\“\emat:o,,,‘/o
3 Z

Ao, 2025 Volume: 01 Issue: 07 www.ijrpa.com ISSN 2456-9995 Review Article

AN IN-DEPTH ANALYSIS OF CROSS-ORIGIN RESOURCE SHARING
(CORS) IN MODERN WEB APPLICATIONS

*Rinki Kumari, Dr. Vishal Shrivastava, Dr. Akhil Pandey

Computer Science & Engineering, Arya College of Engineering & I.T. Jaipur, India.

* 1 - H 1 1
Article Received: 29 October 2025 Corresponding Author: Rinki Kumari

Article Revised: 18 November 2025
Published on: 09 December 2025

Computer Science & Engineering, Arya College of Engineering & I.T. Jaipur,
India. DOI: https://doi-doi.org/101555/ijrpa.7293

The Cornerstone of Web Security: The Same-Origin Policy (SOP)

The modern web is an intricate tapestry of documents, scripts, and resources loaded from
countless different servers. A single web page can simultaneously display images from a
content delivery network, run analytics scripts from a marketing service, and fetch data from
a backend API. This interconnectedness, while powerful, presents a significant security
challenge. Without a foundational security model, a malicious script from one website could
potentially access and exfiltrate sensitive user data from another, completely compromising
user privacy and security. The mechanism that prevents this chaotic scenario is a browser-
enforced security feature known as the Same-Origin Policy (SOP). Understanding the SOP is
not merely a prelude to understanding Cross-Origin Resource Sharing (CORS); it is the
fundamental context that necessitates its very existence. CORS was designed not to replace
the SOP, but to provide a standardized, controlled mechanism for relaxing its strictures when

legitimate cross-domain communication is required.

Defining an "'Origin'': The Scheme, Host, and Port Tuple

At the heart of the Same-Origin Policy is the concept of an "origin." An origin is not simply
the domain name of a website; it is a precisely defined construct determined by a
combination of three distinct parts of a URL.: the scheme (protocol), the host (domain name),
and the port number. This combination is often referred to as the "scheme/host/port tuple".
Two URLs are considered to have the same origin if, and only if, all three of these
components are identical. For example, consider the URL
https://www.example.com/index.html:

e Scheme: https

Copyright@ Page 1

International Journal Research Publication Analysis

Page: 01-29

https://doi-doi.org/101555/ijrpa.7293
http://www.example.com/index.html
http://www.ijrpa.com/

International Journal Research Publication Analysis

e Host: www.example.com

e Port: 443 (implied default for HTTPS)

URL 1 URL 2 Same Origin? Reason for Difference
http://store.company.co |http://store.company.co |Yes Only the path differs.
m/dir/page.html m/dir2/other.html

http://store.company.co |https://store.company.c |No Different scheme

Any change to one of these components results in a different origin. This strict definition
means that http://www.example.com is a different origin from https://www.example.com
because the scheme differs. Likewise, https://www.example.com and https://api.example.com
are different origins because their hosts are not the same, even though they share a parent
domain. Finally, https://www.example.com and https://www.example.com:8080 are different
origins due to the explicit port number in the second URL. This granular definition forms the

bedrock of the browser's security model, dictating the boundaries for data interaction.

URL 1 URL 2 Same Origin? Reason for Difference
m/dir/page.html om/dir/page.html (protocol).
http://store.company.co |http://store.company.co [No Different port.
m/dir/page.html m:81/dir/page.html

http://store.company.co |http://news.company.co [No Different host.
m/dir/page.html m/dir/page.html

Historical Context and Rationale: Protecting User Data in a Multi-Tab World

The Same-Origin Policy was introduced by Netscape Navigator 2.02 in 1995, shortly after
the integration of JavaScript into the browser. The advent of JavaScript transformed static
web documents into dynamic applications by enabling programmatic access to the Document
Object Model (DOM). This newfound power, however, introduced a new class of security
risks. Without a clear boundary, a script loaded from one origin could freely manipulate the

DOM of a page loaded from another origin.

The primary rationale behind the SOP is to isolate potentially malicious documents and
scripts, thereby reducing the available attack vectors. It operates on a "default deny" security
posture, a fundamental principle of information security where access is forbidden unless
explicitly granted. The SOP assumes that any cross-origin interaction is potentially hostile

and blocks it by default. This is critical in a multi-tab browsing environment. Imagine a user

Copyright@ Page 2

http://www.example.com/
http://www.example.com/
http://www.example.com/
http://www.example.com/
http://www.example.com/
http://www.example.com:8080/
http://store.company.co/
http://store.company.co/
http://store.company.co/
http://news.company.co/
http://store.company.co/
http://store.company.co/
http://store.company.co/

International Journal Research Publication Analysis

is logged into their online banking portal at https://mybank.com in one tab and
simultaneously visits a malicious website, https://evil-site.com, in another. Without the SOP,
a script running on evil-site.com could make a request to https://mybank.com/account-details.
Because the user is authenticated with mybank.com, their browser would automatically
include their session cookie with the request. The mybank.com server would see a valid,
authenticated request and return the user's account information. The SOP prevents this attack
by blocking the script on evil-site.com from being able to read the response from
mybank.com, thus protecting the confidentiality of the user's data.

SOP in Action: What is Permitted vs. What is Blocked

The Same-Origin Policy does not block all cross-origin interactions. Its rules are nuanced,

generally distinguishing between embedding resources (or writing data) and reading data.

Permitted Cross-Origin Actions: The SOP historically permitted certain types of cross-

origin interactions, largely because they were considered "write-only" or because they

predated the sophisticated scripting that could exploit them for data theft.

+ Embedding Resources: Web pages are fundamentally designed to be compositions of
resources. Therefore, embedding cross-origin resources using HTML tags is generally
allowed. This includes images via , scripts via <script>, stylesheets via <link>, and
multimedia via <video> and <audio>. While the resource is displayed or executed, the
embedding page's script cannot typically inspect its contents.

¢ Form Submissions: An HTML <form> can have its action attribute point to a cross-
origin URL. This allows a page from one origin to submit, or "write," data to another.
This is a foundational mechanism of the web, but it is also the vector for Cross-Site
Request Forgery (CSRF) attacks, as the SOP does not prevent these writes.

o iframes: A page can embed a cross-origin iframe. However, the SOP severely restricts the
ability of the parent page's script to access the content and DOM of the embedded page,

and vice-versa.

Blocked Cross-Origin Actions: The primary restriction enforced by the SOP is on

programmatic read access to cross-origin resources.

o Scripted HTTP Requests: The most significant restriction is on requests made via
JavaScript using APIs like fetch() or XMLHttpRequest. A script on one origin is blocked
from making such a request to another origin and reading the response. This is the core
protection against the data theft scenario described previously.

Copyright@ Page 3

International Journal Research Publication Analysis

¢+ DOM Access: A script cannot access the DOM of a cross-origin document, such as one
loaded in an iframe. This prevents a malicious page from reading sensitive information or
manipulating the user interface of a trusted site embedded within it.

o Browser Storage: Access to data stored in the browser, such as LocalStorage,
SessionStorage, and IndexedDB, is strictly partitioned by origin. JavaScript from one

origin cannot read from or write to the storage belonging to another origin.

Inherent Limitations and the Rise of Web APIs

While indispensable for security, the strictness of the SOP became a significant obstacle to the
evolution of the web. The rise of Single-Page Applications (SPAs) and microservice
architectures created a paradigm where web applications are often composed of a frontend
served from one origin (e.g., https://app.example.com) that needs to communicate with one or
more backend APIs served from different origins (e.g., https://api.example.com,
https://auth.example.com). Furthermore, the proliferation of third-party APIs for services like
payment processing, social media integration, or data visualization meant that applications

increasingly needed to make legitimate, secure cross-origin requests.

This created a fundamental tension between the web's foundational security model and the
architectural demands of modern applications. The SOP, in its default state, blocked these
legitimate interactions. Developers initially resorted to workarounds like JSONP, which
carried significant security risks. It became clear that a standardized, secure mechanism was
needed to allow servers to explicitly and granularly grant permission for cross-origin reads.
This need was the direct catalyst for the development and standardization of Cross-Origin
Resource Sharing (CORS).

The CORS Protocol: A Detailed Technical Examination

Cross-Origin Resource Sharing (CORS) is a W3C standard that extends the Same-Origin
Policy with a set of HTTP headers. It provides a mechanism for a server to explicitly permit a
web browser to make cross-origin requests from a specified set of origins. It is not a new
security policy but rather a controlled protocol for relaxing the existing one. The entire CORS
mechanism is a negotiation between the client (browser) and the server, where the browser
initiates the request with information about its origin, and the server responds with a policy
that the browser then enforces. This server-driven, browser-enforced model allows for the
creation of rich, integrated web applications without compromising the fundamental security

principles of the web.

Copyright@ Page 4

International Journal Research Publication Analysis

The Anatomy of a CORS Request: Simple vs. Preflighted Requests

The CORS standard categorizes cross-origin requests into two main types: "simple requests”
and "preflighted requests." This distinction is critical because it determines whether the
browser can send the request directly or must first send a preliminary "preflight™ request to

ask for the server's permission.

Simple Requests

A simple request is a CORS request that is sent directly to the server without a preceding
preflight check. The browser makes the actual request (e.g., a GET request) and includes the
Origin header. It then inspects the response headers from the server. If the server's response
includes the appropriate CORS headers (like Access-Control-Allow-Origin) that permit the
request, the browser allows the client-side JavaScript to access the response. If not, the

request fails from the perspective of the JavaScript code.

For a request to be classified as "simple,” it must meet a strict set of conditions. This is

because these types of requests are similar in nature to what was possible before CORS (e.g.,

via HTML form submissions), and thus were considered less likely to introduce new security

risks to legacy servers. The conditions are as follows :

o HTTP Method: The request must use one of the following methods:

o GET

o HEAD

o POST

o« HTTP Headers: Apart from headers automatically set by the user agent (like Host or
User-Agent), the only headers that can be manually set are the CORS-safelisted request-
headers:

o Accept

o Accept-Language

o Content-Language

o Content-Type

o Range

o Content-Type Header Value: If the Content-Type header is present, its value must be
one of the following media types:

o application/x-www-form-urlencoded

o multipart/form-data

Copyright@ Page 5

International Journal Research Publication Analysis

o text/plain

o Other Constraints: No event listeners can be registered on the XMLHttpRequest.upload
object, and no ReadableStream object can be used in the request.
Any request that violates even one of these conditions is not a simple request and must be
preflighted. A common example that triggers a preflight is a POST request with a Content-
Type of application/json, which is the standard for modern REST APIs.

Table 2: Conditions for a CORS "'Simple Request"*

Criterion Allowed Values / Conditions
Method GET, HEAD, POST
Headers Only CORS-safelisted headers (Accept, Accept-

Language, Content-Language,
Content-Type, Range) may be manually set.

Content-Type Value application/x-www-form-urlencoded,

multipart/form-data, text/plain

XMLHttpRequest No event listeners on the upload property.

Request Body No ReadableStream object used.

Preflighted Requests

For any request that is not simple, the browser must first send a preliminary "preflight”
request to the server to ensure the server understands and approves of the actual request that
is to follow. This preflight mechanism is a brilliant piece of backward-compatible design.
Before CORS, a server at api.example.com would never expect to receive a cross-origin
DELETE request from a browser script. Its logic could have been built on the assumption that
such requests were impossible under the SOP. If a modern browser simply sent the DELETE
request, this legacy, non-CORS-aware server might process it, leading to unintended side
effects. The preflight request solves this by acting as an "opt-in" signal. A non-CORS-aware
server will not know how to respond correctly to the preflight, causing the browser to abort

the actual, potentially harmful DELETE request, thus protecting the old server.

The preflight request itself is an HTTP OPTIONS request sent automatically by the browser
to the same URL as the actual request. This OPTIONS request includes special headers that
describe the intended actual request :

¢ Access-Control-Request-Method: Specifies the HTTP method that the actual request will

Copyright@ Page 6

International Journal Research Publication Analysis

use (e.g., PUT, DELETE).
o Access-Control-Request-Headers: Specifies any non-simple headers that the actual
request will include (e.g., Content-Type, Authorization).
The server, upon receiving the preflight OPTIONS request, inspects these headers and
determines if it is willing to accept such a request. It then responds with its own set of CORS
headers. If the server's response indicates that the method and headers are permitted for that
origin, the browser then proceeds to make the actual HTTP request. If the preflight is denied,

the actual request is never sent, and an error is reported in the browser's console.

To improve performance, the response to a preflight request can be cached by the browser.
The server can include the Access-Control-Max-Age header in its preflight response,
specifying the number of seconds the browser can cache the permissions. This avoids the
need to send a new preflight request for every subsequent non-simple request to the same

resource.

The Language of CORS: A Comprehensive Review of HT TP Headers
The entire CORS protocol is orchestrated through a set of standardized HTTP headers
exchanged between the browser and the server. A thorough understanding of these headers is

essential for both implementing and debugging CORS.

Table 3: Comprehensive CORS HTTP Header Reference.

Header Type Purpose Example Value(s) |[Context of Use
Origin Request Indicates the origin |https://www.examplAll CORS
(scheme, host, le.com requests.

port) of the script
Initiating the

request.

Copyright@ Page 7

International Journal Research Publication Analysis

Access-Control-Re |Request Sentinapreflight |PUT Preflight
quest-Method request to inform the (OPTIONS)
server of the HTTP requests only.
method to be used in
the
actual request.
Access-Control-Re |Request Sent in a preflight |Content-Type, Preflight
quest-Headers request to inform the|Authorization (OPTIONS)
server of the non- requests only.
simple HTTP
headers to be used in
the actual request.
Access-Control-All |Response Specifies the origin |https://www.examplAll CORS
ow-Origin that is permitted to [le.com or * responses,
access the resource. including preflight.
The most critical
CORS
response header.
Access-Control-All |Response Specifies the GET, POST, PUT, [Preflight
ow-Methods method(s) allowed |DELETE (OPTIONS)
when accessing the responses only.
resource.
IAccess-Control-All |Response Specifies the Content-Type, Preflight
ow-Headers header(s) allowed in |Authorization (OPTIONS)
the actual request. responses only.
Access-Control-All |Response Indicates whether [true All CORS
ow-Credentials the response to a responses where

request with credentials are
credentials can be sent.
exposed to the
requesting script.
Copyright@ Page 8

International Journal Research Publication Analysis

Access-Control-M |Response Indicates how long [86400 Preflight
ax-Age the results of a (OPTIONYS)
preflight request can responses only.
be cached in
seconds.
Access-Control-Ex |Response \Whitelists headers in[Content-Length, |Responses to
pose-Headers the response that [X-My-Custom-Heajactual requests
JavaScript in der (not preflight).
browsers is allowed
to access.

Handling Authenticated Requests: withCredentials and Access-Control-Allow-
Credentials

By default, for security reasons, browsers do not include credentials such as cookies, HTTP
authentication headers, or TLS client certificates in cross-origin requests. This is a critical
safeguard against CSRF-style attacks where a malicious site could trigger an authenticated

action on another domain.

To enable the sending of credentials on a cross-origin request, a two-part handshake is

required, involving explicit consent from both the client-side script and the server:

1. Client-Side Opt-In: The client-side code must explicitly signal its intent to include
credentials. This is done by setting the withCredentials property to true on an
XMLHttpRequest object or by using the credentials: 'include’ option in a fetch() request.

2. Server-Side Permission: The server must explicitly permit the request with credentials
by including the Access-Control-Allow-Credentials: true header in its response.

3. Both conditions must be met. If the client sends withCredentials: true but the server does
not respond with Access-Control-Allow-Credentials: true, the browser will reject the

response and the request will fail.

There is a crucial security constraint tied to this mechanism: when a server responds with
Access-Control-Allow-Credentials: true, the Access-Control-Allow-Origin header must
specify a single, explicit origin. It cannot be the wildcard *. This prevents a scenario where a
server inadvertently exposes credential-protected resources to any website on the internet. If a

browser receives a response with both Access-Control-Allow-Credentials: true and Access-

Copyright@ Page 9

International Journal Research Publication Analysis

Control-Allow-Origin: *, it will block the response as a security violation.

The Security Landscape: CORS Misconfigurations and Vulnerabilities

While CORS is a mechanism designed to enable functionality, its security is entirely
dependent on its correct implementation. Misconfigurations are common and can lead to
serious vulnerabilities that undermine the very protections the Same-Origin Policy was
created to provide. The security of a CORS policy relies on the principle of whitelisting—
explicitly defining what is allowed—rather than blacklisting. Most vulnerabilities arise from
failures in implementing a sufficiently strict and accurate whitelist.

Common Pitfalls in Access-Control-Allow-Origin Configuration

The Access-Control-Allow-Origin header is the linchpin of any CORS policy, and it is the

most frequent source of security flaws.

The Dangers of the Wildcard (*)

Setting Access-Control-Allow-Origin: * is the most permissive configuration. It signals to
browsers that any origin is allowed to make a request and read the response. While this may
be acceptable for truly public, unauthenticated APIs (e.g., a public font library), it is
extremely dangerous for any API that handles sensitive or user-specific data. If an API that
returns private user information is configured with a wildcard origin, any malicious website
can use JavaScript to make a request on behalf of a logged-in user, read the sensitive data

from the response, and exfiltrate it.

As previously noted, the CORS specification provides a critical built-in defense against the
most egregious version of this flaw: it is invalid to use the wildcard origin (*) in conjunction
with Access-Control-Allow-Credentials: true. A browser will reject such a response,

preventing a malicious site from easily stealing data from an authenticated session.

Insecure Origin Reflection

A common but highly insecure practice is for a server to dynamically generate the
Access-Control-Allow-Origin header by simply reading the Origin header from the incoming
request and reflecting its value back in the response. Developers often implement this with the
mistaken belief that it is a flexible way to allow all origins.

This configuration completely nullifies the Same-Origin Policy. An attacker can host a
malicious script on https://evil-site.com. When this script makes a request to the vulnerable

Copyright@ Page 10

International Journal Research Publication Analysis

server, the browser will send the header Origin: https://evil-site.com. The server, seeing this,
will dutifully respond with Access-Control-Allow-Origin: https://evil-site.com, thereby

granting the malicious script full permission to read the response.

Whitelist Parsing Flaws

Even when developers attempt to implement a proper whitelist of allowed origins, subtle

errors in the validation logic can be exploited. These flaws often arise from using overly

simplistic string matching instead of precise validation.

o Suffix Matching: A rule that checks if the request Origin ends with .trusted.com can be
bypassed by an attacker registering the domain malicious-trusted.com.

o Prefix Matching: A rule that checks if the Origin starts with trusted.com can be bypassed
by registering trusted.com.evil.net.

o Substring Matching: A rule that simply checks if trusted.com is present anywhere in the

Origin string is similarly vulnerable.

To be secure, origin validation must use exact string matching against a list of known-good
origins or a carefully crafted regular expression that correctly anchors the domain name (e.g.,
~https://(.*\.)?trusted\.com$).

The null Origin Vulnerability
In certain specific circumstances, such as requests originating from a file:// URL or from a
sandboxed iframe, the browser will send the header Origin: null. Developers, often in an

attempt to facilitate local testing, might add null to their server's origin whitelist.

This creates a significant vulnerability. An attacker can craft a malicious web page that uses a
sandboxed iframe to make a request to the target API. The browser will send Origin: null,
which the server will then accept because it is on the whitelist. This grants the attacker's script
access to the API response, which it can then exfiltrate. For this reason, Access-Control-
Allow-Origin:

Null should be avoided in production environments.

Exploiting Trust: How XSS in a Whitelisted Origin Compromises Security

A correctly configured CORS policy establishes a trust relationship between two origins. For
instance, if an API server at https://api.example.com sets Access-Control-Allow-Origin:
https://app.example.com, it is explicitly trusting that the app.example.com origin is not

Copyright@ Page 11

International Journal Research Publication Analysis

malicious. This trust can be exploited if the whitelisted origin is itself vulnerable. If an
attacker discovers a Cross-Site Scripting (XSS) vulnerability on https://app.example.com,
they can inject malicious JavaScript into that page. When a victim visits the compromised
page on app.example.com, the attacker's script executes with the full privileges of that origin.
The script can then make a CORS request to https://api.example.com. From the API server's
perspective, this is a perfectly valid request, as it originates from the trusted
https://app.example.com. The API server will grant access, and the attacker's script can then
read the sensitive response and send it to a server under the attacker's control. This
demonstrates that the security of a CORS-protected resource is dependent on the security of

all the origins it chooses to trust.

CORS and Cross-Site Request Forgery (CSRF): A Clarification

A pervasive and dangerous misconception among developers is that CORS provides
protection against Cross-Site Request Forgery (CSRF) attacks. CORS is not a defense
against CSRF.

A CSRF attack works by tricking an authenticated user's browser into submitting an
unintended, state-changing request to a trusted site. For example, an attacker could embed a
hidden form on a malicious page that, when submitted, transfers money from the victim's
bank account. The SOP does not prevent cross-origin writes, such as form submissions or
simple POST requests. The browser will send the forged request, and because the user is
authenticated, it will automatically include their session cookies, making the request appear
legitimate to the server. The primary role of the SOP and CORS in this context is to prevent
the attacker's page from reading the response to that forged request. The state-changing action

itself, however, may still succeed.

Worse, a poorly configured CORS policy can actually escalate the impact of a CSRF
vulnerability. Consider an endpoint that is vulnerable to CSRF and also has an overly
permissive CORS policy (e.g., reflecting the Origin header). An attacker could use fetch()
from their malicious site to not only trigger the state-changing action but also to read the
response. This could allow them to confirm the success of the attack or steal sensitive
information (such as a CSRF token for a subsequent request or personal data) returned in the
response body, something that would be impossible with a proper CORS policy in place.

Copyright@ Page 12

International Journal Research Publication Analysis

Recommendations for a Secure CORS Policy

Based on common vulnerabilities and security best practices from organizations like OWASP,

a secure CORS policy should adhere to the following principles:

Use a Strict Whitelist: Always define a specific and explicit list of trusted origins. Avoid
using Access-Control-Allow-Origin: * in production unless the API is intended to be fully
public and unauthenticated.

Validate Dynamically: If the list of allowed origins is dynamic, the server-side code must
rigorously validate the incoming Origin header against this list before reflecting it. Do not
blindly reflect the origin.

Be Precise: Use exact string matching for origin validation. Avoid partial matching (e.g.,
startsWith, endsWith, contains) or poorly constructed regular expressions that can be
bypassed.

Deny null Origin: Do not include the null origin in your production whitelist.

Apply Least Privilege: Only allow the HTTP methods and headers that are strictly
necessary for the application's functionality in the Access-Control-Allow-Methods and
Access-Control-Allow-Headers headers.

Handle Credentials with Caution: Only use Access-Control-Allow-Credentials: true
when absolutely necessary, and always pair it with a specific, non-wildcard origin.
Maintain Defense in Depth: Remember that CORS is a browser-level security feature. It
does not replace the need for robust server-side security measures, including proper
authentication, authorization, input validation, and strong CSRF defenses (like

synchronizer tokens).

CORS in Practice: Secure Server-Side Configuration

Implementing a secure CORS policy requires translating the theoretical principles of

whitelisting and least privilege into concrete server configurations. The approach varies

depending on the web server or application framework, but the goal remains the same: to

establish a granular and restrictive policy that allows legitimate application traffic while

blocking all else. Secure configuration is not a global, server-wide toggle but rather a

deliberate, often per-endpoint, set of rules.

Implementing a Secure CORS Policy in Apache

On the Apache HTTP Server, CORS headers are managed using the mod_headers module,

which is typically enabled by default. Configurations can be placed within a <VirtualHost>,

Copyright@ Page 13

International Journal Research Publication Analysis

<Directory>, <Location> block, or in a .htaccess file.

A naive and insecure approach is to simply add the header for all requests: Header set Access-
Control-Allow-Origin "*"

A more secure implementation involves conditionally setting the header only for trusted
origins. This can be achieved by checking the incoming Origin header against a whitelist.
Secure Apache Configuration Example:

Ensure mod_headers is enabled # a2enmod headers

<IfModule mod_headers.c>

Define a regular expression for allowed origins SetEnvIf Origin
"Mhttps?://(www\.)?(trusted-app\.com|another-trusted-domain\.org)$"
ACAO_ORIGIN=$0

Set the ACAO header only if the Origin matched the whitelist Header set Access-Control-
Allow-Origin %{ACAO_ORIGIN}e

env=ACAO_ORIGIN

Set Vary: Origin to handle caching correctly Header append Vary Origin

Handle preflight OPTIONS requests RewriteEngine On
RewriteCond %{REQUEST_METHOD} OPTIONS
RewriteRule ~(.*)$ $1

</IfModule>

In this example, SetEnvif is used with a regular expression to check if the Origin header
matches one of the whitelisted domains. If it does, an environment variable ACAO_ORIGIN
is set to the value of the matched origin. The Header set directive then uses this environment
variable to dynamically but safely set the Access-Control-Allow-Origin header. The Vary:
Origin header is appended to ensure correct behavior with caching proxies. Finally, a
RewriteRule is used to gracefully handle preflight OPTIONS requests by returning a 204 No

Content response without further processing.

Implementing a Secure CORS Policy in Nginx
Nginx offers a highly efficient and secure way to manage CORS policies using the map
directive. This approach is generally preferred over using if statements inside a location block,

as it is more performant and avoids common pitfalls associated with the if directive.

Copyright@ Page 14

International Journal Research Publication Analysis

The map directive allows the creation of a variable whose value depends on other variables, in
this case, the request method ($request_method) and the origin ($http_origin).

Secure Nginx Configuration Example:

This configuration should be placed in the http block of your nginx.conf.

Map the request origin and method to a variable if it's on the whitelist

map "$request_method $http_origin" $allow_cors { default 0;

"~AOPTIONS https?://(www\.)?trusted-app\.com$" 1;

"~N(GETI|POST) https?://(www\.)?trusted-app\.com$" 1;

"~"OPTIONS https?://(www\.)?another-domain\.org$" 1;

"~\(GET|POST) https?://(www\.)?another-domain\.org$" 1;

ks

server {

#... other server configuration...

location /api/ {

Only add headers if the request is from an allowed origin if ($allow_cors) {
add_header 'Access-Control-Allow-Origin' "$http_origin™

always;

add_header 'Access-Control-Allow-Methods' 'GET, POST,

OPTIONS' always;

add_header 'Access-Control-Allow-Headers' 'Content-Type,
Authorization'always;

add_header 'Access-Control-Allow-Credentials' ‘true'

always;

}
add_header 'Vary''Origin' always;

Copyright@ Page 15

International Journal Research Publication Analysis

Handle preflight requests

if ($request_method ='OPTIONS") {

Only respond with 204 if the origin is allowed if ($allow_cors) {
return 204;

}
Deny preflight from other origins return 403;

}
#... proxy_pass or other location logic...
}
}

This configuration first defines a map that sets the $allow_cors variable to 1 only if the
request is an OPTIONS, GET, or POST from one of the whitelisted domains. Inside the
location block, it checks this variable. If it's set, the appropriate CORS headers are added.
The preflight OPTIONS request is handled specifically, returning a 204 No Content for
allowed origins and terminating the request.

Implementing a Secure CORS Policy in Node.js with Express
For Node.js applications using the Express framework, the most common and recommended
way to handle CORS is with the cors middleware package. While a simple app.use(cors())
will enable CORS for all origins, this is not secure for production environments. The package
provides a rich configuration object to implement a strict policy.
The most secure approach is to use a dynamic origin function, which allows for programmatic

validation of the requesting origin against an allowlist.

Secure Express.js Configuration Example:

const express = require(‘express’); const cors = require('cors’); const app = express();
/I Whitelist of allowed origins

const allowedOrigins = ['https://trusted-app.com’, 'https://another-trusted-domain.org'];
const corsOptions = {

origin: function (origin, callback) {

/I Allow requests with no origin (like mobile apps or curl requests)

if (Torigin) return callback(null, true);

if (allowedOrigins.indexOf(origin) ===-1) {

Copyright@ Page 16

International Journal Research Publication Analysis

const msg = 'The CORS policy for this site does not allow access from the specified Origin.’;
return callback(new Error(msg), false);

ks

return callback(null, true);
}
methods:, allowedHeaders:, credentials: true,

optionsSuccessStatus: 200 // For legacy browser support

j

/[Enable pre-flight across-the-board app.options(*', cors(corsOptions));

Il Apply CORS policy to a specific route app.get('/api/data’, cors(corsOptions), (req, res) =>{
res.json({ message: ‘This is secure data.' });

b;

app.listen(3000, () =>{

console.log('Server running on port 3000 with secure CORS policy.");

b

In this example, a corsOptions object is defined. The origin property is a function that checks
if the incoming origin is present in the allowedOrigins array. If it is not, it calls the callback
with an error, which will cause the request to be rejected. This provides a robust and
maintainable way to manage a whitelist of trusted clients. The policy is then applied
selectively to specific routes, adhering to the principle of least privilege.

The Critical Role of the Vary: Origin Header in Caching Environments

When a server's CORS policy is dynamic—that is, when the Access-Control-Allow-Origin
header's value can change based on the incoming request's Origin header—it creates a
potential conflict with intermediate caches, such as Content Delivery Networks (CDNSs) or

reverse proxies.

Consider a scenario without the Vary header. A request arrives from a legitimate origin,
https://good.com. The server responds with Access-Control-Allow-Origin: https://good.com,
and the CDN caches this response. Moments later, a request for the same resource arrives
from a different legitimate origin, https://another.com. The CDN, unaware that the response
depends on the Origin header, serves the cached response intended for https://good.com. The

browser of the user from https://another.com receives a response with Access-Control-Allow-

Copyright@ Page 17

International Journal Research Publication Analysis

Origin: https://good.com, sees the mismatch, and blocks the request, causing the application

to fail.

This can also lead to cache poisoning, where a response for a malicious origin could be

cached and served to legitimate users.

The Vary HTTP response header is the solution to this problem. By including Vary: Origin in
the response, the server signals to all caches that the response is not static and varies based on
the value of the request's Origin header. This instructs the cache to use the Origin header as
part of its cache key, storing a separate version of the response for each unique origin.

Therefore, for any dynamic CORS configuration, the Vary: Origin header is not merely a best

practice but a mandatory component for ensuring both correctness and security.

CORS in Contemporary Architectures and Alternative Strategies

The modern web is increasingly built on distributed architectures. Single-Page Applications
(SPAs) have decoupled the frontend from the backend, and microservice architectures have
broken monolithic backends into smaller, independent services. In this landscape, cross-origin
communication is not an edge case but the default mode of operation, making CORS an
indispensable part of the web's infrastructure. However, CORS is not the only method for
handling cross-origin data exchange; understanding its alternatives—both legacy and
architectural—provides a clearer picture of its role and value. The choice between these

methods often represents a trade-off between security, complexity, and control.

The Indispensable Role of CORS in SPAs and Microservices

SPAs, built with frameworks like React, Angular, or Vue.js, function by loading a single
HTML shell and then dynamically fetching data and updating the Ul using JavaScript APIs
like fetch. In a typical deployment, the static assets of the SPA (HTML, CSS, JavaScript) are
served from one origin (e.g., a CDN or a static web server at https://app.example.com), while
the dynamic data is provided by backend APIs hosted on a different origin (e.g.,

https://api.example.com).

This architectural separation means that nearly every API call made by the SPA is a cross-
origin request. Without a mechanism like CORS, these requests would be blocked by the
browser's Same-Origin Policy, rendering the application non-functional. CORS provides the
standardized, secure protocol that allows the API server at api.example.com to explicitly

Copyright@ Page 18

https://api.example.com/

International Journal Research Publication Analysis

grant permission to the frontend at app.example.com to access its resources. This enables the
clean separation of concerns between frontend and backend development, a cornerstone of

modern web engineering.

Similarly, in a microservices architecture, a single user-facing application might need to
aggregate data from multiple backend services, each running on its own domain or port.
CORS facilitates this direct client-to-microservice communication, although in many

complex systems, an API gateway is used to consolidate these services behind a single origin.

Comparative Analysis of Cross-Origin Communication Techniques
While CORS is the modern standard, it is important to understand it in the context of other

techniques that have been used to solve the cross-origin problem.

JSON with Padding (JSONP): A Legacy ""Hack™

Before CORS was widely adopted, developers used a clever but insecure workaround called

JSONP (JSON with Padding) to retrieve data from different domains.

¢ Mechanism: JSONP exploits the fact that HTML <script> tags are not subject to the
Same-Origin Policy for execution. A request is made by dynamically creating a <script>
element and setting its src attribute to the target APl endpoint. A special query parameter,
typically named callback, is included in the URL (e.g., ?callback=myFunction). The
server, instead of returning raw JSON, wraps the JSON data in a JavaScript function call
using the name provided in the callback parameter (e.g., myFunction({"data": "value'})).
When the script loads in the browser, the function is executed, passing the data to the
client-side code.

o Capabilities & Limitations: JSONP is inherently limited to GET requests, as it relies on

the <script src="..."> attribute. It also has very poor error handling capabilities; a failed
request often results in a generic script error with no access to HTTP status codes.

o Security Flaws: JSONP is fundamentally insecure. By using it, a website is effectively
allowing a third-party server to inject and execute arbitrary JavaScript code within its own
origin. If the third-party server is compromised, an attacker can replace the benign data
with a malicious script, leading to a full-blown Cross-Site Scripting (XSS) attack. This
requires an absolute and often unwarranted level of trust in the remote server. For these

reasons, JSONP has been rendered obsolete by CORS for all modern web applications.

Copyright@ Page 19

International Journal Research Publication Analysis

Server-Side Proxies: A Functional Bypass

A server-side proxy is an architectural pattern used to circumvent browser-based cross-origin

restrictions, especially when dealing with third-party APIs that do not support CORS.

Mechanism: Instead of the client-side JavaScript making a direct cross-origin request to
the target API, it makes a same-origin request to its own backend server. This backend
server then acts as a proxy, making a server-to-server request to the target API. Since the
Same-Origin Policy does not apply to server-to-server communication, this request
succeeds. The proxy server receives the response from the API and then relays it back to
the client.

Capabilities & Security: This approach is highly capable, as it can support any HTTP
method, header, or data format. From a security perspective, it has distinct pros and cons:
Pros: It is an excellent way to interact with APIs that require secret keys or tokens. The
secret key can be stored securely on the proxy server and added to the outbound request,
never exposing it to the client-side code. It also provides a crucial security benefit by
preventing the user's browser from automatically attaching credentials (like cookies for
the target domain) to the request, as the request from the browser only goes to the same-
origin proxy server.

Cons: This pattern introduces additional infrastructure complexity and latency. The proxy
server itself becomes a point of trust and a potential bottleneck. If configured as an "open
proxy" (allowing requests to any arbitrary destination), it can be abused by attackers to
launch attacks on other systems or to probe the proxy's internal network. The proxy has
the ability to read and modify all request and response data that passes through it, which

can be a security concern if the proxy itself is compromised.

The choice between these methods can be framed as a decision between a protocol-level

solution (CORS) and an architectural pattern (proxy). If the target API supports CORS and is

under your control, CORS is the clean, standardized solution. If the target APl does not

support CORS, or if you need to protect sensitive APl keys from being exposed to the client,

a server-side proxy is the appropriate architectural choice.

Copyright@ Page 20

International Journal Research Publication Analysis

Table 4: Comparison of Cross-Origin Techniques.

Criterion

CORS

JSONP

Server-Side Proxy

Mechanism

Browser-server
negotiation using HTTP
headers. Enforced by
the browser.

Client-side <script> tag
injection. Server wraps
response in a JavaScript|
callback.

Client makes a
same-origin request to
its own backend, which
then makes a
server-to-server request
to the target

API.

Security Profile

Secure when
configured correctly.
\Vulnerable to
misconfiguration. The
server explicitly
whitelists trusted

origins.

Highly Insecure.
Prone to XSS and
CSRF vulnerabilities.
Requires complete trust

in the remote server.

Security depends on
proxy implementation.
Protects client-side API
keys and user
credentials for the
target domain. Can be
abused if configured as

an open proxy.

Supported Methods

All HTTP methods
(GET, POST, PUT,
DELETE, etc.).

GET only.

All HTTP methods.

Error Handling

Robust. Provides full
access to HTTP status
codes and error

responses.

Poor. Limited to script
execution errors, no
access to HT TP status

codes.

Robust. The proxy can
inspect the full
response and relay
detailed error
information to the

client.

Primary Use Case

The standard for all
modern cross-origin
communication,
especially for SPAs and

microservices.

Legacy applications

where modern browser
support is not available.
Not recommended for

new development.

Interacting with
third-party APIs that do
not support CORS, or
when APl keys must be
kept secret from the

client.

Copyright@

Page 21

International Journal Research Publication Analysis

Troubleshooting and Conclusion

Despite its standardization, CORS remains a frequent source of frustration for web
developers. The opaque nature of the errors from the perspective of JavaScript, combined
with the complex interplay of headers and request types, can make debugging a challenging
process. However, by adopting a systematic approach and leveraging browser developer

tools, most CORS issues can be diagnosed and resolved effectively.

A Systematic Guide to Debugging Common CORS Errors

When a CORS request fails, the JavaScript code (e.g., in a catch block of a fetch promise)
typically receives only a generic TypeError: Failed to fetch, without any details about the
underlying cause. This is a deliberate security feature to prevent a script from gleaning
information about a cross-origin resource it is not authorized to access. The key to debugging

is to look beyond the script and into the browser's developer console and network tab.

Step 1: Inspect the Browser Developer Console The console is the primary source of truth
for diagnosing CORS errors. Browsers provide detailed messages here that explain precisely
why a request was blocked. Common error messages include:

s Access-Control-Allow-Origin' header is missing: This is the most common error. It
means the server's response to the cross-origin request did not include the necessary
Access-Control-Allow-Origin header. The solution is purely server-side: the server must
be configured to send this header for the requesting origin.

o Access-Control-Allow-Origin’ header does not match "...": The server did send the
header, but its value does not match the origin of the requesting client. This could be due
to a typo in the server's whitelist, a mismatch in scheme (http vs. https), or a port number
discrepancy. The server configuration must be updated to include the correct client origin.

o Credential is not supported if the CORS header "Access-Control-Allow-Origin® is
"**: The client-side code requested that credentials be sent (withCredentials: true), but the
server responded with the wildcard (*) origin. This is forbidden for security reasons. The
server must be configured to respond with the specific client origin instead of the
wildcard.

¢ Response to preflight request doesn't pass access control check: This indicates that the
initial OPTIONS request (the preflight) failed. The actual request was never sent. This can
happen if the server does not respond to OPTIONS requests at all, returns a server error
(5xx), or responds without the correct Access-Control-Allow-Methods or

Copyright@ Page 22

International Journal Research Publication Analysis

Access-Control-Allow-Headers that permit the actual request.
Step 2: Analyze the Network Tab The Network tab in the developer tools provides a
detailed view of the entire request-response cycle.

o Identify the Failing Request: Locate the network request that is failing. It will often be
highlighted in red.

o Check for a Preflight Request: If the request is non-simple, look for an OPTIONS
request immediately preceding it. If the OPTIONS request failed (e.g., received a 404 or
500 status), that is the root cause of the problem. The server must be configured to handle
OPTIONS requests on that endpoint.

¢ Inspect Headers:

o For the request, verify that the Origin header is being sent with the expected value.

o For the response (either to the OPTIONS or the actual request), meticulously check the
Access-Control-* headers. Ensure they are present, spelled correctly, and contain the

expected values.

Step 3: Use External Tools Tools like curl or Postman can be used to make requests directly
to the API endpoint, bypassing the browser entirely. This helps isolate whether the issue is a
fundamental server-side problem or specifically related to the CORS negotiation. If a curl
request succeeds but the browser request fails, the issue is almost certainly in the server's
CORS header configuration.

Concluding Thoughts: Balancing Interoperability and Security

Cross-Origin Resource Sharing is a testament to the web's evolution. It addresses the critical
need for interoperability in a distributed digital ecosystem while attempting to uphold the
foundational security guarantees of the Same-Origin Policy. It is a carefully designed
compromise, enabling the rich, API-driven experiences of modern SPAs and microservice

architectures that would otherwise be impossible.

However, the power and flexibility of CORS come with significant responsibility. The
security of the protocol is not inherent; it is a direct result of diligent and correct server-side
implementation. As this analysis has shown, vulnerabilities do not typically arise from flaws
in the CORS standard itself but from its misuse—overly permissive policies, flawed
validation logic, and a misunderstanding of its relationship with other security mechanisms
like CSRF protection.

For developers and security professionals, a deep and nuanced understanding of the SOP, the

Copyright@ Page 23

International Journal Research Publication Analysis

mechanics of preflight requests, and the precise function of each HTTP header is not an
academic exercise but an essential prerequisite for building secure and functional web
applications. Ultimately, CORS provides the tools for servers to make informed trust
decisions. The onus is on the implementers to use those tools wisely, crafting policies that
adhere to the principle of least privilege and successfully balancing the modern web's demand

for open communication with the timeless need for robust security.

WORKS CITED

1. Same-origin policy | Articles | web.dev, https://web.dev/articles/same-origin-policy
Same-origin policy - Security | MDN,
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy

2. Understanding CORS and Same Origin Policy in Web Security - DEV Community,
https://dev.to/burakboduroglu/understanding-cors-and-same-origin-policy-in-web-security-
54hm

3. Same-origin policy - Wikipedia, https://en.wikipedia.org/wiki/Same-origin_policy
Understanding Same Origin Policy - Debajyati's Blogs,
https://debajyatidey.hashnode.dev/demystifying-same-origin-policy-in-simple-words

4. Demystifying Cross-Origin -~ Resource Sharing (CORS) on Web ..,

https://amanexplains.com/demystifying-cross-origin-resource-sharing-on-web/

Same-origin policy - Glossary | MDN - Mozilla,

https://developer.mozilla.org/en-US/docs/Glossary/Same-origin_policy

What is CORS? - Cross-Origin Resource Sharing Explained - AWS,

https://aws.amazon.com/what-is/cross-origin-resource-sharing/

What is CORS? A Complete Guide to Cross-Origin Resource Sharing - StackHawk,

https://www.stackhawk.com/blog/what-is-cors/

© N o O

9. Understanding Cross-Origin Resource Sharing (CORS) - SuperTokens,

10. https://supertokens.com/blog/what-is-cross-origin-resource-sharing

11. Cross-Origin Resource Sharing (CORS) in Web Development - Ramotion,
https://mww.ramotion.com/blog/what-is-cors-in-web-development/

12. What is CORS (cross-origin resource sharing)? Tutorial & Examples | Web Security
Academy - PortSwigger, https://portswigger.net/web-security/cors

13. CORS OriginHeaderScrutiny - OWASP Foundation, https://owasp.org/www-
community/attacks/CORS_OriginHeaderScrutiny

14. Understanding CORS and Preflight Requests in APIs | by Bale - Medium,

Copyright@ Page 24

https://web.dev/articles/same-origin-policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://en.wikipedia.org/wiki/Same-origin_policy
https://debajyatidey.hashnode.dev/demystifying-same-origin-policy-in-simple-words
https://amanexplains.com/demystifying-cross-origin-resource-sharing-on-web/
https://developer.mozilla.org/en-US/docs/Glossary/Same-origin_policy
https://aws.amazon.com/what-is/cross-origin-resource-sharing/
http://www.stackhawk.com/blog/what-is-cors/
https://supertokens.com/blog/what-is-cross-origin-resource-sharing
http://www.ramotion.com/blog/what-is-cors-in-web-development/
https://portswigger.net/web-security/cors
https://owasp.org/www-community/attacks/CORS_OriginHeaderScrutiny
https://owasp.org/www-community/attacks/CORS_OriginHeaderScrutiny

International Journal Research Publication Analysis

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

https://medium.com/@bloodturtle/understanding-cors-and-preflight-requests-in-apis-
e088ael3b 417

Cross-origin resource sharing - Wikipedia,
https://en.wikipedia.org/wiki/Cross-origin_resource_sharing

Types of Cross-Origin HTTP Requests - NI,
https://www.ni.com/docs/en-US/bundle/g-web-development/page/types-of-cors-
requests.html

Cross-Origin Resource Sharing (CORS) - HTTP - MDN,
https://developer.mozilla.org/en-US/docs/Web/HTTP/Guides/CORS

Improve Single-Page Application (SPA) Performance with a Same Domain policy using
Amazon CloudFront | Networking & Content Delivery,
https://aws.amazon.com/blogs/networking-and-content-delivery/improve-single-page-
application-spa-performance-with-a-same-domain-policy-using-amazon-cloudfront/
What is the motivation behind the introduction of preflight CORS requests? - Stack
Overflow, https://stackoverflow.com/questions/15381105/what-is-the-motivation-behind-
the-introduction-of- preflight-cors-requests

Preflight request - Glossary - MDN - Mozilla, https://developer.mozilla.org/en-
US/docs/Glossary/Preflight_request

CORS, Preflight Requests, and Common Cross-Origin Issues - DEV Community,
https://dev.to/thesanjeevsharma/cors-preflight-requests-and-common-cross-origin-issues-
129n Access-Control-Allow-Credentials header - HTTP - MDN,
https://developer.mozilla.org/en-US/docs/Web/HTTP/Reference/Headers/Access-Control-

Allow- Credentials
XMLHttpRequest: withCredentials property - Web APIs - MDN - Mozilla,
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest/withCredentials
.Access-Control-Allow-Credentials header - HTTP | MDN,
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Access-Control-Allow-
Credentials
When should | really set "Access-Control-Allow-Credentials” to "true™ in my response
headers? - Stack Overflow,
https://stackoverflow.com/questions/45004354/when-should-i-really-set-access-control-
allow-cre dentials-to-true-in-my-resp
Access-Control-Allow-Origin header - HTTP - MDN, https://developer.mozilla.org/en-
US/docs/Web/HTTP/Reference/Headers/Access-Control-Allow-

Copyright@ Page 25

https://medium.com/@bloodturtle/understanding-cors-and-preflight-requests-in-apis-e088ae13b%20417
https://medium.com/@bloodturtle/understanding-cors-and-preflight-requests-in-apis-e088ae13b%20417
https://en.wikipedia.org/wiki/Cross-origin_resource_sharing
http://www.ni.com/docs/en-US/bundle/g-web-development/page/types-of-cors-requests.html
http://www.ni.com/docs/en-US/bundle/g-web-development/page/types-of-cors-requests.html
https://developer.mozilla.org/en-US/docs/Web/HTTP/Guides/CORS
https://developer.mozilla.org/en-US/docs/Glossary/Preflight_request
https://developer.mozilla.org/en-US/docs/Glossary/Preflight_request
https://dev.to/thesanjeevsharma/cors-preflight-requests-and-common-cross-origin-issues-129n
https://dev.to/thesanjeevsharma/cors-preflight-requests-and-common-cross-origin-issues-129n
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest/withCredentials

International Journal Research Publication Analysis

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Origin

Reason: Credential is not supported if the CORS header 'Access-Control-Allow-Origin'
IS *' https://developer.mozilla.org/en-
US/docs/Web/HTTP/Guides/CORS/Errors/f CORSNotSupporting Credentials
Access-Control-Allow-Origin header with wildcard (*) value - Vulnerabilities -
Acunetix,
https://www.acunetix.com/vulnerabilities/web/access-control-allow-origin-header-with-
wildcard-v alue/

Testing Cross Origin Resource Sharing - WSTG - v4.1 | OWASP Foundation,
https://owasp.org/www-project-web-security-testing-guide/v41/4-
Web_Application_Security Test ing/11-Client_Side_Testing/07-
Testing_Cross_Origin_Resource_Sharing

HTML5 Security - OWASP Cheat Sheet Series,
https://cheatsheetseries.owasp.org/cheatsheetssHTML5_Security Cheat_Sheet.html
Lab: CORS wvulnerability with trusted null origin | Web Security Academy -
PortSwigger, https://portswigger.net/web-security/cors/lab-null-origin-whitelisted-
attack

Cross-origin resource sharing - PortSwigger,

https://portswigger.net/kb/issues/00200600 _cross-origin-resource-sharing

Cross-origin ~ resource sharing: all subdomains trusted - PortSwigger,
https://portswigger.net/kb/issues/00200603_cross-origin-resource-sharing-all-
subdomains-truste d

Cross-site request forgery - Wikipedia,
https://en.wikipedia.org/wiki/Cross-site_request_forgery

What is CSRF (Cross-site request forgery)? Tutorial & Examples | Web Security
Academy, https://portswigger.net/web-security/csrf

Cross-site request forgery (CSRF) - Security - MDN - Mozilla,
https://developer.mozilla.org/en-US/docs/Web/Security/Attacks/CSRF

Cross-origin ~ resource sharing: arbitrary origin trusted - PortSwigger,
https://portswigger.net/kb/issues/00200601 _cross-origin-resource-sharing-arbitrary-
origin-truste d

How Would You Manage CORS in a Production Express.js Application? - Arunangshu
Das,

https://arunangshudas.medium.com/how-would-you-manage-cors-in-a-production-

Copyright@ Page 26

http://www.acunetix.com/vulnerabilities/web/access-control-allow-origin-header-with-wildcard-v
http://www.acunetix.com/vulnerabilities/web/access-control-allow-origin-header-with-wildcard-v
https://cheatsheetseries.owasp.org/cheatsheets/HTML5_Security_Cheat_Sheet.html
https://portswigger.net/web-security/cors/lab-null-origin-whitelisted-attack
https://portswigger.net/web-security/cors/lab-null-origin-whitelisted-attack
https://portswigger.net/kb/issues/00200600_cross-origin-resource-sharing
https://en.wikipedia.org/wiki/Cross-site_request_forgery
https://developer.mozilla.org/en-US/docs/Web/Security/Attacks/CSRF

International Journal Research Publication Analysis

39.

40.

41.

42.

43.

44,

45.

46.
47.

48.

49,

50.

51.

52.
53.

express-js-ap plication-45a1138dd6df

CORS on Apache - enable cross-origin resource sharing, https://enable-
cors.org/server_apache.html

How to Enable CORS in Apache Web Server?

GeeksforGeeks, https://www.geeksforgeeks.org/websites-apps/how-to-enable-cors-in-
apache-web-server/

How to allow Cross domain request in apache2 - Stack Overflow,
https://stackoverflow.com/questions/29150384/how-to-allow-cross-domain-request-in-
apache2

CORS on Nginx - enable cross-origin resource sharing,
https://enable-cors.org/server_nginx.html

CORS in Nginx: Configuration Guide for Enhanced Security - Ercan Ermis,
https://ercanermis.com/cors-in-nginx-configuration-guide-for-enhanced-security/

How to Configure CORS in Node.js With Express - DEV Community,
https://dev.to/speaklouder/how-to-configure-cors-in-nodejs-with-express-11h

Node.js CORS Guide: Enable & Fix CORS in Node.js - StackHawk,
https://www.stackhawk.com/blog/nodejs-cors-guide-what-it-is-and-how-to-enable-it/
Express cors middleware, https://expressjs.com/en/resources/middleware/cors.html
Security implications of cross-origin resource sharing (CORS) in Node.js - Snyk,
https://snyk.io/blog/security-implications-cors-node-js/

CORS, Cache poisoning and the Vary HTTP header - Pixelite,
https://www.pixelite.co.nz/article/cors-caching-and-the-vary-http-header/

CORS and Vary - text/plain, https://textslashplain.com/2018/08/02/cors-and-vary/

Why isn't 'Vary: Origin' response set on a CORS miss? - Stack Overflow,
https://stackoverflow.com/questions/25329405/why-isnt-vary-origin-response-set-on-a-
Cors-miss

Vary: origin response header and CORS exploitation - Information Security Stack
Exchange, https://security.stackexchange.com/questions/151590/vary-origin-response-
header-and-cors-ex ploitation

SPA (Single-page application) - Glossary - MDN,
https://developer.mozilla.org/en-US/docs/Glossary/SPA

Use OAuth with CORS to connect a SPA - Power Apps | Microsoft Learn,
https://learn.microsoft.com/en-us/power-apps/developer/data-platform/oauth-cross-

origin-resour ce-sharing-connect-single-page-application

Copyright@ Page 27

https://enable-cors.org/server_apache.html
https://enable-cors.org/server_apache.html
http://www.geeksforgeeks.org/websites-apps/how-to-enable-cors-in-apache-web-server/
http://www.geeksforgeeks.org/websites-apps/how-to-enable-cors-in-apache-web-server/
https://enable-cors.org/server_nginx.html
https://ercanermis.com/cors-in-nginx-configuration-guide-for-enhanced-security/
https://dev.to/speaklouder/how-to-configure-cors-in-nodejs-with-express-11h
http://www.stackhawk.com/blog/nodejs-cors-guide-what-it-is-and-how-to-enable-it/
https://expressjs.com/en/resources/middleware/cors.html
https://snyk.io/blog/security-implications-cors-node-js/
http://www.pixelite.co.nz/article/cors-caching-and-the-vary-http-header/
https://textslashplain.com/2018/08/02/cors-and-vary/
https://developer.mozilla.org/en-US/docs/Glossary/SPA

International Journal Research Publication Analysis

54,

55.

56.

S7.

58.

59.

60.

61.
62.

63.

64.

65.

66.

67.

68.

Single-page applications and CORS - Docusign Developer,
https://developers.docusign.com/platform/single-page-applications-cors/

Using OAuth for Single Page Applications | Best Practices - Curity,
https://curity.io/resources/learn/spa-best-practices/

CORS vs. JSONP: When to Use Each Techniqgue - CorsProxy.io,
https://corsproxy.io/blog/cors-vs-jsonp/

What is JSONP, and why was it created? - Stack Overflow,
https://stackoverflow.com/questions/2067472/what-is-jsonp-and-why-was-it-created
CORS & JSONP | Socrata - Data & Insights, https://dev.socrata.com/docs/cors-and-
jsonp

So, JSONP or CORS? - Stack Overflow,
https://stackoverflow.com/questions/12296910/so-jsonp-or-cors

Understanding JSON, JSONP, CORS and bypassing CORS with JSONP | by Kunal
Tandon | Developer's Arena | Medium,
https://medium.com/developers-arena/understanding-json-jsonp-cors-and-bypassing-cors-
with-j sonp-fa5fOcc4edd4

JSONP - Wikipedia, https://en.wikipedia.org/wiki/JSONP

web application - Security risks with JSONP?,
https://security.stackexchange.com/questions/23438/security-risks-with-jsonp

What are CORS proxies, and when are they safe? - HTTP Toolkit,
https://httptoolkit.com/blog/cors-proxies/

Fixing CORS Errors — How to Build a Proxy Server to Handle Cross-Origin Requests,
https://jakemccambley.medium.com/fixing-cors-errors-when-working-with-3rd-party-
apis-a69dc5 474804

http - How do CORS proxy websites work? - Information Security ...,
https://security.stackexchange.com/questions/191737/how-do-cors-proxy-websites-
work

CORS Web request through a proxy is security breach? - Stack Overflow,
https://stackoverflow.com/questions/48788171/cors-web-request-through-a-proxy-is-
security-breach

CORS errors - HTTP | MDN - Mozilla,
https://developer.mozilla.org/en-US/docs/Web/HTTP/Guides/CORS/Errors

Way to debug CORS errors - Stack Overflow,

https://stackoverflow.com/questions/20032037/way-to-debug-cors-errors

Copyright@ Page 28

https://developers.docusign.com/platform/single-page-applications-cors/
https://curity.io/resources/learn/spa-best-practices/
https://corsproxy.io/blog/cors-vs-jsonp/
https://stackoverflow.com/questions/2067472/what-is-jsonp-and-why-was-it-created
https://stackoverflow.com/questions/12296910/so-jsonp-or-cors
https://medium.com/developers-arena/understanding-json-jsonp-cors-and-bypassing-cors-with-j%20sonp-fa5f0cc4edd4
https://medium.com/developers-arena/understanding-json-jsonp-cors-and-bypassing-cors-with-j%20sonp-fa5f0cc4edd4
https://en.wikipedia.org/wiki/JSONP
https://security.stackexchange.com/questions/23438/security-risks-with-jsonp
https://httptoolkit.com/blog/cors-proxies/
https://jakemccambley.medium.com/fixing-cors-errors-when-working-with-3rd-party-apis-a69dc5%20474804
https://jakemccambley.medium.com/fixing-cors-errors-when-working-with-3rd-party-apis-a69dc5%20474804
https://security.stackexchange.com/questions/191737/how-do-cors-proxy-websites-work
https://security.stackexchange.com/questions/191737/how-do-cors-proxy-websites-work
https://stackoverflow.com/questions/48788171/cors-web-request-through-a-proxy-is-security-breach
https://stackoverflow.com/questions/48788171/cors-web-request-through-a-proxy-is-security-breach
https://developer.mozilla.org/en-US/docs/Web/HTTP/Guides/CORS/Errors
https://stackoverflow.com/questions/20032037/way-to-debug-cors-errors

International Journal Research Publication Analysis

69.

70.

71

72.

73.
74.

Understanding CORS errors: Key causes and effective solutions - Contentstack,
https://www.contentstack.com/blog/tech-talk/understanding-cors-errors-key-causes-and-
effectiv e-solutions

Four Common CORS Errors and How to Fix Them - Descope,
https://www.descope.com/blog/post/cors-errors

I got a CORS error, now what? - DEV Community, https://dev.to/authress/i-got-a-cors-
error-now-what-hpb

How to fix CORS errors: A comprehensive guide for web developers - Contentstack,
https://www.contentstack.com/blog/strategy/how-to-fix-cors-errors-a-comprehensive-
guide-for-w eb-developers

Understanding CORS and CSRF: A Guide for Spring Security | by Suresh - Medium,
https://medium.com/@CodeWithTech/understanding-cors-and-csrf-a-guide-for-spring-
security-fe b34b81a3a4

Copyright@ Page 29

http://www.contentstack.com/blog/tech-talk/understanding-cors-errors-key-causes-and-effectiv
http://www.contentstack.com/blog/tech-talk/understanding-cors-errors-key-causes-and-effectiv
http://www.descope.com/blog/post/cors-errors
https://dev.to/authress/i-got-a-cors-error-now-what-hpb
https://dev.to/authress/i-got-a-cors-error-now-what-hpb
http://www.contentstack.com/blog/strategy/how-to-fix-cors-errors-a-comprehensive-guide-for-w
http://www.contentstack.com/blog/strategy/how-to-fix-cors-errors-a-comprehensive-guide-for-w
https://medium.com/%40CodeWithTech/understanding-cors-and-csrf-a-guide-for-spring-security-fe
https://medium.com/%40CodeWithTech/understanding-cors-and-csrf-a-guide-for-spring-security-fe

