‘»

\“‘ernatro,,/‘lo
5 Z

“INFRASTRUCTURE AS CODE (IAC) - AUTOMATING CLOUD
INFRASTRUCTURE WITH TERRAFORM AND ANSIBLE”

*Anurag Poddar, Prof. Santhosh Kumar, Dr.Vishal Shrivastava

Computer Science & Engineering, Arya College of Engineering & I.T. Jaipur, India.

Article Received: 16 October 2025 *Corresponding Author: Anurag Poddar

Article Revised: 05 November 2025 Computer Science & Engineering, Arya College of Engineering & I.T.
Jaipur, India. DOI: https://doi-doi.org/101555/ijrpa.9535

Published on: 25 November 2025

ABSTRACT

Infrastructure as Code (1aC) is revolutionizing the way organizations design, deploy, and
manage cloud environments by replacing manual infrastructure provisioning with
automation-driven approaches. This paper focuses on automating cloud infrastructure using
two leading laC tools—Terraform and Ansible. Terraform is used to define and provision
cloud resources declaratively, ensuring consistency and repeatability across environments,
while Ansible is employed for post-provisioning configuration, software installation, and
security hardening. Together, these tools enable scalable, reliable, and cost-efficient
infrastructure management that aligns with modern DevOps practices. The paper discusses
the architecture, workflow integration, and benefits of combining Terraform and Ansible,
along with challenges such as state management and security handling. The findings
highlight how laC enhances deployment speed, reduces errors, and improves collaboration,

thereby transforming cloud infrastructure operations.

KEYWORDS: Infrastructure as Code (laC), Terraform, Ansible, Cloud Automation,
Configuration Management, DevOps, Provisioning, Scalability, Cloud Infrastructure,

Deployment Automation.

1. INTRODUCTION

The rapid growth of cloud computing has transformed the way organizations build, scale, and
manage IT infrastructure. Traditional approaches to provisioning infrastructure rely heavily
on manual processes, graphical interfaces, or ad-hoc scripts, which are often error-prone,

time-consuming, and difficult to reproduce consistently across environments. As businesses

Copyright@ Page 1

2025 Volume: 01 Issue: 06 WWW.ijrpa.com IssN 2456-9995 Research Article

International Journal Research Publication Analysis

Page: 1-11

https://doi-doi.org/101555/ijrpa.9535
http://www.ijrpa.com/

International Journal Research Publication Analysis

increasingly adopt DevOps practices, there is a growing need for automation-driven
approaches that enable faster, more reliable, and scalable infrastructure
management.Infrastructure as Code (1aC) has emerged as a solution to this challenge. 1aC
allows infrastructure to be defined and managed using machine-readable configuration files,
ensuring repeatability, consistency, and version control. By treating infrastructure in the same
way as application code, teams can automate deployments, reduce human error, and improve
collaboration between developers and operations.

This paper focuses on Terraform and Ansible, two widely used tools for implementing laC.
Terraform is a declarative provisioning tool that enables users to define cloud resources such
as servers, networks, and storage across multiple providers. Ansible, on the other hand, is an
automation and configuration management tool that simplifies the process of installing
software, applying updates, and enforcing security policies. Together, these tools form a
powerful combination for building scalable and automated cloud environments.

The goal of this study is to explore how Terraform and Ansible can be integrated to automate
cloud infrastructure provisioning and configuration. This paper presents the architecture,
workflow, benefits, and challenges of using Terraform and Ansible in tandem, and highlights
their potential to transform modern infrastructure management by aligning with DevOps

principles.

Table 1: Summary of Current Researches and Studies on 1aC Tools.

Study / Dataset |[Tool / o
) Category Strength Limitations

Name Architecture
AWS o Multi-cloud _

] Terraform vs Provisioning CloudFormation
CloudFormation vs)) support o

CloudFormation |jcomparison limited to AWS

Terraform (2019) (Terraform)
DevOps laC Case Large-scale

) Scalable, State management
Study — Netflix Terraform cloud)

) reusable modules [complexity
(2020) automation
o Unified)

) Provisioning) Requires

laC for Hybrid Terraform + automation)]
_ &) integration
Cloud (2021) Ansible)) across hybrid _
configuration) expertise
environments

Copyright@ Page 2

International Journal Research Publication Analysis

Study / Dataset ||Tool / o
) Category Strength Limitations
Name Architecture
Ansible for _ Post- _ Performance slows
] _ Ansible Agentless, simple||.
Configuration deployment in very large
Playbooks) YAML syntax
Mgmt. (2020) automation clusters
Terraform +) Automates infra [|Needs secret
) Terraform + Continuous o
Jenkins CI/CD o provisioning in |[management
CI/CD pipelines ||deployment o
(2022) CI/CD pipelines ||strategy
laC Security Study |([Terraform + Cloud security ||Automates policy|[Complex initial
(2022) Ansible + Vault |lautomation enforcement setup
Table 2: Research Based on 1aC Automation Techniques.
Tool / o
Study / Case _ Category Strength Limitations
Architecture
Deep integration
AWS laC) Cloud]]
CloudFormation o with AWS Not multi-cloud
Templates (2020) provisioning _
services
_ Reusable)
Cross-Cloud lIaC ||Terraform Multi-cloud Requires careful
) modules, portable
(2021) Modules infrastructure state mgmt.
code
Configuration as ||Ansible Server Agentless, easy |[Slower with
Code (2020) Playbooks configuration YAML syntax large-scale infra
laC with o) o
Helm + Containerized Automates infra + ||Complexity in
Kubernetes o
Terraform deployments K8s workloads hybrid infra
(2022)
Security) .
)) Policy Automates secrets |(Initial
Automation Ansible + Vault])
enforcement & compliance complexity
(2022)

Copyright@

Page 3

International Journal Research Publication Analysis

Table 3: State-of-the-art Studies Using Advanced 1aC Approaches

Tool /
Study / Case _ Category Strength Limitations
Architecture
Multi-Cloud Supports AWS, Complex
o Terraform + Cross-cloud _)
Provisioning) Azure, GCP in one ||provider
Providers deployment o
(2021) workflow versioning
Hybrid Cloud) o)
] Terraform + Infra + config ||Unified infra + app ||[Requires strong
Automation)])
Ansible automation setup team expertise
(2022)
Immutable) Ensures)
Terraform + Server image) Image rebuild
Infrastructure _ consistency across
Packer automation overhead
Study (2020) deployments
laC Security Terraform +))
]) Governance & ||Automates policy ||Steep learning
Enforcement Sentinel (Policy as _
compliance enforcement curve
(2022) Code)
)) Enables full infra |[Secret
CI/CD Integration | Terraform + Continuous o
_ _ o pipeline management
for 1aC (2023) Jenkins + Ansible |[provisioning]
automation challenge
Table 4: Researches Using Modern laC and DevOps Frameworks.
Tool / o
Study / Case) Category Strength Limitations
Architecture
Container Automates infra +
Kubernetes] Complex YAML
Terraform + Helm ||orchestration Kubernetes)]
laC (2021)) configurations
automation deployments
) Pulumi (l1aC with) Supports Smaller
Cloud-Native _ Multi-cloud TvoeSerint it th
rogrammin eScript, community than
laC (2022) Prog J provisioning 7P P y
languages) Python, Go for 1aC |[Terraform
_ Cloud resource ||Manages cloud))
Crossplane ||[Kubernetes-native L i High learning
management via |linfra via
laC (2022) laC curve
K8s Kubernetes API
Copyright@ Page 4

International Journal Research Publication Analysis

Tool /
Study / Case _ Category Strength Limitations
Architecture
_ Declarative infra _)
Terraform + |[Terraform + Continuous]) Requires GitOps
)] with Git-based)
GitOps (2023)||ArgoCD delivery expertise
workflows
Automates o
AWS SAM / Limited to
Serverless 1aC Serverless cloud ||Lambda, API
Serverless serverless
(2021) deployments Gateway,)
Framework environments
DynamoDB

Table 5: Researches Using Lightweight and Fast 1aC Approaches.

Tool /
Study / Case) Category Strength Limitations
Architecture
Rapid Infra Terraform +) High-speed infra || o
) Quick) Limited flexibility for
Deployment Pre-Built o setup with
provisioning custom setups
(2020) Modules reusable code
Ansible with _) Instant adaptation)
Ansible + Adaptive) No native state
Feature Flags)]) to environment
Config Mgmt. ||configuration management
(2021) changes
Server Reduces)
) Terraform +) S Hard to debug in
Bootstrapping] Hybrid 1aC provisioning time ||
Ansible Roles) failures
(2020) drastically
laC with) Uses predefined _ -
) Terraform + Policy) Not domain-specific
Pretrained) o compliance))
o Sentinel Policies|lenforcement o across industries
Policies (2022) policies

Lightweight 1aC
for SMEs (2023)

Pulumi
(Go/Python) +
Cloud APIs

Small business

automation

Faster deployment
via programming

languages

Smaller ecosystem vs

Terraform/Ansible

2 Related Works

In recent years, Infrastructure as Code (laC) has emerged as a key practice in DevOps,

enabling the automation of provisioning, configuration, and management of cloud resources.

Copyright@

Page 5

International Journal Research Publication Analysis

Several studies and industrial implementations have highlighted the effectiveness of 1aC in
improving scalability, reducing deployment errors, and enhancing collaboration.

2.1 Cloud Provisioning with 1aC

Terraform has become one of the most widely adopted laC tools due to its provider-agnostic
approach. HashiCorp’s research [1] demonstrates how Terraform enables reproducible and
version-controlled cloud deployments across AWS, Azure, and GCP. Studies also highlight
its modular design, which promotes reusability of infrastructure components. However,
challenges such as state management and drift detection remain.

2.2 Configuration Management Tools

Ansible is often compared with other configuration management tools like Puppet and Chef.
According to Red Hat’s Ansible case studies [2], its YAML-based playbooks and agentless
architecture make it lightweight and easier to adopt. Research in cloud orchestration shows
Ansible’s effectiveness in managing post-provisioning tasks such as software installation,
patching, and security compliance.

2.3 Integration of Terraform and Ansible

Recent works [3] have proposed combining Terraform and Ansible for end-to-end cloud
automation. Terraform is used for declarative provisioning of infrastructure resources, while
Ansible manages configuration and application deployment. This hybrid approach reduces
deployment time, increases maintainability, and aligns with CI/CD practices.

2.4 Policy and Security in 1aC

Research on laC security automation [4] highlights the integration of tools like HashiCorp
Sentinel, Vault, and Ansible Vault to enforce compliance and secure secrets. These studies
emphasize the importance of embedding “security as code” in [aC workflows to mitigate
risks associated with misconfigurations.

2.5 Limitations of Existing Approaches

Despite its advantages, 1aC still faces challenges such as:

e Lack of standardization across tools

e State drift in large deployments

e Complexity in hybrid/multi-cloud setups

e Need for skilled practitioners to write and manage laC scripts

This study explores how the integration of Terraform and Ansible can overcome some of
these limitations by combining provisioning and configuration management into a

streamlined workflow.

Copyright@ Page 6

International Journal Research Publication Analysis

The core objective of this project is to demonstrate how Infrastructure as Code (IaC) can
automate cloud infrastructure provisioning and configuration using Terraform and Ansible.
The approach focuses on creating scalable, reproducible, and secure deployments while

reducing manual effort and minimizing human error.

3.1 System Architecture

The system architecture is designed with five major interconnected modules (refer Figure

1):

e Terraform Provisioning Layer: Defines and provisions cloud infrastructure resources
(e.g., VMs, networks, load balancers, storage) in AWS/Azure/GCP using HCL scripts.

e State Management Module: Maintains a state file to track infrastructure changes and
ensure consistency between declared and actual resources.

e Ansible Configuration Layer: Configures provisioned servers, installs required software
(web servers, databases), and enforces security baselines.

e CI/CD Pipeline: Integrates with Jenkins/GitHub Actions for automated builds, tests, and
deployments.

e Monitoring & Feedback Module: Uses Prometheus/Grafana for real-time monitoring

and feeds back performance data for scaling decisions.

3.2 Automation Workflow

Terraform and Ansible are integrated into a two-stage automation pipeline:

o Stage 1 (Terraform — Provisioning):

o Input: Terraform .tf files defining cloud infrastructure.

o Process: Terraform creates infrastructure resources via cloud provider APIs.

o Output: Infrastructure (e.g., EC2 instances, VPC, storage) is provisioned.

« Stage 2 (Ansible — Configuration):

o Input: Terraform outputs (IP addresses, resource IDs) passed to Ansible inventory.

o Process: Ansible Playbooks configure servers, deploy applications, and enforce policies.

o Output: Fully configured, production-ready cloud environment.

3.3 Example Use Case
A sample use case is deploying a web application on AWS:

1. Terraform provisions EC2 instances, networking, and security groups.

Copyright@ Page 7

International Journal Research Publication Analysis

2. Ansible installs Apache/Nginx, configures firewall rules, and deploys the web
application.

3. Monitoring agents are installed to ensure availability and performance.

3.4 Technology Stack

e Infrastructure as Code (IaC): Terraform

o Configuration Management: Ansible

e Cloud Platforms: AWS, Azure, GCP (multi-cloud supported)

e CI/CD Tools: Jenkins, GitHub Actions (for pipeline automation)
e Monitoring: Prometheus, Grafana

e Security & Compliance: Terraform Sentinel, Ansible Vault

3.5 Workflow Overview

A simplified workflow of the proposed methodology:

1. Developer writes Terraform scripts to define cloud resources —
Terraform provisions resources via provider APIs —

Terraform outputs passed to Ansible inventory —

2

3

4. Ansible configures provisioned servers —

5. CI/CD pipeline ensures continuous updates —
6. Monitoring tools evaluate infra performance —
7

Feedback stored for optimization and scaling.

4. RESULTS AND DISCUSSIONS

To evaluate the effectiveness of Infrastructure as Code (IaC) using Terraform and Ansible,
we conducted a series of controlled experiments by provisioning and configuring cloud
infrastructure on AWS. The evaluation focused on four key metrics: deployment time
reduction, configuration accuracy, scalability, and maintainability. The system was

tested in different scenarios, including fresh deployments, updates, and scaling operations.

4.1 Deployment Time Analysis

Traditional manual provisioning of infrastructure (via cloud console) required approximately
45-60 minutes to set up a web server with networking, firewall rules, and storage. Using
Terraform scripts, the same setup was achieved in 8 minutes, reducing provisioning time
by nearly 85%. This highlights the effectiveness of declarative infrastructure in automating

repetitive tasks.

Copyright@ Page 8

International Journal Research Publication Analysis

4.2 Configuration Accuracy

With Ansible Playbooks, configuration drift and human errors (e.g., missing dependencies,
inconsistent firewall rules) were significantly reduced. A test with 10 identical servers
showed 100% consistency in installed packages, services, and security rules, compared to
20% variation observed in manual setups. This demonstrates the reliability of idempotent

configuration management.

4.3 Scalability and Elasticity

We tested the system’s scalability by deploying an auto-scaling group of 20 EC2 instances.
Terraform dynamically provisioned instances within 3 minutes, while Ansible configured
them with required software within 5 minutes. This allowed near real-time scaling of
infrastructure to handle increased workloads, demonstrating the suitability of Terraform +

Ansible for elastic cloud environments.

4.4 Maintainability and Version Control

Using Git for version control, all Terraform and Ansible code was stored, reviewed, and
rolled back as needed. The introduction of Infrastructure as Code enabled:

e Auditability: Every infrastructure change was tracked.

e Reusability: Terraform modules and Ansible roles were reused across environments.

e Collaboration: Teams could work in parallel without interfering with each other’s setups.
This ensures long-term maintainability and reduces the risks of undocumented manual

changes.

4.5 Usability and Challenges

Feedback from the testing team suggested that the Terraform + Ansible integration

provided a powerful and flexible automation pipeline. However, some challenges were noted:

o Terraform State Management: Handling remote state files in multi-user environments
required careful backend configuration.

e Learning Curve: New team members found Terraform syntax and Ansible YAML
playbooks challenging at first.

e Security Management: Storing sensitive credentials (e.g., SSH keys, API tokens)

securely required additional tools like Vault.

Copyright@ Page 9

International Journal Research Publication Analysis

Despite these challenges, overall feedback was positive, with 92% of participants
agreeing that the automated pipeline was significantly better than manual infrastructure

management.

5. CONCLUSION AND FUTURE WORK

Cloud infrastructure management has traditionally been a manual, time-consuming, and

error-prone process. With the rise of Infrastructure as Code (l1aC), tools like Terraform

and Ansible have transformed how infrastructure is provisioned, configured, and maintained.

This research demonstrated how combining Terraform’s declarative provisioning with

Ansible’s configuration management ensures rapid deployment, consistency, scalability,

and maintainability of cloud environments.

Our evaluation showed that deployment times were reduced by over 80%, configuration

accuracy improved to 100% consistency, and scalability was achieved within minutes using

automated provisioning and configuration. These results highlight that the Terraform +

Ansible pipeline is not only efficient but also reliable for managing dynamic, large-scale

infrastructures in DevOps workflows.

However, some challenges remain. Terraform’s state management requires careful handling

in multi-user teams, Ansible’s playbook complexity can create a steep learning curve, and

secure handling of secrets remains a concern without dedicated tools like HashiCorp Vault.

To overcome these challenges and extend the benefits of laC, the following future

enhancements are proposed:

e Multi-Cloud Support: Extending the framework to work seamlessly across AWS,
Azure, and GCP to avoid vendor lock-in.

e Integration with CI/CD Pipelines: Automating infrastructure changes within continuous
delivery workflows for faster releases.

o Policy-as-Code: Incorporating tools like Sentinel or Open Policy Agent (OPA) to enforce
compliance and security automatically.

e Secrets Management: Integrating Vault or AWS Secrets Manager to securely manage
credentials and sensitive data.

o Self-Healing Infrastructure: Leveraging monitoring + automation (e.g., Terraform
Cloud with Ansible automation) to automatically repair failed services.
In conclusion, Terraform and Ansible together provide a powerful framework for
automating infrastructure in the cloud era. With further research into security, multi-

Copyright@ Page 10

International Journal Research Publication Analysis

(o)}

10.

cloud orchestration, and Al-driven optimization, laC has the potential to fully

revolutionize how organizations manage and scale their IT infrastructure

. REFERENCES

HashiCorp. 2023. Terraform: Infrastructure as Code. https://www.terraform.io

Ansible Documentation. Red Hat. 2023. Ansible Automation Platform.
https://docs.ansible.com

Yevgeniy Brikman. 2019. Terraform: Up & Running — Writing Infrastructure as Code.
O’Reilly Media.

Rani, R., & Sharma, A. 2022. "Automating Multi-Cloud Infrastructure Using Terraform
and Ansible." International Journal of Computer Applications, vol. 184, no. 32, pp. 1-7.
https://doi.org/10.5120/ijca2022922411

HashiCorp. 2022. "Managing Infrastructure at Scale with Terraform Cloud and
Enterprise.” HashiCorp Whitepaper.

Red Hat. 2021. "Configuration Management with Ansible — Best Practices.”
https://www.redhat.com/en/technologies/management/ansible

Singh, P., & Gupta, M. 2023. "Infrastructure as Code: Enhancing Cloud Deployment with
Terraform.” International Journal of Cloud Computing and Services Science (1J-
CLOSER), vol. 12, no. 1, pp. 15-24.

Humble, J., & Farley, D. 2010. Continuous Delivery: Reliable Software Releases through
Build, Test, and Deployment Automation. Addison-Wesley.

Kim, G., Humble, J., Debois, P., & Willis, J. 2016. The DevOps Handbook: How to
Create World-Class Agility, Reliability, and Security in Technology Organizations. IT
Revolution Press.

Sharma, R., & Choudhary, K. 2024. "A Comparative Study of 1aC Tools: Terraform vs.
CloudFormation vs. Ansible.” International Conference on Advances in Cloud
Computing (ICACC).

Copyright@ Page 11

