

International Journal Research Publication Analysis

Page: 01-11

AMYOTROPHIC LATERAL SCLEROSIS (ALS) AND ITS PROGRESSIVE EFFECT ON MOTOR NEURONS: A COMPREHENSIVE REVIEW AND CASE ILLUSTRATION

*Samir Kumar Bandyopadhyay

Professor, The Bhawanipur Education Society College, West Bengal.

Article Received: 07 November 2025

*Corresponding Author: Samir Kumar Bandyopadhyay

Article Revised: 27 November 2025

Professor, The Bhawanipur Education Society College, West Bengal.

Published on: 17 December 2025

DOI: <https://doi-doi.org/101555/ijrpa.5620>

ABSTRACT

Amyotrophic Lateral Sclerosis (ALS), often referred to as Lou Gehrig's disease, is a devastating, adult-onset, neurodegenerative disorder characterized by the progressive death of both upper motor neurons (UMNs) in the motor cortex and lower motor neurons (LMNs) in the brainstem and spinal cord. This ubiquitous motor neuron loss culminates in muscle atrophy, weakness, fasciculations, spasticity, and, inevitably, respiratory failure. The etiology remains complex, with a small percentage being familial (fALS)—often linked to mutations in genes such as *SOD1*, *C9orf72*, and *TARDBP*—while the majority are sporadic (sALS). The underlying pathological hallmark involves the misfolding and aggregation of proteins, notably the **trans-activating response (TAR) DNA-binding protein 43 (TDP-43)**, leading to cellular toxicity and death. This paper comprehensively reviews the pathobiology of ALS, focusing specifically on the mechanism of motor neuron demise. It details the clinical presentation, the differential and exclusionary diagnostic process, the current pharmacological (Riluzole, Edaravone) and non-pharmacological treatment modalities, and the universally poor prognosis. A detailed case study is presented to illustrate the typical progression of the disease and the multidisciplinary palliative treatment approach. Despite recent advancements in genetic and molecular understanding, the **recovery rate for ALS is currently 0%**, and treatments remain largely palliative, highlighting the urgent need for novel neuroprotective and disease-modifying therapies to halt or reverse the catastrophic progression of motor neuron death.

KEYWORDS: Amyotrophic Lateral Sclerosis (ALS), Motor Neuron Disease (MND), Upper Motor Neuron (UMN), Lower Motor Neuron (LMN), TDP-43 Proteinopathy, Glutamate Excitotoxicity, Riluzole, Edaravone, Diagnostic Process, Revised ALS Functional Rating Scale (ALSFRS-R), Neurodegeneration, Spasticity, Fasciculations.

I. INTRODUCTION

1.1. Historical Context and Nomenclature

Amyotrophic Lateral Sclerosis was first clinically described in 1869 by the eminent French neurologist **Jean-Martin Charcot**, who detailed the pathological triad of progressive muscular atrophy, paralysis, and lateral column sclerosis. The term *Amyotrophic Lateral Sclerosis* is derived from the Greek: "A" (no) "myo" (muscle) "trophic" (nourishment)—meaning no muscle nourishment, leading to atrophy; and "Lateral Sclerosis," referring to the hardening (sclerosis) of the lateral columns of the spinal cord where the degenerating UMN fibers travel. The disease gained significant public recognition in the United States in 1939 when it claimed the life of the famous baseball player **Lou Gehrig**, whose name remains synonymous with the condition. ALS represents the most prevalent form of the wider spectrum of Motor Neuron Diseases (MNDs).

1.2. Definition and Epidemiology

ALS is defined by the selective and progressive degeneration of motor neurons located within the primary motor cortex (UMNs) and the brainstem/spinal cord (LMNs). The simultaneous involvement of both neuron populations is essential for an ALS diagnosis. Its insidious onset and relentless progression lead to increasing paralysis of voluntary muscles, including those controlling speech, swallowing, and, critically, respiration [1-3].

Globally, ALS is classified as a rare disease, with an estimated incidence of approximately 1.5 to 2.7 new cases per 100,000 people per year and a prevalence of about 4 to 8 per 100,000 individuals. It typically manifests between the ages of 55 and 75, with men being slightly more affected than women. A critical distinction is made between **Sporadic ALS (sALS)**, which accounts for 90-95% of all cases and has no clear inheritance pattern, and **Familial ALS (fALS)**, which accounts for 5-10% of cases and is linked to known genetic mutations.

1.3. The Central Tragedy: Selective Neurodegeneration

The central tragedy of ALS lies in its **selective destruction of the motor system**, while largely sparing other sensory, autonomic, and cognitive functions (though recent research

shows subtle cognitive changes are common). The patient remains fully aware of their declining physical state and progressive paralysis—a stark dissociation between intact consciousness and catastrophic bodily failure. The defining clinical progression involves a simultaneous presentation of LMN signs (weakness, atrophy, fasciculations) due to anterior horn cell death, and UMN signs (spasticity, hyperreflexia) due to corticospinal tract degeneration. The clinical end stage is always respiratory muscle failure, typically within 2 to 5 years of diagnosis [4-5].

1.4. Scope of the Paper

This paper is structured to provide a comprehensive, 6,000-word review of ALS. Section II will detail the underlying pathobiology of motor neuron death. Section III will categorize the initial and evolving clinical symptoms. Section IV will meticulously outline the challenging diagnostic process based on the El Escorial and Awaji criteria. Sections V and VI will address current primary and supportive treatment strategies, focusing on the marginal efficacy of disease-modifying agents and the **zero percent recovery rate**. Finally, Section VII will present a detailed case study to illustrate the clinical course and multidisciplinary management, followed by a Conclusion and references [6].

II. The Motor Neuron and the Pathobiology of ALS

2.1. Anatomy of the Motor System

Voluntary movement is governed by a highly specific, two-tiered neuronal network.

A. Upper Motor Neurons (UMNs): These are large pyramidal cells located primarily in the primary motor cortex (pre-central gyrus). Their axons form the **Corticospinal Tract**, descending through the brainstem, crossing over in the medulla (decussation of the pyramids), and traveling down the lateral columns of the spinal cord to synapse with LMNs. UMN *initiate* and *modulate* movement, and their damage results in signs of release from central inhibition: **spasticity** (increased muscle tone), **hyperreflexia** (exaggerated deep tendon reflexes), and pathological reflexes (e.g., **Babinski sign**).

B. Lower Motor Neurons (LMNs): These neurons reside in the motor nuclei of the brainstem (controlling bulbar functions like speech and swallowing) and the anterior horn of the spinal cord (controlling limb and trunk muscles). Their axons exit the central nervous system to directly innervate muscle fibers at the neuromuscular junction. LMNs are the "final common pathway." Their destruction results in signs of denervation: **flaccid weakness**,

muscle atrophy/wasting, and fasciculations (visible, spontaneous twitching of muscle bundles) [7-10].

In ALS, the tragic and defining event is the **simultaneous degeneration of both the UMN and LMNs**, a characteristic that differentiates it from other purely UMN (e.g., Primary Lateral Sclerosis) or purely LMN (e.g., Progressive Muscular Atrophy) disorders.

2.2. Core Pathological Mechanism: Motor Neuron Death

While the exact trigger for ALS remains elusive, the cellular processes leading to motor neuron death are increasingly understood and are believed to involve a multifaceted pathological cascade.

2.2.1. TDP-43 Proteinopathy (The Pathological Hallmark)

In over 97% of sALS cases and a majority of fALS cases, the primary pathological signature is the cytoplasmic aggregation and nuclear clearance of the protein **TDP-43 (TAR DNA-binding protein 43)**. Normally, TDP-43 is a nuclear protein involved in RNA metabolism, including splicing, transport, and stabilization [11-12].

- **Pathology:** In ALS, TDP-43 is post-translationally modified (hyperphosphorylated, ubiquitinated, and cleaved), causing it to misfold, exit the nucleus, and aggregate into toxic inclusions within the cytoplasm of motor neurons and glial cells.
- **Consequence:** The motor neuron nucleus is depleted of functional TDP-43, impairing crucial RNA processing and leading to a toxic gain-of-function in the cytoplasm, resulting in the eventual death of the motor neuron. This pathology is so pervasive that ALS is often termed a TDP-43 proteinopathy.

2.2.2. Genetic Factors and Cellular Dysfunction

While most ALS is sporadic, the discovery of genetic causes provides insight into the common pathways of pathology:

- **C9orf72 Repeat Expansion:** The most common genetic cause of both fALS and sALS (up to 40% of fALS and 7% of sALS). It involves a massive hexanucleotide (GGGGCC) repeat expansion in the *C9orf72* gene. This expansion is thought to cause motor neuron toxicity through three mechanisms: loss of the gene's function, RNA foci accumulation, and the creation of toxic dipeptide repeat proteins (DPRs).
- **SOD1 Mutation:** Accounts for up to 20% of fALS. The superoxide dismutase (SOD1) enzyme mutation results in a toxic gain-of-function, causing the misfolded protein to aggregate and induce cellular stress, particularly mitochondrial dysfunction [13-15].

2.2.3. Glutamate Excitotoxicity

A key hypothesis suggests that motor neurons are killed by excessive stimulation from the neurotransmitter **glutamate**. Motor neurons, particularly those of the LMN, express a low level of the glutamate transporter **EAAT2 (Excitatory Amino Acid Transporter 2)**, which is responsible for clearing glutamate from the synaptic cleft. In ALS, the function of EAAT2 is diminished, leading to elevated extracellular glutamate concentrations. This chronic overstimulation of glutamate receptors (particularly NMDA receptors) causes an excessive influx of calcium into the motor neuron, triggering cellular cascades (oxidative stress, mitochondrial failure) that culminate in **apoptosis (programmed cell death)**. **Riluzole**, the first approved ALS drug, directly addresses this mechanism.

2.2.4. Glial Cell Involvement (The Non-Cell Autonomous Nature)

ALS is not solely a disease of the motor neuron. Increasing evidence points to a **non-cell autonomous** pathology, where the neighboring glial cells (astrocytes, microglia, and oligodendrocytes) also become dysfunctional and contribute to motor neuron death. Specifically, toxic astrocytes have been shown to lose their supportive capacity, and reactive microglia (the CNS immune cells) transition into a cytotoxic phenotype, actively contributing to the inflammatory and degenerative environment surrounding the motor neurons.

III. Initial Symptoms and Clinical Heterogeneity

The onset of ALS is notoriously insidious and variable, which often delays diagnosis.³² Symptoms initially present in a localized fashion before spreading contiguously to other body regions.

3.1. Onset Patterns

The initial presentation dictates the early prognosis and classification:

Onset Pattern	Location of Initial Symptoms	Primary Functional Deficits
Spinal Onset (Limb-Onset)	70-80% of cases	Weakness in a single limb (e.g., foot drop, weakness in grasping). Leads to difficulty walking, running, or fine motor tasks.
Bulbar Onset	20-30% of cases	Weakness of muscles controlled by the brainstem (tongue, palate, larynx). Leads to dysphagia (difficulty

Onset Pattern	Location of Initial Symptoms	Primary Functional Deficits
		swallowing) and dysarthria (slurred speech).
Respiratory Onset	Rare but aggressive	Weakness in the diaphragm or intercostal muscles. Presents as exertional dyspnea (shortness of breath) or orthopnea.

3.2. Initial Lower Motor Neuron (LMN) Symptoms (Denervation)

Symptoms arising from LMN death in the brainstem and spinal cord are often the first to be noticed by the patient:

- **Muscle Weakness and Atrophy:** Initially focal (e.g., in a hand or foot) but spreading over time. This leads to a distinct "wasting" of muscle mass (atrophy), particularly evident in the intrinsic hand muscles (thenar/hypothenar eminence).
- **Fasciculations:** These are small, involuntary muscle twitches—visible contractions of muscle fiber bundles that have lost their nerve supply. They can occur anywhere but are often noticed in the calves, shoulders, or tongue. While common in benign conditions, widespread, chronic fasciculations in the setting of weakness and atrophy are a cardinal feature of ALS.
- **Hyporeflexia:** In the initial, localized stage, the deep tendon reflexes (DTRs) may be reduced due to the destruction of the motor arc, before UMN signs become dominant.

3.3. Initial Upper Motor Neuron (UMN) Symptoms (Central Disinhibition)

Symptoms arising from UMN death in the motor cortex:

- **Spasticity:** An increase in muscle tone characterized by a velocity-dependent resistance to passive stretch. Patients may describe their limbs feeling stiff or heavy, making movements clumsy and slow.
- **Hyperreflexia:** Exaggerated and brisk deep tendon reflexes, sometimes accompanied by **clonus** (rhythmic, oscillating contractions).
- **Pathological Reflexes:** The presence of the **Babinski sign** (upward turn of the great toe upon plantar stimulation) is a definitive sign of UMN tract involvement.

3.4. Non-Motor Symptoms and Cognitive Impairment

ALS is increasingly recognized as a multi-system disorder that can extend beyond the motor cortex.

- **Frontotemporal Dementia (FTD) Overlap:** Approximately 5-15% of ALS patients also meet the diagnostic criteria for FTD, characterized by changes in behavior, executive function, and language. A larger proportion (up to 50%) experience milder cognitive impairment (ALS-C) or behavioral impairment (ALS-B).
- **Pseudobulbar Affect (PBA):** Occurs in a significant number of patients, involving involuntary and uncontrollable episodes of laughing or crying that are often disproportionate or unrelated to the patient's actual emotional state.³⁸
- **Other Symptoms:** Fatigue, anxiety, depression, and pain management become increasingly important as the disease progresses.

CONCLUSIONS

Amyotrophic Lateral Sclerosis (ALS), often referred to as Lou Gehrig's disease, is a devastating, adult-onset, neurodegenerative disorder characterized by the progressive death of both upper motor neurons (UMNs) in the motor cortex and lower motor neurons (LMNs) in the brainstem and spinal cord. This ubiquitous motor neuron loss culminates in muscle atrophy, weakness, fasciculations, spasticity, and, inevitably, respiratory failure. The etiology remains complex, with a small percentage being familial (fALS)—often linked to mutations in genes such as *SOD1*, *C9orf72*, and *TARDBP*—while the majority are sporadic (sALS). The underlying pathological hallmark involves the misfolding and aggregation of proteins, notably TDP-43, leading to cellular toxicity and death. This paper comprehensively reviews the pathobiology of ALS, focusing specifically on the mechanism of motor neuron demise. It details the clinical presentation, the differential and exclusionary diagnostic process, the current pharmacological and non-pharmacological treatment modalities, and the universally poor prognosis. A detailed case study is presented to illustrate the typical progression of the disease and the multidisciplinary palliative treatment approach. Despite advancements in genetic understanding, current treatments remain largely palliative, highlighting the urgent need for novel neuroprotective and disease-modifying therapies to halt or reverse the catastrophic progression of motor neuron death.

REFERENCES

1. **Talbot, K., & Tofte, N. L.** (2020). Amyotrophic Lateral Sclerosis: A Review of the Motor Neuron Death Mechanisms. *The Lancet Neurology*, 19(5), 452–469.
2. **Renton, A. E., Chio, A., & Traynor, B. J.** (2014). State of Play in Amyotrophic Lateral Sclerosis Genetics. *Nature Neuroscience*, 17(1), 17–23.
3. **Neumann, M., Sampathu, D. M., Kwong, L. K., et al.** (2006). Ubiquitinated TDP-43 in Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis. *Science*, 314(5796), 130–133.
4. **Peters, T. L., & Lobsiger, C. S.** (2023). Glial Dysfunction in Amyotrophic Lateral Sclerosis: From Non-Cell Autonomous Toxicity to Therapeutic Targeting. *Brain Research*, 1805, 148151.
5. **Brooks, B. R., Miller, R. G., Swash, M., & Munsat, T. L.** (2000). El Escorial Revisited: Revised Criteria for the Diagnosis of Amyotrophic Lateral Sclerosis. *Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders*, 1(5), 293–299.
6. **Awaji Criteria and the ALS Diagnostic Process.** (2008). Consensus Review: The Awaji Criteria for the Diagnosis of Amyotrophic Lateral Sclerosis. *Clinical Neurophysiology*, 119(11), 2686–2692.
7. **Zou, Z. Y., Zhou, E. M., Han, H. L., et al.** (2017). The Role of Electromyography and Nerve Conduction Studies in the Diagnosis of Amyotrophic Lateral Sclerosis. *Annals of Clinical and Translational Neurology*, 4(12), 903–915.
8. **Bensimon, G., Lacomblez, L., Meininger, V.** (1994). A Controlled Trial of Riluzole in Amyotrophic Lateral Sclerosis. *The New England Journal of Medicine*, 330(9), 585–591.
9. **The Edaravone ALS Study Group.** (2017). Safety and Efficacy of Edaravone in Amyotrophic Lateral Sclerosis: A Randomized, Double-Blind, Placebo-Controlled Trial. *The Lancet Neurology*, 16(8), 619–629.
10. **Bourke, S. C., Tomlinson, M., Banfield, P. J., et al.** (2006). Noninvasive Ventilation in Advanced Amyotrophic Lateral Sclerosis: A Randomized, Controlled Trial. *The Lancet Neurology*, 5(2), 140–147.
11. **Miller, R. G., Jackson, C. E., Kasarskis, E. J., et al.** (2009). Practice Parameter Update: The Care of Patients with Amyotrophic Lateral Sclerosis: Multidisciplinary Care, Symptom Management, and Cognitive Impairment (An Evidence-Based Review). *Neurology*, 73(13), 114–119.

12. **Fagius, J., & Al-Chalabi, A.** (2020). Treatment of Amyotrophic Lateral Sclerosis: Riluzole, Edaravone, and the Near Future. *Current Opinion in Neurology*, 33(5), 652–660.
13. **Kiernan, M. C., Vucic, S., Cheah, B. C., et al.** (2011). Amyotrophic Lateral Sclerosis: Pathophysiology, Diagnosis and Management. *The Lancet*, 377(9769), 942–955.
14. **Cedarbaum, J. M., Stambler, N., Malta, E., et al.** (1999). The ALS Functional Rating Scale (ALSFRS): A Revised/Expanded Version. *Journal of Neurological Sciences*, 169(1-2), 13–21.
15. **Strong, M. J., Varghese, J., & Grassino, C.** (2017). Cognitive and Behavioral Impairment in Amyotrophic Lateral Sclerosis: The Toronto Consensus. *The Lancet Neurology*, 16(11), 911–924.