case is deploying a web application on AWS:

1. Terraform provisions EC2 instances, networking, and security groups.

International Journal Research Publication Analysis

Copyright@ Page 8

2. Ansible installs Apache/Nginx, configures firewall rules, and deploys the web

application.

3. Monitoring agents are installed to ensure availability and performance.

3.4 Technology Stack

 Infrastructure as Code (IaC): Terraform

 Configuration Management: Ansible

 Cloud Platforms: AWS, Azure, GCP (multi-cloud supported)

 CI/CD Tools: Jenkins, GitHub Actions (for pipeline automation)

 Monitoring: Prometheus, Grafana

 Security & Compliance: Terraform Sentinel, Ansible Vault

3.5 Workflow Overview

A simplified workflow of the proposed methodology:

1. Developer writes Terraform scripts to define cloud resources →

2. Terraform provisions resources via provider APIs →

3. Terraform outputs passed to Ansible inventory →

4. Ansible configures provisioned servers →

5. CI/CD pipeline ensures continuous updates →

6. Monitoring tools evaluate infra performance →

7. Feedback stored for optimization and scaling.

4. RESULTS AND DISCUSSIONS

To evaluate the effectiveness of Infrastructure as Code (IaC) using Terraform and Ansible,

we conducted a series of controlled experiments by provisioning and configuring cloud

infrastructure on AWS. The evaluation focused on four key metrics: deployment time

reduction, configuration accuracy, scalability, and maintainability. The system was

tested in different scenarios, including fresh deployments, updates, and scaling operations.

4.1 Deployment Time Analysis

Traditional manual provisioning of infrastructure (via cloud console) required approximately

45–60 minutes to set up a web server with networking, firewall rules, and storage. Using

Terraform scripts, the same setup was achieved in 8 minutes, reducing provisioning time

by nearly 85%. This highlights the effectiveness of declarative infrastructure in automating

repetitive tasks.

International Journal Research Publication Analysis

Copyright@ Page 9

4.2 Configuration Accuracy

With Ansible Playbooks, configuration drift and human errors (e.g., missing dependencies,

inconsistent firewall rules) were significantly reduced. A test with 10 identical servers

showed 100% consistency in installed packages, services, and security rules, compared to

20% variation observed in manual setups. This demonstrates the reliability of idempotent

configuration management.

4.3 Scalability and Elasticity

We tested the system’s scalability by deploying an auto-scaling group of 20 EC2 instances.

Terraform dynamically provisioned instances within 3 minutes, while Ansible configured

them with required software within 5 minutes. This allowed near real-time scaling of

infrastructure to handle increased workloads, demonstrating the suitability of Terraform +

Ansible for elastic cloud environments.

4.4 Maintainability and Version Control

Using Git for version control, all Terraform and Ansible code was stored, reviewed, and

rolled back as needed. The introduction of Infrastructure as Code enabled:

 Auditability: Every infrastructure change was tracked.

 Reusability: Terraform modules and Ansible roles were reused across environments.

 Collaboration: Teams could work in parallel without interfering with each other’s setups.

This ensures long-term maintainability and reduces the risks of undocumented manual

changes.

4.5 Usability and Challenges

Feedback from the testing team suggested that the Terraform + Ansible integration

provided a powerful and flexible automation pipeline. However, some challenges were noted:

 Terraform State Management: Handling remote state files in multi-user environments

required careful backend configuration.

 Learning Curve: New team members found Terraform syntax and Ansible YAML

playbooks challenging at first.

 Security Management: Storing sensitive credentials (e.g., SSH keys, API tokens)

securely required additional tools like Vault.

International Journal Research Publication Analysis

Copyright@ Page 10

Despite these challenges, overall feedback was positive, with 92% of participants

agreeing that the automated pipeline was significantly better than manual infrastructure

management.

5. CONCLUSION AND FUTURE WORK

Cloud infrastructure management has traditionally been a manual, time-consuming, and

error-prone process. With the rise of Infrastructure as Code (IaC), tools like Terraform

and Ansible have transformed how infrastructure is provisioned, configured, and maintained.

This research demonstrated how combining Terraform’s declarative provisioning with

Ansible’s configuration management ensures rapid deployment, consistency, scalability,

and maintainability of cloud environments.

Our evaluation showed that deployment times were reduced by over 80%, configuration

accuracy improved to 100% consistency, and scalability was achieved within minutes using

automated provisioning and configuration. These results highlight that the Terraform +

Ansible pipeline is not only efficient but also reliable for managing dynamic, large-scale

infrastructures in DevOps workflows.

However, some challenges remain. Terraform’s state management requires careful handling

in multi-user teams, Ansible’s playbook complexity can create a steep learning curve, and

secure handling of secrets remains a concern without dedicated tools like HashiCorp Vault.

To overcome these challenges and extend the benefits of IaC, the following future

enhancements are proposed:

 Multi-Cloud Support: Extending the framework to work seamlessly across AWS,

Azure, and GCP to avoid vendor lock-in.

 Integration with CI/CD Pipelines: Automating infrastructure changes within continuous

delivery workflows for faster releases.

 Policy-as-Code: Incorporating tools like Sentinel or Open Policy Agent (OPA) to enforce

compliance and security automatically.

 Secrets Management: Integrating Vault or AWS Secrets Manager to securely manage

credentials and sensitive data.

 Self-Healing Infrastructure: Leveraging monitoring + automation (e.g., Terraform

Cloud with Ansible automation) to automatically repair failed services.

In conclusion, Terraform and Ansible together provide a powerful framework for

automating infrastructure in the cloud era. With further research into security, multi-

International Journal Research Publication Analysis

Copyright@ Page 11

cloud orchestration, and AI-driven optimization, IaC has the potential to fully

revolutionize how organizations manage and scale their IT infrastructure

6. REFERENCES

1. HashiCorp. 2023. Terraform: Infrastructure as Code. https://www.terraform.io

2. Ansible Documentation. Red Hat. 2023. Ansible Automation Platform.

https://docs.ansible.com

3. Yevgeniy Brikman. 2019. Terraform: Up & Running – Writing Infrastructure as Code.

O’Reilly Media.

4. Rani, R., & Sharma, A. 2022. "Automating Multi-Cloud Infrastructure Using Terraform

and Ansible." International Journal of Computer Applications, vol. 184, no. 32, pp. 1–7.

https://doi.org/10.5120/ijca2022922411

5. HashiCorp. 2022. "Managing Infrastructure at Scale with Terraform Cloud and

Enterprise." HashiCorp Whitepaper.

6. Red Hat. 2021. "Configuration Management with Ansible – Best Practices."

https://www.redhat.com/en/technologies/management/ansible

7. Singh, P., & Gupta, M. 2023. "Infrastructure as Code: Enhancing Cloud Deployment with

Terraform." International Journal of Cloud Computing and Services Science (IJ-

CLOSER), vol. 12, no. 1, pp. 15–24.

8. Humble, J., & Farley, D. 2010. Continuous Delivery: Reliable Software Releases through

Build, Test, and Deployment Automation. Addison-Wesley.

9. Kim, G., Humble, J., Debois, P., & Willis, J. 2016. The DevOps Handbook: How to

Create World-Class Agility, Reliability, and Security in Technology Organizations. IT

Revolution Press.

10. Sharma, R., & Choudhary, K. 2024. "A Comparative Study of IaC Tools: Terraform vs.

CloudFormation vs. Ansible." International Conference on Advances in Cloud

Computing (ICACC).

