

International Journal Research Publication Analysis

Page: 01-06

IOT BASED ATTENDANCE SYSTEM USING RFID

*¹Prof. Jayaprasad K M, ²Sudarshan Kumar Iranna Kudaki, ³Darshan S., ⁴Vishal Chowhan

¹Professor ECE department, Amruta Institute of Engineering and Management Sciences Bidadi Bangalore.

^{2,3,4}Student ECE department, Amruta Institute of Engineering and Management Sciences Bidadi Bangalore.

Article Received: 03 November 2025

***Corresponding Author: Prof. Jayaprasad K M**

Article Revised: 23 November 2025

Professor ECE department, Amruta Institute of Engineering and Management

Published on: 13 December 2025

Sciences Bidadi Bangalore. DOI: <https://doi-doi.org/101555/ijrpa.2690>

ABSTRACT

An IoT-based attendance system using RFID offers a modern, efficient solution to the challenges of traditional attendance tracking in academic and organizational settings. By integrating RFID technology with microcontrollers and cloud platforms, the system enables automated, real-time recording of attendance data. Each individual is assigned a unique RFID tag, which is scanned by an RFID reader connected to an IoT-enabled device such as an ESP32 or NodeMCU. Upon scanning, the data is instantly transmitted to a cloud database—such as Firebase or Google Sheets—where it is stored, monitored, and analyzed. This approach eliminates manual errors, prevents proxy attendance, and enhances administrative efficiency. The system is cost-effective, scalable, and adaptable to various environments, making it ideal for smart campus initiatives and digital transformation efforts. Overall, it contributes to a more transparent, secure, and intelligent attendance management process. Implementing an IoT-based RFID attendance system in a school involves integrating RFID technology with microcontrollers and cloud platforms to automate and streamline the attendance process. Each student or staff member is issued a unique RFID tag, which is scanned by an RFID reader connected to a Wi-Fi-enabled microcontroller such as an ESP32 or NodeMCU. When a tag is scanned, the system captures the unique ID along with a timestamp and transmits this data to a cloud-based platform like Firebase or Google Sheets.

KEYWORDS: IoT-based attendance system using RFID, Wi-Fi microcontroller, cloud database, real-time monitoring, automatic identification, UID authentication, and secure data logging.

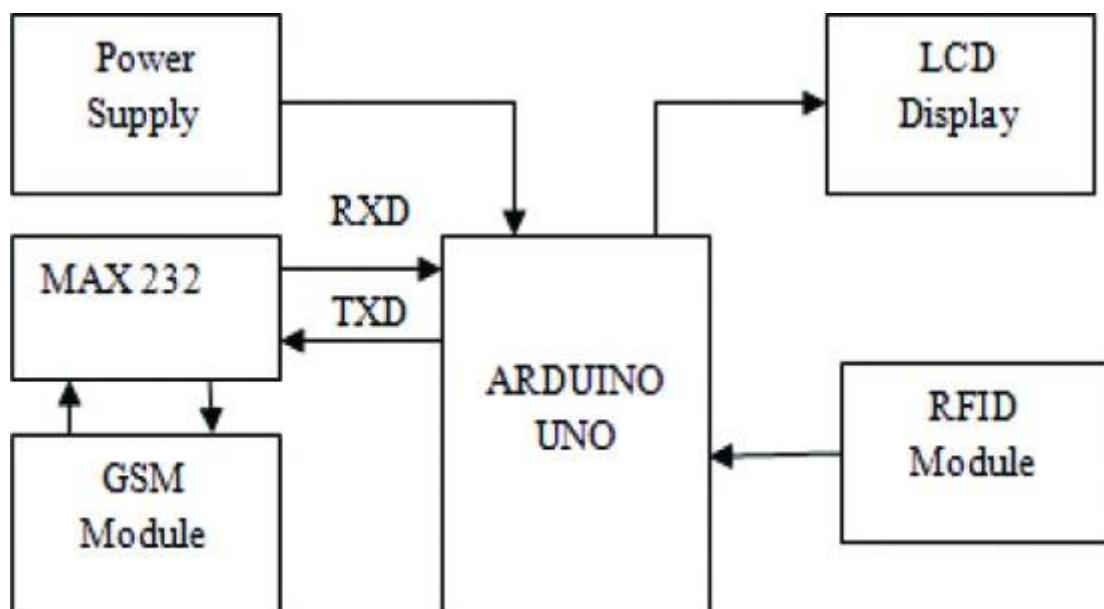
INTRODUCTION

This project proposes an IoT-based attendance system that utilizes RFID tags and readers to streamline the process of recording attendance in educational institutions, workplaces, or events. Each individual is issued an RFID tag, which contains a unique identifier. When the tag is scanned by an RFID reader, the data is transmitted to a microcontroller (such as ESP32 or Arduino) and then uploaded to a cloud-based platform or database in real time. To overcome these limitations, the integration of Internet of Things (IoT) and Radio Frequency Identification (RFID) technologies offers a smart and scalable solution. This system utilizes RFID tags assigned to individuals and readers connected to microcontrollers, enabling seamless and contactless identification. The captured data is transmitted to a cloud-based platform via IoT protocols, allowing administrators to monitor attendance records in real time through web or mobile interfaces. This not only enhances operational transparency but also supports the development of smart campus and workplace ecosystems by reducing human intervention and ensuring data integrity.

Problem Statement and Literature Review

In educational institutions and corporate environments, accurate and efficient attendance tracking is essential for performance evaluation, resource planning, and security. Traditional attendance systems—such as manual registers or biometric scanners—are often time-consuming, error-prone, and susceptible to manipulation, including proxy attendance.

This project aims to address the limitations of conventional attendance systems by developing an **IoT-based RFID attendance application** that ensures:


- Accurate and tamper-proof logging of attendance
- Real-time data synchronization to cloud platforms
- Reduced administrative workload
- Enhanced scalability and integration with existing digital infrastructure.

Literature Survey featuring key IEEE and academic papers on **IoT-Based Attendance Applications Using RFID**. These studies explore various implementations, technologies, and innovations that enhance attendance tracking systems. The integration of Radio Frequency

Identification (RFID) with Internet of Things (IoT) technologies has gained significant attention in recent years for automating attendance systems across educational and corporate environments. Several studies have explored this synergy, highlighting its potential to enhance accuracy, reduce manual errors, and enable real-time data access. One notable work presented at the IEEE ICMNWC 2021 proposed an IoT-based class attendance system using RFID and GSM modules, where RFID readers capture student IDs and transmit attendance data to a cloud server while notifying parents via SMS.

1. K Balakrishna(Dept. of ECE, Maharaja Institute of Technology Mysore, Karnataka, India)
2. B R Ganesh Prasad(Dept. of ECE, Maharaja Institute of Technology Mysore, Karnataka, India)
3. N D Dhanyashree(Dept. of ECE, Maharaja Institute of Technology Mysore, Karnataka, India)
4. V Balaji(Dept. of ECE, Maharaja Institute of Technology Mysore, Karnataka, India)
5. N M Krishna(Dept. of ECE, Maharaja Institute of Technology Mysore, Karnataka, India)
6. Prof. Ch. Ganapathy Reddy et al. (2023) – *IoT-Based RFID Attendance System with ESP32*.
7. Sanskar Soni et al. (2024) (*Smart Attendance System Using RFID and Google Sheets*)

Working Principle

1. Power Supply provides regulated voltage to Arduino, LCD, GSM module, and RFID module to ensure proper operation.
2. RFID Module reads the RFID tag/card and extracts its Unique Identification Number (UID).
3. The RFID module sends the UID to the Arduino UNO, which acts as the main controller.
4. Arduino UNO processes the UID and compares it with the stored database of authorized IDs.
5. The LCD Display shows the status such as “Card Detected,” “Access Granted,” “Access Denied,” or “Attendance Marked.”
6. If the system uses messaging, the GSM Module sends an SMS notification (e.g., attendance alert or access alert).
7. Since GSM modules operate at RS-232 voltage levels, the MAX232 converter is used to shift voltage levels between Arduino (TTL) and GSM (RS-232).
8. Arduino communicates with the GSM module using TXD and RXD lines through the MAX232 to send or receive data.
9. Finally, the processed output (display or SMS) is delivered, completing the attendance or access-control process

Methodology

The methodology for developing an IoT-based attendance system using RFID involves a structured approach that integrates hardware, software, and cloud technologies to automate and streamline attendance tracking. Initially, the system is designed by selecting appropriate components such as RFID tags, RFID readers, and a microcontroller like ESP32 or Arduino, which serves as the central processing unit. Each user is assigned a unique RFID tag, and when scanned by the reader, the tag's data is captured and processed by the microcontroller.

The development of an IoT-based attendance system using RFID begins with a comprehensive design phase that outlines the system's objectives, user flow, and hardware-software integration. The hardware setup includes RFID tags assigned to individuals, an RFID reader to capture tag data, and a microcontroller such as NodeMCU or ESP32 to process and transmit the data.

Steps for Project:

1. System Design and Planning

2. Hardware Setup
3. Software Development
4. Cloud Integration
5. Testing and Validation
6. Deployment and Monitoring
7. Security and Scalability.

RESULTS AND DISCUSSIONS

The simulation of an IoT-based attendance system using RFID demonstrates a seamless integration of hardware and cloud technologies to automate and streamline attendance tracking. In this setup, RFID tags assigned to individuals are scanned by an RFID reader connected to a microcontroller such as an ESP8266 or Arduino. Upon successful identification, the system transmits the data via Wi-Fi to a cloud platform like Adafruit IO or Firebase, where attendance logs are stored and visualized in real time. The simulation reveals high accuracy in tag detection, minimal latency in data transmission, and reliable synchronization with cloud services. Feedback mechanisms such as LCD displays and buzzers enhance user interaction by confirming successful scans or flagging invalid entries. Overall, the system proves to be scalable, efficient, and well-suited for educational institutions or workplaces aiming to modernize their attendance processes through IoT.

By automating the attendance process, it significantly reduces manual errors, time consumption, and the risk of proxy attendance. The system enhances accuracy and reliability by instantly recording each individual's presence through RFID tag scans, which are then transmitted to cloud platforms for real-time monitoring and analysis. Institutions benefit from streamlined administrative workflows, improved data security, and scalable infrastructure that can accommodate growing user bases. Moreover, the integration of analytics and machine learning enables deeper insights into attendance patterns, helping optimize resource allocation and boost overall efficiency. These outcomes collectively contribute to a smarter, more transparent, and accountable attendance management system. The results showed that attendance data could be captured and stored in real time, with significantly reduced errors and improved accessibility through web and mobile platforms.

CONCLUSION

The development and deployment of IoT-based RFID attendance systems represent a

transformative shift from traditional, manual attendance tracking methods to intelligent, automated solutions. By leveraging RFID technology for identification and IoT platforms for real-time data transmission and cloud integration, these systems offer a highly efficient, accurate, and scalable alternative to conventional practices. The automation not only reduces human error and administrative workload but also enhances transparency and data accessibility for stakeholders. The use of microcontrollers like ESP32, RFID readers such as EM-18, and cloud services like Firebase or Google Sheets enables seamless data flow and remote access. The potential for future enhancements—such as biometric authentication, AI-based analytics, mobile app integration, and blockchain for data integrity—positions RFID-IoT systems as a cornerstone of smart education and workplace automation. As technology continues to evolve, these systems will not only streamline attendance but also contribute to broader digital transformation initiatives in both academic and professional settings.

REFERENCE

1. K Balakrishna(Dept. of ECE, Maharaja Institute of Technology Mysore, Karnataka, India)
2. B R Ganesh Prasad(Dept. of ECE, Maharaja Institute of Technology Mysore, Karnataka, India)
3. N D Dhanyashree(Dept. of ECE, Maharaja Institute of Technology Mysore, Karnataka, India)
4. V Balaji(Dept. of ECE, Maharaja Institute of Technology Mysore, Karnataka, India)
5. N M Krishna(Dept. of ECE, Maharaja Institute of Technology Mysore, Karnataka, India)
6. Prof. Ch. Ganapathy Reddy et al. (2023) – IoT-Based RFID Attendance System with ESP32.
7. Sanskar Soni et al. (2024) (Smart Attendance System Using RFID and Google Sheets)