

International Journal Research Publication Analysis

Page: 1-11

ANALYTICAL METHOD DEVELOPMENT AND VALIDATION OF FLECAINIDE ACETATE BY USING RP-HPLC METHOD

Dr. Subhas Sahoo^{*1}, Dr. S. Srinivasa Rao², B. Sanghamitra³, P. Rajasekhar⁴, Dr. P. Mounika⁵

¹Department of Pharmaceutical analysis, Pulla Reddy Institute of Pharmacy,

²Department of Pharmaceutics, Pulla Reddy Institute of Pharmacy,

³Department of Pharmacy Practice, Pulla Reddy Institute of Pharmacy,

^{4,5}Dommadugu (v), Sangareddy (dist.), Telangana, India.

Article Received: 17 October 2025

***Corresponding Author: Dr. Subhas Sahoo**

Article Revised: 06 November 2025

Department of Pharmaceutical analysis, Pulla Reddy Institute of Pharmacy, Dommadugu(v), Sangareddy(dist.), Telangana, India.

Published on: 26 November 2025

DOI: <https://doi-doi.org/101555/ijrpa.7429>

ABSTRACT

Chromatographic separation was performed on column C18, 250mm, 5micron meter particles packing with stationary phase. The mobile consisting of phosphate buffer of pH 5 and mobile B consisting of ACN in the ratio of 55:45 v/v at a flow rate of 1ml/min. The wavelength used for the detection was 298nm with a total run time of 20min. The method was developed and tested for the linearity range of 100microgram/milli liter. From this acid degradation study was performed on 4N HCL at 80C for 6 hours. Base degradation study was performed on 4.5N NaOH at 90c for 3 hours. Oxidative degradation was performed on 25% H202 at room temperature for 36 hours and got 20% degradation.

KEYWORDS: Method development, Validation, Flecainide acetate.

INTRODUCTION

Flecainide is a medication used to prevent and treat abnormally fast heart rates. This includes ventricular and supraventricular tachycardias. Its use is only recommended in those with dangerous arrhythmias or when significant symptoms cannot be managed with other

treatments. Its use does not decrease a person's risk of death. It is taken by mouth or injection into a vein.

Common side effects include dizziness, problems seeing, shortness of breath, chest pain, and tiredness. Serious side effects may include cardiac arrest, arrhythmias, and heart failure. It may be used in pregnancy, but has not been well studied in this population. Use is not recommended in those with structural heart disease or ischemic heart disease. Flecainide is a class Ic antiarrhythmic agent.¹ It works by decreasing the entry of sodium in heart cells, causing prolongation of the cardiac action potential.

METHOD DEVELOPMENT

Sample preparation

Weigh and transfer 30 mg of flecainide acetate to 3 ml of distilled water in a test tube and tap it with glass rod. Record the sample as soluble or insoluble. Same way it is checked in ACN, acetic acid, ethanol, methanol and hydrochloric acid

Sample Preparation

1. The Kbr powder was kept for drying under IR-lamp.
2. A pinch of sample was taken and mixed properly with the dried kbr powder and a compressed under the compressor.
3. The kbr powder was scanned by the FT-IR.
4. Kbr sample was taken as blank.
5. Then Kbr and sample were scanned.

Preparation of solutions

Selection of wavelength for detection

Standard solutions of Flecainide acetate 100 µg /ml was prepared for the selection of wavelength and scanned between 200-400 nm in UV-visible double beam spectrophotometer at a medium scanning speed. Spectra was taken which was used for the selection of wavelength for detection and it was found that Flecainide acetate showed reasonably best response at 298 nm. So 298 nm was nominated as a wavelength for determination. (Kavathia & Misra, 2013).

Selection of stationary phase

We have tried Phenomenex C18, 250mm x 4.6 mm, 5 μ m particles packing and Waters C18, 250mm x 4.6 mm, 5 μ m for method development. In Phenomenex C18, 250mm x 4.6 mm, 5 μ m column peak is split and more peak broadening. In Waters C18, 250mm x 4.6 mm, 5 μ m column we get good peak shape with good asymmetry and large number of theoretical plates.

Selection of Mobile Phase

The standard solution of Flecainide acetate was inserted into HPLC system and run into different composition of mobile phase A and B to find out best condition. Asymmetry, theoretical plates are important criteria for the method development. The final optimized mobile phase was determined to be pH 5 Phosphate buffer and Acetonitrile 55:45 (v/v). (Sengupta, Chatterjee, & Kanti, 2017).

Procedure to make Phosphate buffer

Phosphate Buffer pH 5 (Add 750 μ L Phosphoric acid in 530 ml HPLC grade water and add 530 μ L TEA in it) pH adjusted with 10% KOH.

Preparation of Mobile Phase

Mobile Phase A:

Phosphate Buffer pH 5.

Mobile Phase B:

Acetonitrile

Preparation of Diluent

Prepare a mixture of pH 5 Phosphate buffer and ACN in the ratio of 55:45 (% V/V) and degas.

Preparation of standard stock solution of Flecainide Acetate (1000 μ g/ml)

Accurately weighed and transferred 10 mg of working standard into 10 ml volumetric flask. Added 5 ml of ACN and sonicated below 25°C until dissolved. Made volume up to the mark with ACN and mixed it.

Preparation of sample solution (100 μ g/ml)

Take 1 ml of stock solution and relocate it into 10 ml volumetric flask and dilute it with diluent up to the mark. Filtered it with 0.45 μ m PVDF filter by discarding 2 ml of filtrate.

Preparation of Blank solution:

Use Diluent as a Blank

Final Optimized Chromatographic Condition**Table 1: chromatographic condition.**

Column	Waters C18, 250mm x 4.6 mm, 5 μ m
Wavelength	298 nm
Flow Rate	1.0 ml/min
Injection Volume	50 μ l
Run time	10 minute
Rinsing Solvent	Blank

RESULT AND DISCUSSION

As per literature review less articles is available and nowadays QbD approach is mandatory. So that method development is done on Agilent HPLC system and generate AQbD model for that.

Selection of solvent:

Based on solubility study solvent used for Flecainide acetate - Acetonitrile, water, Methanol, acetic acid, anhydrous ethanol.

Table 2: Result of solubility of Flecainide Acetate

Solvent	Solubility (mg/ml)
Water (100%)	10 mg/ml
Acetonitrile (100%)	10 mg/ml
Methanol (100%)	3 mg/ml
HCl	Insoluble
Anhydrous Ethanol	10 mg/ml
Dilute Acetic Acid	2 mg/ml

Selection of wavelength for detection

Flecainide acetate solution was prepared using Acetonitrile and concentration was 10 $\mu\text{g/ml}$. In UV-visible spectrophotometer in range of 200 – 400 nm to determine the absorption maxima of the drug. And good response at 298 nm, so it was selected for detection.

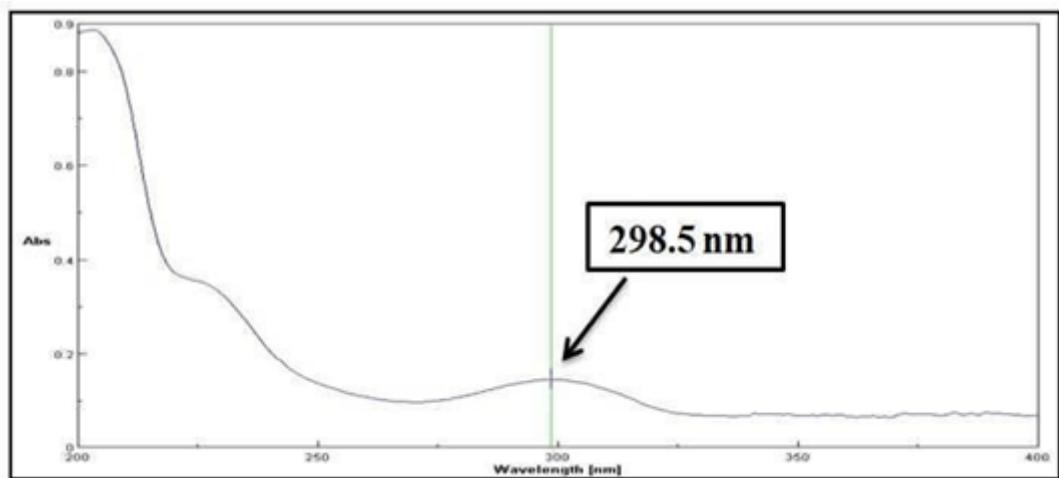


Figure 1: selection of wavelength for detection.

Selection of Stationary phase.

Different trials of columns were performed for the selection of stationary phase and determined final column was selected which showed well theoretical plates, asymmetry, elution pattern with sharp peak.

Table 3: Column trials.

Trial No:	Column	Observation
1	Phenomenex C18, 250mm X 4.6 mm, 5 μm	Peak is splitted and not sharp Peak
2	Waters C18, 250mm X 4.6 mm, 5 μm	Sharp peak and good asymmetry, no. of theoretical Plates

Trial 1: Chromatogram of the sample using Phenomenex column.

Trial 2: Chromatogram of the sample using Waters column

Optimized Conditions

- ✓ Column: Waters C18, 250mm x 4.6 mm, 5 μm

- ✓ Wavelength: 298 nm
- ✓ Flow Rate: 1.0 ml/min
- ✓ Injection Volume: 50 μ l
- ✓ Run time: 10 minutes
- ✓ Rinsing Solvent: Blank
- ✓ Mobile phase A: phosphate buffer solution pH 5
- ✓ Mobile phase B - ACN
- ✓ Mobile phase A : B 55 : 45 v/v
- ✓ Blank: Phosphate Buffer(pH 5) : ACN (55:45 V/V)

Figure 2: Chromatogram of Flecainide acetate solution (100 μ g/ml).

Method Validation

System suitability

Table 4: System suitability parameter.

No. of injection	Rt	Area	Tailing factor	NTP
1	4.023	28319590	1.591	3464
2	4.020	28319588	1.589	3460
3	4.101	28319580	1.592	3469
4	4.073	28319575	1.590	3459
5	4.111	28319598	1.590	3470

MEAN \pm S.D	4.0656 \pm 0.0426	28319586 \pm 8.9554	1.5904 \pm 0.0011	3464.4 \pm 5.0299
% R.S.D	0.0942	0.0691	0.0691	0.1451
Acceptance	RSD \leq NMT	RSD \leq NMT \leq 2.0	NMT \leq 2.0	\geq 2000

criteria	2.0			
Interference	Pass	Pass	Pass	Pass

Acceptance Criteria

- The relative standard deviation for analyte peak of five standard injections should be NMT 2.0%.
- The tailing factor for the analyte peak should not be more than 2.
- The NTP for the analyte peak should be at least 2000 in standard solution.

CONCLUSION

The system suitability parameter pass the all the limits, it is suitable for use.

Linearity and Range (n = 5)

For, establishment of linearity calibration curve was found at 5 levels in concentration range 100 – 300 $\mu\text{g/ml}$ for Flecainide Acetate. The injections were analyzed in triplicate. It was subjected to least square regression analysis to calculate correlation coefficient and linearity equation.

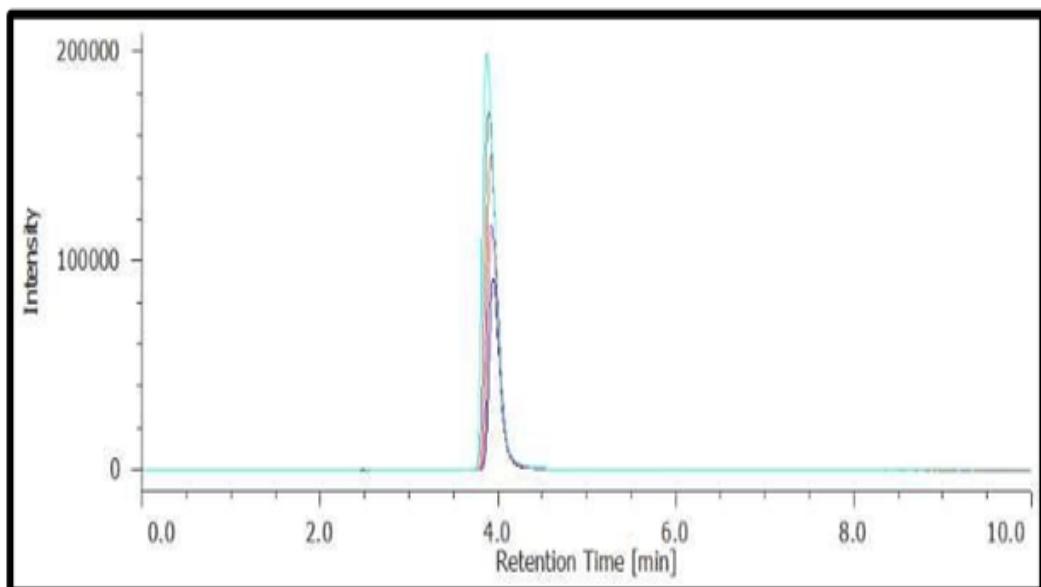
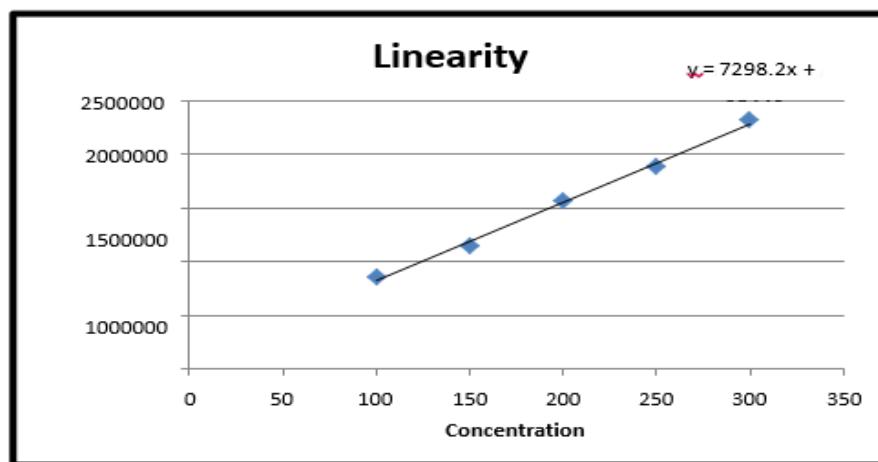



Figure 3: Linearity overlay chromatogram for flecainide acetate at 298 nm.

Figure 4: Linearity graph for Flecainide Acetate.

Table 5: Result table of linearity and range.

Parameter	Flecainide acetate
Range	100-300 μ g/mL
Linearity equation	$y = 7298.2x + 95443$
Regression coefficient	0.9961

Acceptance Criteria

The correlation coefficient (R^2) value must lie between 0.99 to 1.00 for Flecainide acetate.

CONCLUSION

The correlation coefficient (R^2) value for each component is well within the limit of approval norms that means the areas achieved are directly proportional to the conc. of analyte in sample. This technique considered to be linear in the range 50% to 150% of standard concentration.

Precision

Repeatability

Intraday Precision

Table 6: Result of Intraday for Flecainide acetate.

FCD conc.j (μ g/ml)	Peak Area (mV.s)			Mean	S.D	% RSD
100	855622	855800	856520	855980.1	475.48	0.25
200	1570042	1578512	1575423	1574559.2	428.63	0.27
300	2316952	2317563	2317096	2317203.6	319.41	0.22
Average						0.24

Accuracy (recovery n=3)

The result show that the % recovery for Flecainide Acetate was found to be in the range of 100.67 to 100.88 %

Table 7: determination of accuracy of Flecainide Acetate.

Level (%)	Amount of Flecainide taken (μ g/ml)	Amount of Flecainide added (μ g/ml)	Total amount of Flecainide (μ g/ml)	Mean %Recovery ± SD	%RSD
50	100	50	150	100.67 ± 0.86	0.85
100	100	100	200	100.94 ± 0.33	0.33
150	100	150	250	100.88 ± 0.51	0.50

Acceptance criteria

% recovery at each level should be 98.0 % to 102.0 %.

Conclusion

Individual recovery at each level meets the established acceptance criteria. This method is accurate and pass all criteria.

Robustness

Table 8: Results of Robustness.

Factor	Retention time (min)	Peak area(mv.sec)
A. pH		
4.9	3.90	28301254
5.1	4.21	28395212
MEAN ± SD	4.055 ± 2.61	28348233 ± 6643.3389
% RSD	0.64	0.23
B. FLOW RATE		
0.9ml/min	4.24	28487596
1.1ml/min	3.87	28354851
MEAN ± SD	4.055 ± 2.74	28421223.5 ± 93864.8

% RSD	0.64	0.33
C. BUFFER RATIO		
54:46	3.95	28350087
56:44	4.19	28395142
MEAN ± SD	4.07 ± 1.69	28372614.5 ± 31858.6
% RSD	0.41	0.11

Acceptance criteria

% RSD should not more than 2.0%.

Conclusion

% RSD found to be within 2.0% shows that the method is robust.

CONCULSION

QbD approach was established for the development of a new analytical method to generate the impurities of a drug substance by central composite design in Design Expert® software version 11.0. The experimental design defines the main components such as strength, temperature and time. Chromatographic separation on a Column: Waters C18, 250mm x 4.6 mm, 5µm particles packing stationary phase. The mobile phase A consisted of phosphate buffer pH 5 and mobile phase B consisted of ACN (55:45 V/V) at a flow rate of 1.0 mL/min. The wavelength used for the detection was 298 nm with a total run time of 20 minutes. The method was developed and tested for the linearity range of 100 µg/mL to 300 µg/mL.

A Design space in which the method was robust could be generated successfully. From this Acid degradation study was performed on 4 N HCl at 80°C for 6 hours and got 12.47 % degradation. Base degradation study was performed on 4.5 N NaOH at 90°C for 3 hours and got 10.85 % degradation. Oxidative degradation was performed on 25% H₂O₂ at room temperature for 36 hours and got 20 % degradation.

REFERENCES

1. Tripathi J KD. In J Essential of J Medial J Pharmacology; 7th J Edn; J Jaypee J Brothers J Medical J Publisher LTD, J New J Delhi, J 2013, J pp 809-810.

2. Ermer, J., Mc, B., and Miller, J.H., In, Method Validation, in, Pharmaceutical Analysis; Wiley Interscience Publication, pp 195 – 212.
3. Blisner, DM. In, Validating Chromatographic Methods - A Practical Guide; Wiley Interscience Publication, pp 9-13.
4. Bajaj, S., Singla, D., & Sahuja, N. (2012). Stability Testing of Pharmaceutical Products, 02(03), 129–138.
5. Blessy, M., Patel, R. D., Prajapati, P. N., & Agrawal, Y. K. (2013). Author Accepted Manuscript Development of forced degradation and stability indicating studies of drugs – A review. *Journal of Pharmaceutical Analysis.* <https://doi.org/10.1016/j.jpha.2013.09.003>
6. Conference, I., Harmonisation, O. N., Technical, O. F., For, R., Of, R., & For, P. (2002). Bj Racketing and M Atrixing D Esigns for Q1D, (February).
7. Conference, I., Harmonisation, O. N., Technical, O. F., For, R., Of, R., For, P., & For, E. (1996). S t nj d f, (November), 4–6.
8. Conference, I., Harmonisation, O. N., Technical, O. F., For, R., Of, R., For, P., & Of, A. Ich Q2(R1), 1994(October).