»

\“‘arnat:o,.,/do
% Z

2025 Volume: 01 Issue: 07 www.ijrpa.com ISSN 2456-9995 Research Article

International Journal Research Publication Analysis
Page: 01-09

Al-POWERED SEQUENTIAL COMIC GENERATION USING
GENERATIVE ADVERSARIAL NETWORKS AND TRANSFORMER
MODELS

Mr. E. Subramanian*!, Mr. M. Suriyavel?, Mr. V. Vignesh?

LAssistant Professor, Department of Computer Science and Engineering, Sri Shakthi Institute
of Engineering and Technology, India.
23Student, Department of Computer Science and Engineering, Sri Shakthi Institute of

Engineering and Technology, India.

Article Received: 17 November 2025 *Corresponding Author: Mr. E. Subramanian

Article Revised: 07 December 2025 Assistant Professor, Department of Computer Science and Engineering, Sri
Published on: 27 December 2025 Shakthi Institute of Engineering and Technology, India.

DOI: https://doi-doi.org/101555/ijrpa.6317

ABSTRACT

Visual storytelling is a powerful medium for communication; however, the creation of
traditional comic strips poses a high barrier to entry, requiring a dual proficiency in creative
writing and advanced artistic illustration. This project presents the design and implementation
of an Al Comic Generator, a full-stack web application designed to democratize comic
creation by automating the transition from text to image. The proposed system utilizes a
decoupled client-server architecture, leveraging React.js for a dynamic frontend interface and
Node.js for a robust backend orchestrator. The core functionality integrates Google Gemini’s
Generative Al, employing advanced prompt engineering algorithms to decompose narrative
inputs into structured, stylistically consistent visual descriptions. The application features a
sequential generation workflow that processes story segments panel-by-panel, ensuring
narrative continuity and optimizing APl payload management. By abstracting the
complexities of digital art and prompt synthesis, this application allows users to input raw
text and receive a fully rendered comic strip in real-time. This project demonstrates the
practical application of Large Language Models (LLMs) and Text-to-Image models in

creative software, effectively bridging the gap between textual imagination and visual reality.

KEYWORDS: Generative Al, Web Development, Prompt Engineering, React.js, Google
Gemini, Visual Storytelling, Node.js.

Copyright@ Page 1

https://doi-doi.org/101555/ijrpa.6317
http://www.ijrpa.com/

International Journal Research Publication Analysis

I. INTRODUCTION
The Al Comic Generator is a web-based platform designed to democratize visual storytelling.
By leveraging Generative Al, the application transforms textual narratives into visually

coherent comic strips.

The system abstracts the complexity of prompt engineering and image synthesis, allowing
users to focus solely on the story. Users input a scenario or a structured story, and the system
autonomously generates a sequence of comic panels, rendering them in a frontend interface.

Traditional comic creation requires a dual skillset: creative writing and high-level illustration.
This creates a high barrier to entry for storytellers who lack drawing skills. Furthermore,
existing Al image generators often produce isolated images that lack the narrative continuity
required for a comic strip, or they require complex technical prompting that alienates general

users.

Il. LITERATURE REVIEW

Early attempts at image synthesis relied heavily on Generative Adversarial Networks
(GANS). Goodfellow et al. (2014) introduced the GAN architecture, which dominated the
field for years. However, GANs often suffered from "mode collapse” and struggled with

high-fidelity text alignment (Agrese et al., 2025).

The paradigm shifted significantly with the introduction of Diffusion Models. Ho et al.
(2020) and Song et al. (2021) demonstrated that iterative denoising processes could produce
superior image quality and diversity. This led to state-of-the-art models like OpenAl’s
DALL-E 2 (Ramesh et al., 2022) and Stability AI’s Stable Diffusion (Rombach et al., 2022).
Recently, Google’s Imagen and Gemini models have pushed boundaries by integrating Large
Language Models (LLMs) to improve prompt understanding, effectively solving the

"spelling™ and complex logic issues previous models faced (Saharia et al., 2022).

While generating single images is solved, generating coherent sequences (comics) remains a
complex challenge. Pipeline Architectures: Recent research suggests a decoupled pipeline
approach. Determining the "Region of Interest” (ROI) for panels and text bubbles is critical.
Use of segmentation networks (U-NET) to isolate panel layouts has been successful in
deconstructing manga (Dubray & Laubrock, 2019). Narrative Flow: LLMs like GPT-4 and
Gemini are now used to break down linear stories into "beats" or panels. A study by

Alabdulkarim et al. (2021) highlights that while LLMs excel at text generation, maintaining

Copyright@ Page 2

International Journal Research Publication Analysis

"visual common sense" across a story arc requires specific fine-tuning or "Chain-of-Thought"

prompting strategies.

The most significant hurdle in Al comic generation is Character Consistency (keeping the
protagonist looking identical across different panels). Latent Space Control: Standard
diffusion models generate new random seeds for every request. Researchers have proposed
methods like Textual Inversion (Gal et al., 2022) and LoRA (Low-Rank Adaptation) (Hu et
al., 2021) to "freeze" specific character weights, allowing the model to recall a specific
character's likeness in different poses. Reference-Based Generation: Newer techniques
involve "Image Prompting™ or "IP-Adapter" layers, where a reference image of the character
influences the generation more than the text description (Ye et al., 2023).

Effectively communicating with Al models requires "Prompt Engineering.” Liu and Chilton
(2022) found that users often struggle to articulate visual concepts. Systems that use "Prompt
Expansion” where the backend automatically enriches a user's simple input with stylistic
keywords (e.g., "cinematic lighting," "Kirby Krackle effect™) result in significantly higher

user satisfaction scores (Oppenlaender, 2022).

The democratization of art via Al raises ethical concerns regarding copyright and labor
displacement. The legal landscape is currently volatile, with ongoing debates about whether
Al-generated images can be copyrighted. Literature suggests that tools functioning as
"assistants™ rather than "replacements™ are more ethically and legally defensible (Epstein et
al., 2023).

1. SYSTEM ARCHITECTURE

The application follows a Decoupled Client-Server Architecture. The separation of concerns

ensures that the heavy lifting (APl communication, prompt engineering) is handled securely

by the backend, while the frontend focuses on user experience and state management.

This solution provides a streamlined pipeline:

1. Input Abstraction: The user provides high-level story concepts.

2. Intelligent Transformation: The backend transforms these concepts into optimized,
style-consistent image prompts.

3. Sequential Synthesis: Images are generated panel-by-panel to ensure logical flow.

4. Instant Visualization: The results are rendered immediately in a responsive web

interface.

Copyright@ Page 3

International Journal Research Publication Analysis

SERVERLESS

/ Authorizer

oy [

Web App APlGateway\:onlent Service External AP
jm—]
=

— —
=
=]

User Service

External Database

Architectural Components

e Presentation Layer (Frontend): A React-based SPA (Single Page Application)
responsible for capturing user input and rendering images.

e Logic Layer (Backend): A Node.js/Express REST API that acts as the orchestrator. It
handles input validation, prompt enhancement, and communication with the Al service.

e Service Layer (Al): External integration with Google Gemini Generative Al for the

actual pixel synthesis.

IV. SYSTEM IMPLEMENTATION

A. Prompt Engineering Algorithm

To ensure the output looks like a comic rather than a photograph, the backend injects stylistic
modifiers into the user input.

Let P_{user} be the raw input and S_{style} be the style modifiers (e.g., "cel-shaded,
comic book style, bold lines"). The final prompt P_{final} sent to the Al is: $$P_{final} =
P_{user} + S_{style} + \text{"high quality, 4k, trending on artstation"}$$

This ensures that regardless of user input quality, the output maintains a specific visual
aesthetic.

B. Sequential Panel Generation

To prevent server timeouts and ensure better handling of API rate limits, panels are generated

sequentially or in controlled batches rather than all at once.

C. Data Flow
1. User Action: User submits a story prompt via the React Frontend.
2. Request: Axios sends a POST request to the Express Backend.

3. Processing:

Copyright@ Page 4

International Journal Research Publication Analysis

o

o o &

Backend sanitizes input.

Backend augments the text with "Comic Style" prompt engineering.

External Call: Backend sends the formatted prompt to Google Gemini API.

Generation: Google Gemini generates the image and returns binary data/URL.
Response: Backend formats the image data (Base64 or URL) and sends a JSON response
to the Frontend.

Rendering: React updates the state and renders the images in a grid layout.

D. Error Handling

The application implements a "Fail-Gracefully" strategy:

API Timeouts: If the Al model takes too long, the backend sends a specific 504 status,
prompting the frontend to suggest a retry.

Content Safety: If the Al flags a prompt as unsafe, the backend returns a strictly typed
error (ERR_CONTENT _POLICY), preventing the app from crashing.

Visual Feedback: The frontend utilizes loading skeletons and toast notifications to keep

the user informed during the generation process.

E. Security Considerations

Environment Variables: API keys (Google Gemini) are strictly stored in .env files on
the server and injected at runtime. They are never exposed to the client-side code.

CORS Policy: The backend is configured to accept requests only from the specific
domain of the deployed frontend.

Input Sanitization: Incoming prompts are stripped of potential injection scripts before

processing.

V. RESULTS AND DISCUSSION

A. Performance Evaluation

To assess the system's efficiency, we measured the response time (latency) and success rate

of the API under varying load conditions. We tested the time taken to generate a 4-panel

comic strip using Google Gemini 1.5 Flash (optimized for speed) versus Gemini 1.5 Pro

(optimized for quality). Observation: The implementation of the Sequential Panel Generation

Algorithm prevented server timeouts. While generating panels strictly in parallel would be

faster, the sequential approach ensured higher stability and prevented API rate-limiting errors
(HTTP 429).

Copyright@ Page 5

International Journal Research Publication Analysis

During a stress test of 50 concurrent users:

o

Success Rate: 94% of requests resulted in a fully rendered comic.

Failure Analysis:

3% API Timeouts: Caused by high latency from the Al provider.

2% Content Safety Filters: The Al model correctly refused to generate violent or
NSFW prompts.

1% Network Errors: Client-side connectivity issues.

B. Qualitative Results (Image Quality)

The visual quality was evaluated based on three core criteria: Style Consistency, Prompt
Adherence, and Text Rendering.

Result: The "Prompt Engineering Algorithm" successfully maintained a unified art style
(e.g., Cyberpunk, Sketch, Watercolor) across all panels in 85% of test cases.

Discussion: Without the algorithm, panels often looked like they belonged to different
artists. By injecting style modifiers (e.g., "consistent cel-shaded line art") into every
request.

Challenge: The system struggled to maintain perfect character likeness. For example, a
character wearing a red hat in Panel 1 might appear with a blue hat or no hat in Panel 2.
Mitigation: We implemented detailed character descriptions in every panel prompt (e.g.,
"Protagonist: A young man, messy black hair, wearing a green hoodie™), which improved
consistency by approx. 40%, though minor hallucinations still occur.

Result: While the Al attempts to render text bubbles, the text inside is often gibberish or
misspelt (a known limitation of diffusion models).

Workaround: The current version encourages users to view the images as "visual
storyboards." Future versions will overlay HTML/CSS text bubbles on top of the images

to solve this completely.

C. User Acceptance Testing (UAT)

A beta test group of 20 users provided feedback on the application.

Ease of Use: 4.8 /5.0 (Users found the "text-to-comic™ workflow intuitive).

Generation Speed: 4.2 / 5.0 (Acceptable, though some users found 20+ seconds for
high-quality comics too slow).

Image Accuracy: 3.9 / 5.0 (Users noted that complex actions, like "two characters

shaking hands," sometimes resulted in distorted limbs).

Copyright@ Page 6

International Journal Research Publication Analysis

The discussions are, the development of the Al Comic Generator demonstrates that modern
Generative Al can successfully democratize comic creation, but significant technical hurdles
remain. We utilized the Gemini 1.5 Flash model for the default setting. While this allows for
near-instant gratification (crucial for web users), the image fidelity is lower than the Pro
model. A "Pro Mode" toggle was discussed but deferred to future releases to manage API
costs. The project relies entirely on an external APl (Google Gemini). This creates a
dependency where updates to the model can alter output quality without warning. For
instance, increased safety filters from Google occasionally blocked innocuous story prompts
(e.g., "a fight scene"), requiring us to refine our error handling messages to be more
descriptive. The Node.js backend proved highly efficient. By handling the prompt
engineering logic on the server, we kept the frontend lightweight. The decision to store API
keys in the backend (rather than a serverless edge function) added a necessary layer of

security, preventing key leakage.

V1. CONCLUSION

The Al Comic Generating Image Generator represents a significant step forward in
automated creative tools. By combining the reactive performance of modern web frameworks
with the creative potential of Google Gemini, this platform successfully abstracts the

technical difficulties of digital art, allowing users to become instant visual storytellers.

o Latency: Image generation is compute-intensive; generation may take 5-15 seconds per
panel.

o Consistency: As with all diffusion/generative models, character consistency between
panels (e.g., the same character wearing the same clothes) is not guaranteed without fine-
tuning.

e API Dependencies: The application relies entirely on the uptime and rate limits of the
Google Gemini API.

On future work includes the following features,

e Character Locking: Implementation of "seed" numbers or LoRA adapters to keep
characters consistent across panels.

e Speech Bubble Overlay: A canvas editor on the frontend allowing users to drag and drop

text bubbles onto generated images.

Copyright@ Page 7

International Journal Research Publication Analysis

e Auth & Persistence: User login (OAuth) to save generated comics to a database
(MongoDB).

o PDF Export: Functionality to compile the panels into a downloadable PDF format.

REFERENCES

1. Alabdulkarim, A., Li, B., & Peng, X. (2021). Automatic Story Generation: Challenges
and Attempts. arXiv preprint.

2. Cao, Y. etal. (2025). Storytelling Image Generation: A Survey. arXiv preprint.

3. Dubray, D., & Laubrock, J. (2019). Deep Learning Methods for Comic Book Analysis.
arXiv preprint.

4. Epstein, Z., et al. (2023). Art and the Science of Generative Al. Science, 380(6650).

5. Gal, R, et al. (2022). An Image is Worth One Word: Personalizing Text-to-Image
Generation using Textual Inversion. arXiv preprint.

6. Goodfellow, I., et al. (2014). Generative Adversarial Nets. Advances in Neural
Information Processing Systems (NeurlPS).

7. Google Cloud. (2024). Vertex Al & Gemini API Technical Documentation. Google
Cloud Official Docs.

8. Gudipati, L. (2024). Creating Consistent Characters with Al Tools. Dashtoon Technical
Blog.

9. Ho, J, Jain, A., & Abbeel, P. (2020). Denoising Diffusion Probabilistic Models.
NeurlPS.

10. Hu, E., etal. (2021). LoRA: Low-Rank Adaptation of Large Language Models. ICLR.

11. Kim, J., et al. (2025). Comix: A Deep Learning Approach to Automated Educational
Comic Creation. IEEE International Conference on Innovations in Intelligent Systems.

12. Ko, H.K,, et al. (2023). Large-Scale Study of Art creation with Text-to-Image
Generators. CHI.

13. Liu, V., & Chilton, L. (2022). Design Guidelines for Prompt Engineering Text-to-Image
Generative Models. CHI Conference on Human Factors in Computing Systems.

14. Maharana, A., & Bansal, M. (2021). StoryDALL-E: Adapting Pre-trained Text-to-
Image Transformers for Story Continuation. arXiv preprint.

15. OpenAl. (2023). DALL-E 3 System Card. OpenAl Technical Reports.

16. Oppenlaender, J. (2022). The Creativity of Text-to-Image Generation. Academic
Mindtrek.

Copyright@ Page 8

International Journal Research Publication Analysis

17.

18.

19.

20.

21.

22.

23.

24,

Ramesh, A., et al. (2022). Hierarchical Text-Conditional Image Generation with CLIP
Latents (DALL-E 2). arXiv preprint.

Rombach, R., et al. (2022). High-Resolution Image Synthesis with Latent Diffusion
Models. CVPR.

Ruiz, N., et al. (2023). DreamBooth: Fine Tuning Text-to-Image Diffusion Models for
Subject-Driven Generation. CVPR.

Saharia, C., et al. (2022). Photorealistic Text-to-Image Diffusion Models with Deep
Language Understanding (Imagen). NeurIPS.

Shan, S., et al. (2023). Glaze: Protecting Artists from Style Mimicry by Text-to-Image
Models. USENIX Security Symposium.

Wen, H. (2024). Legal and Ethical Implications of Al-Generated Content in Intellectual
Property Law. UIRT.

Ye, H., et al. (2023). IP-Adapter: Text Compatible Image Prompt Adapter for Text-to-
Image Diffusion Models. arXiv preprint.

Zhang, L., & Agrawala, M. (2023). Adding Conditional Control to Text-to-Image
Diffusion Models (ControlNet). ICCV.

Copyright@ Page 9

