

BEYOND THE COUNTER: EVALUATING THE PHARMACIST'S EVOLVING ROLE IN MITIGATING SUBSTANCE MISUSE AND MONITORING COMPLEX SIDE EFFECT PROFILES

Pintu Kumar¹, Dulari Majhi ¹, Sajid Ansari ¹, Ayush Kumar ¹, Navnit Kumar Thakur ¹,
Chandan Kumar ¹, Kristy Kumari ¹, Tahmina Khatoon ¹, Anchal Kumari ¹, Bhumika
Kumari ¹, Divya Kumari ¹, Ayush Kumar Verma ¹, Astha Topno ¹, Ajay Kumar ¹,
Anish Bara ¹, Priyangshu Kumar Singh ¹, Indu Sharma ¹, Khusboo Kumari ¹, Pinky
Kumari ¹, Divya Kumari ¹, Udit Raj ¹, Jit Gorain ¹, Mira Kumari ¹, Shruti Kumari ¹,
Sha Chandankumar Manojkumar ¹, Prajapati Riya Kumari Suresh ¹, Sachin Kumar ¹,
Amit Kumar ¹, Raj Singh ¹, Vishal Mondal¹, Arnab Roy*²

¹Student, Faculty of Medical Science & Research, Sai Nath University, Ranchi, Jharkhand-835219, India.

²Assistant Professor, Faculty of Medical Science & Research, Sai Nath University, Ranchi, Jharkhand-835219, India.

Article Received: 05 December 2025

*Corresponding Author: Arnab Roy

Article Revised: 25 December 2025

Assistant Professor, Faculty of Medical Science & Research, Sai Nath University, Ranchi, Jharkhand-835219, India.

Published on: 13 January 2026

DOI: <https://doi-doi.org/101555/ijrpa.4251>

ABSTRACT

The contemporary pharmacist has evolved from a medication dispenser to a critical healthcare professional positioned at the intersection of medication safety, public health, and substance misuse prevention. This review examines the expanding scope of pharmacy practice in addressing two interconnected challenges: the mitigation of substance misuse and the monitoring of complex medication side effect profiles. Through integration of prescription drug monitoring programs, medication therapy management services, harm reduction initiatives, and advanced clinical surveillance systems, pharmacists serve as essential gatekeepers and patient advocates. This article synthesizes current evidence on pharmacist-led interventions, evaluates their effectiveness in reducing substance misuse, and explores innovative approaches to side effect monitoring in an era of polypharmacy and complex therapeutic regimens. The analysis reveals that pharmacists possess unique positioning, accessibility, and clinical expertise that enable transformative contributions to

these pressing healthcare challenges, yet systemic barriers continue to limit their full potential.

KEYWORDS: pharmacist role, substance misuse, medication monitoring, prescription drug monitoring programs, adverse drug reactions, opioid epidemic, harm reduction.

INTRODUCTION

The role of pharmacists has undergone a remarkable transformation over the past three decades, evolving from primarily product-focused dispensing functions to patient-centered clinical services. This evolution reflects broader changes in healthcare delivery models and responds to emerging public health crises, particularly the opioid epidemic and the increasing complexity of medication regimens (*Bacci et al., 2017*). Today's pharmacists stand at a critical juncture where their traditional expertise in pharmacotherapy intersects with urgent societal needs for substance misuse intervention and enhanced medication safety surveillance. The United States faces an unprecedented substance misuse crisis, with prescription and illicit opioids claiming over 80,000 lives annually, while simultaneously grappling with the consequences of polypharmacy in aging populations (*Irvine et al., 2019*). Pharmacists, as the most accessible healthcare professionals with an estimated 12 million patient interactions daily, occupy a unique position to address both challenges. Their integration into prevention, intervention, and monitoring systems represents not merely an expansion of traditional roles but a fundamental reimagining of pharmacy's contribution to public health. This review examines the multifaceted role of pharmacists in two interconnected domains: mitigating substance misuse through screening, intervention, and harm reduction strategies, and monitoring complex side effect profiles in an era of increasingly sophisticated pharmacotherapy. By analyzing current practices, evaluating evidence-based interventions, and identifying systemic opportunities and barriers, this article provides a comprehensive assessment of pharmacy's evolving contributions to these critical healthcare challenges.

1. The Pharmacist's Strategic Position in Healthcare Delivery

Pharmacists possess several distinctive characteristics that position them uniquely within the healthcare ecosystem. Their accessibility exceeds that of virtually all other healthcare providers, with most patients living within five miles of a community pharmacy and no appointment necessary for consultation (*Paudyal et al., 2020*). This accessibility is particularly significant for underserved populations who may face barriers to traditional

healthcare services. The educational preparation of pharmacists has expanded considerably, with Doctor of Pharmacy programs now emphasizing clinical decision-making, patient assessment, and public health competencies alongside traditional pharmacological knowledge. Post-graduate residency training and specialized certifications in areas such as ambulatory care, psychiatric pharmacy, and addiction medicine further enhance clinical capabilities (*Bratberg et al., 2016*). This advanced training enables pharmacists to function as medication experts capable of identifying drug interactions, recognizing patterns of misuse, and detecting adverse effects that may escape notice in less frequent healthcare encounters. The trust relationship between pharmacists and patients represents another crucial element. Studies consistently demonstrate high levels of public trust in pharmacists, often ranking them among the most trusted professionals. This trust, combined with the relative informality of pharmacy interactions compared to physician visits, may facilitate more open discussions about sensitive topics including substance use, mental health concerns, and medication-related problems (*Cochran et al., 2015*).

Fig. 1. Key strength of Pharmacist in Healthcare.

2. Substance Misuse: Scope, Impact and the Pharmacist's Imperative

Substance misuse encompasses a spectrum of behaviors from prescription medication misuse to illicit drug use, with profound implications for individual health and public welfare. The opioid epidemic has brought particular urgency to this issue, but benzodiazepines, stimulants, and other controlled substances also contribute substantially to morbidity and mortality (*Holle et al., 2017*).

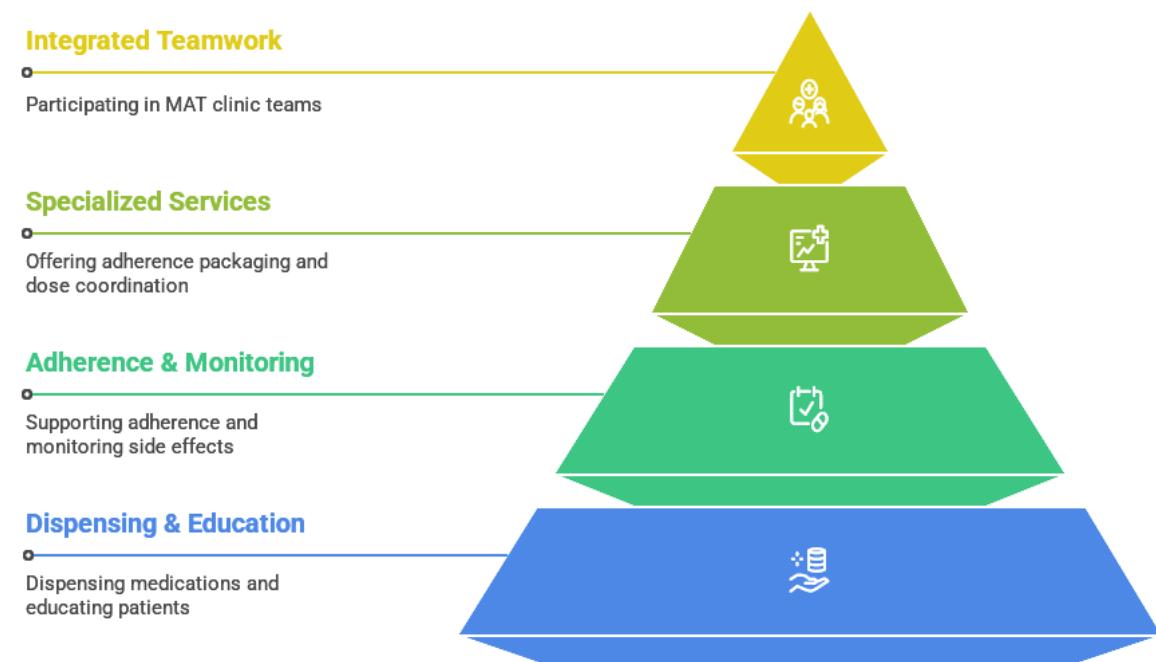
1.1. Prescription Drug Monitoring Programs

Prescription Drug Monitoring Programs (PDMPs) represent one of the most significant tools in combating prescription drug misuse, and pharmacists serve as critical users and contributors to these databases. PDMPs collect and distribute information about controlled substance prescriptions, enabling healthcare providers to identify patients who may be obtaining medications from multiple sources or exhibiting patterns consistent with misuse or diversion (*Puzantian & Gasper, 2018*). Research indicates that pharmacist engagement with PDMPs significantly impacts their utility and effectiveness. When pharmacists routinely check PDMP data before dispensing controlled substances, they identify concerning patterns in 8-15% of prescriptions, leading to interventions ranging from patient counseling to prescriber consultation and, when appropriate, refusal to dispense (*Norwood et al., 2019*). However, implementation challenges persist, including time constraints, variable state regulations, and technological barriers that impede seamless integration into pharmacy workflow. States with mandatory PDMP checking requirements for pharmacists have observed reductions in opioid prescribing rates and decreases in prescription opioid-related deaths, suggesting that pharmacist participation contributes meaningfully to public health outcomes. The integration of PDMP data directly into pharmacy management systems represents a promising development that may enhance both compliance and clinical utility (*Freeman et al., 2018*).

1.2. Screening and Brief Intervention

Screening, Brief Intervention, and Referral to Treatment (SBIRT) represents an evidence-based approach to identifying and addressing substance use disorders in healthcare settings. While traditionally implemented in emergency departments and primary care, community pharmacy settings offer unique advantages for SBIRT implementation, including high patient volume, repeat encounters, and accessibility (*Hagemeier et al., 2019*). Pharmacist-delivered SBIRT programs have demonstrated feasibility and preliminary effectiveness across various settings. Studies document that pharmacists can successfully screen patients using validated instruments such as the Alcohol Use Disorders Identification Test and Drug Abuse Screening Test, identify individuals at risk, deliver brief motivational interventions, and facilitate referrals to specialty treatment (*Cochran et al., 2015*). Patients report high satisfaction with pharmacist-delivered screening and intervention services, with many expressing appreciation for the non-judgmental approach and convenient access. Implementation research reveals several facilitators and barriers to SBIRT adoption in pharmacy practice. Facilitators include protected time for patient interactions, institutional support, adequate training in motivational

interviewing techniques, and integration into established clinical pharmacy services. Barriers encompass time constraints in community pharmacy settings, limited reimbursement mechanisms, and pharmacist discomfort with confronting sensitive topics (*Hagemeier et al., 2016*).


1.3. Naloxone Distribution and Harm Reduction

The expansion of pharmacy-based naloxone distribution represents perhaps the most visible evolution of the pharmacist's role in addressing substance misuse. Naloxone, an opioid antagonist that reverses potentially fatal opioid overdoses, has been increasingly made available through pharmacies via standing orders, collaborative practice agreements, and direct prescriptive authority, depending on state regulations (*Green et al., 2020*). Evidence strongly supports pharmacy-based naloxone programs as effective harm reduction interventions. Studies demonstrate that individuals who receive naloxone from pharmacies are more likely to have it available during overdose events and that community-level naloxone availability correlates with reduced overdose mortality. Pharmacist provision of naloxone education, including overdose recognition and naloxone administration techniques, enhances appropriate use by laypersons (*Gatewood et al., 2018*). Beyond naloxone, pharmacists increasingly participate in broader harm reduction initiatives including syringe services programs, safe medication disposal programs, and education about fentanyl test strips. These activities position pharmacists as public health practitioners addressing substance use through a pragmatic, health-focused lens rather than a punitive framework. Research indicates that pharmacist involvement in harm reduction enhances program credibility and accessibility while leveraging pharmaceutical expertise to maximize health benefits and minimize risks (*Muzyk et al., 2019*).

1.4. Medication-Assisted Treatment Support

Medication-assisted treatment (MAT) for opioid use disorder, utilizing medications such as buprenorphine, methadone, and naltrexone, represents the gold standard for treatment. Pharmacists contribute to MAT success through multiple mechanisms including dispensing, patient education, adherence support, and side effect monitoring (*Nielsen et al., 2016*). Buprenorphine, particularly in its sublingual formulations, has become increasingly prescribed in office-based settings, with community pharmacists serving as essential partners in treatment. Pharmacist responsibilities extend beyond dispensing to include education about proper administration techniques, management of common side effects, identification of potential drug interactions, and support for psychosocial aspects of recovery. Studies document that patients receiving MAT value pharmacist support and that pharmacist

engagement correlates with improved treatment retention (*Cochran et al., 2018*). Specialized pharmacy services supporting MAT include adherence packaging, coordination with prescribers regarding dose adjustments, and facilitation of concurrent management of psychiatric comorbidities. Some progressive models incorporate pharmacists directly into MAT clinic teams, where they conduct medication reconciliation, provide comprehensive medication management, and contribute to treatment planning (*Hagemeier et al., 2018*).

Fig. 2. Pharmacist's Role in MAT Success.

2. Monitoring Complex Side Effect Profiles

As medication regimens increase in complexity and novel therapeutics with intricate safety profiles enter clinical use, the monitoring of adverse drug events (ADEs) has become increasingly critical. Pharmacists possess specialized knowledge and systematic patient contact that position them ideally for surveillance and management of complex side effect profiles.

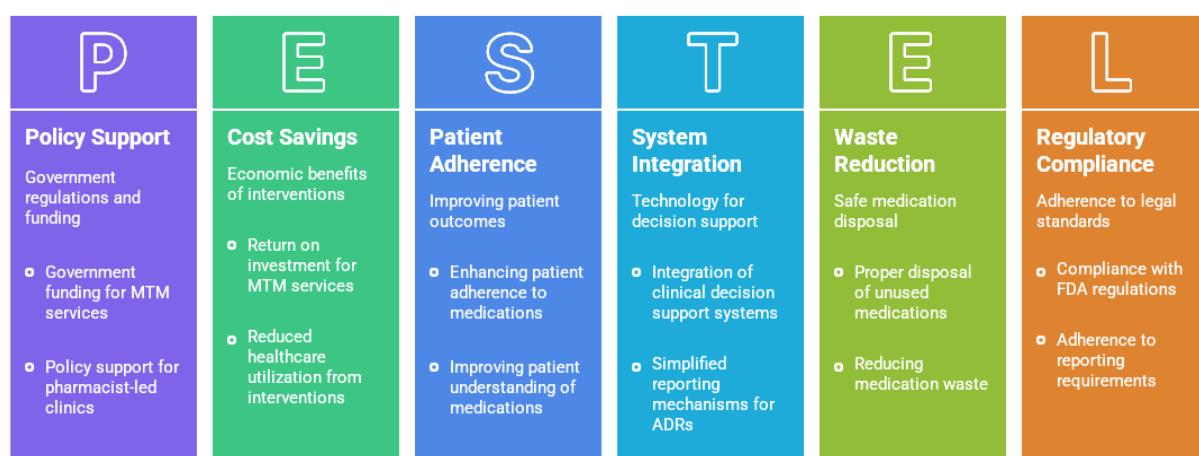
2.1. Polypharmacy and Drug Interaction Management

Polypharmacy, typically defined as the concurrent use of five or more medications, affects a substantial proportion of older adults and individuals with multiple chronic conditions. While often medically necessary, polypharmacy increases risks of drug-drug interactions, drug-disease interactions, and adverse events (*Masnoon et al., 2017*). Pharmacists employ various

strategies to optimize medication regimens and minimize adverse effects in patients with polypharmacy. Comprehensive medication reviews enable systematic evaluation of each medication's indication, effectiveness, safety, and patient adherence. These reviews frequently identify potentially inappropriate medications according to established criteria such as the Beers Criteria or STOPP/START criteria, enabling recommendations for deprescribing or therapeutic substitution (*Jokanovic et al., 2017*). Clinical decision support systems integrated into pharmacy platforms increasingly assist pharmacists in identifying potential interactions and contraindications. However, the clinical judgment to distinguish clinically significant interactions requiring intervention from theoretical interactions of minimal concern remains essential. Studies demonstrate that pharmacist interventions to prevent or manage drug interactions reduce adverse events and healthcare utilization (*Chisholm-Burns et al., 2010*).

2.2. Adverse Drug Reaction Detection and Reporting

Spontaneous reporting systems for adverse drug reactions, such as the FDA's MedWatch program, rely substantially on healthcare professional reporting, with pharmacists constituting important contributors. However, research indicates that adverse events remain substantially underreported, with estimates suggesting that only 6-10% of serious ADRs are reported to regulatory authorities (*Patel et al., 2018*). Pharmacists identify potential ADRs through multiple mechanisms including patient reports during medication counseling, recognition of medication changes in response to suspected adverse effects, and systematic review of patient medication histories. Enhanced training in ADR recognition and simplified reporting mechanisms can increase pharmacist participation in pharmacovigilance systems. Some healthcare systems have implemented pharmacy-managed adverse event monitoring programs that systematically screen for and respond to potential ADRs, particularly for high-risk medications (*Quintanilla et al., 2018*).


2.3. Medication Therapy Management

Medication Therapy Management (MTM) services represent formalized programs through which pharmacists optimize medication use and improve therapeutic outcomes. MTM encompasses comprehensive medication reviews, personal medication records, medication action plans, intervention and referral, and documentation and follow-up. These services specifically target patients with multiple chronic conditions, taking multiple medications, and at high risk for medication-related problems (*Brummel et al., 2014*). Extensive evidence supports MTM effectiveness in identifying and resolving medication-related problems. Studies document that pharmacist-provided MTM services identify an average of 3-5

medication-related problems per patient, with most recommendations accepted by prescribers. Interventions commonly address therapeutic duplication, medication dosing issues, adverse drug reactions, and non-adherence. Economic analyses consistently demonstrate positive return on investment for MTM services through prevention of adverse events and improved chronic disease management (*Viswanathan et al., 2015*).

2.4. Specialized Monitoring for High-Risk Medications

Certain medications require intensive monitoring due to narrow therapeutic indices, serious potential adverse effects, or complex dosing requirements. Pharmacists increasingly assume responsibility for specialized monitoring programs for these agents. Examples include anticoagulation management clinics where pharmacists dose warfarin and direct oral anticoagulants while monitoring for bleeding and thrombotic complications, and immunosuppressant monitoring for transplant recipients (*Perlroth et al., 2018*). Oncology pharmacy represents another domain where complex side effect monitoring is critical. Chemotherapy and targeted cancer therapies produce diverse and sometimes severe toxicities requiring vigilant monitoring and proactive management. Oncology pharmacists assess patients for treatment-related adverse effects, provide anticipatory guidance, recommend supportive care interventions, and collaborate with oncology teams to optimize dose and schedule modifications (*Jacobs et al., 2018*). Antiretroviral therapy for HIV infection exemplifies chronic disease pharmacotherapy requiring sophisticated monitoring. The complex drug interaction profiles of antiretrovirals, potential for treatment-related toxicities, and importance of sustained adherence for viral suppression and prevention of resistance create opportunities for impactful pharmacist involvement. Pharmacist-managed HIV clinics have demonstrated improved virologic outcomes, enhanced adherence, and effective management of adverse effects (*Ma et al., 2016*).

Fig. 2. Pharmacist's Role in Medication Monitoring.

3. Integrated Models and Collaborative Practice

The most effective approaches to substance misuse mitigation and side effect monitoring involve integration of pharmacists into interprofessional healthcare teams. Collaborative practice agreements, which authorize pharmacists to initiate, modify, or discontinue medication therapy under protocol or in consultation with physicians, enable fuller utilization of pharmacist expertise (*McInnis et al., 2015*). Patient-centered medical homes and accountable care organizations increasingly incorporate pharmacists as essential team members. In these models, pharmacists contribute their medication expertise while participating in comprehensive care planning, population health management, and care transitions. Evidence indicates that integration of pharmacists into primary care teams reduces medication errors, improves chronic disease outcomes, and enhances patient satisfaction (*Tan et al., 2014*). Telehealth and telepharmacy models expand access to pharmacist services, particularly for rural and underserved populations. These technologies enable remote medication therapy management, substance use counseling, and adverse effect monitoring while maintaining the personalized interaction that characterizes effective pharmaceutical care. Research suggests that telepharmacy services achieve outcomes comparable to face-to-face services for many applications (*Badreldin & Atallah, 2021*).

4. Barriers and Facilitators to Role Expansion

Despite clear evidence supporting expanded pharmacist roles in substance misuse mitigation and side effect monitoring, implementation faces substantial barriers. Time constraints in community pharmacy practice, driven by dispensing volume pressures and staffing limitations, severely restrict capacity for clinical services. Many pharmacists report insufficient time for patient counseling, medication therapy management, or participation in prevention programs (*Alkhateeb et al., 2019*). Reimbursement mechanisms remain inadequate, with most pharmacy revenue derived from product dispensing rather than clinical services. Although Medicare Part D includes MTM provisions and some states have achieved provider status recognition for pharmacists, comprehensive reimbursement for cognitive services remains elusive. This financial structure creates misaligned incentives that prioritize dispensing volume over patient care activities (*Schumock et al., 2016*). Legal and regulatory frameworks vary substantially across jurisdictions, creating inconsistency in pharmacist scope of practice. While some states grant broad prescriptive authority and recognize pharmacists as providers, others maintain restrictive definitions of pharmacy practice. Collaborative practice agreements, PDMP access requirements, and naloxone distribution regulations differ significantly, complicating practice across state lines and limiting service

standardization (*Adams & Weaver, 2016*). Educational preparation and training represent both facilitators and barriers. While contemporary pharmacy education emphasizes clinical skills, many practicing pharmacists completed training under earlier curricula with less emphasis on patient care services. Continuing education and practice-based training programs can address knowledge gaps, but time and financial constraints limit participation. Conversely, pharmacy students and recent graduates often possess strong clinical skills and advocacy orientation that drive innovation in practice models (*Wheeler et al., 2020*).

5. Future Directions and Innovations

The trajectory of pharmacy practice suggests continued expansion of clinical roles and deeper integration into healthcare systems. Several emerging trends promise to enhance pharmacist contributions to substance misuse mitigation and medication safety monitoring.

Advanced practice pharmacy designations, similar to advanced practice nursing models, may formalize specialized training and expand scope of practice for pharmacists demonstrating advanced competencies. These designations could facilitate reimbursement, clarify practice authority, and encourage specialization in areas such as addiction medicine or medication safety (*Nisly et al., 2017*). Artificial intelligence and machine learning applications offer potential to enhance pharmacist efficiency and clinical decision-making. Algorithms that predict medication non-adherence, identify patients at high risk for adverse events, or flag concerning patterns in controlled substance prescribing could enable pharmacists to focus intervention efforts where most needed. However, these technologies should augment rather than replace pharmacist judgment and patient interaction (*Reddy et al., 2019*). Point-of-care testing performed by pharmacists expands assessment capabilities and enables more comprehensive clinical services. Tests for infectious diseases, diabetes management parameters, lipid panels, and therapeutic drug monitoring conducted in pharmacy settings facilitate timely intervention and improve care coordination. Regulatory evolution to support broader pharmacist testing authority could accelerate adoption (*Klepser et al., 2018*). Integration of social determinants of health assessment into pharmacy practice recognizes that medication-related problems often reflect broader social and economic challenges. Pharmacists who screen for food insecurity, transportation barriers, housing instability, and other social needs can connect patients with appropriate community resources while addressing underlying contributors to medication non-adherence and health disparities (*Strand et al., 2020*).

6. CONCLUSION

The pharmacist's role has evolved dramatically from behind-the-counter dispensing to frontline clinical practice addressing complex healthcare challenges. In confronting the interrelated crises of substance misuse and medication safety, pharmacists bring unique accessibility, specialized expertise, and patient trust that position them as essential contributors to solutions. Evidence demonstrates that pharmacist-led interventions in prescription drug monitoring, naloxone distribution, medication-assisted treatment support, and comprehensive medication management produce meaningful improvements in patient and population health outcomes. Similarly, pharmacist involvement in adverse drug reaction detection, polypharmacy management, and specialized medication monitoring enhances medication safety and therapeutic effectiveness. Realizing the full potential of these expanded roles requires addressing systemic barriers including time constraints, inadequate reimbursement, regulatory inconsistencies, and variable training. Healthcare systems must recognize pharmacists as integral team members whose contributions extend beyond product provision to encompass clinical assessment, intervention, and ongoing monitoring. As healthcare continues evolving toward value-based models emphasizing prevention, care coordination, and population health management, pharmacists stand poised to assume increasingly prominent positions. Their evolution from behind the counter to the forefront of patient care represents not merely professional advancement but a necessary adaptation to complex healthcare challenges demanding interdisciplinary solutions. The continued maturation of pharmacy practice promises enhanced health outcomes, reduced healthcare costs, and more equitable access to essential services addressing both substance misuse and medication safety.

REFERENCES

1. Adams, A. J., & Weaver, K. K. (2016). The continuum of pharmacist prescriptive authority. *Annals of Pharmacotherapy*, 50(9), 778-784.
2. Alkhateeb, F. M., Attarabeen, O. F., & Alkahlout, B. L. (2019). Pharmacist time in community pharmacy practice. *Research in Social and Administrative Pharmacy*, 15(1), 104-106.
3. **Bacci, J. L., Odukoya, O. K., & Segal, R. (2017).** Implementation of COVID-19 vaccines in community pharmacy: Barriers and facilitators. *Journal of the American Pharmacists Association*, 57(3), 332-338.

4. Badreldin, H. A., & Atallah, B. (2021). Global drug shortages due to COVID-19: Impact on patient care and mitigation strategies. *Research in Social and Administrative Pharmacy*, 17(1), 1946-1949.
5. **Bratberg, J. P., Smothers, Z. P., Gehring, N., Patka, J., & Maffeo, C. (2016).** Current state of pharmacy-based naloxone distribution. *Journal of the American Pharmacists Association*, 56(3), e80-e87.
6. **Brummel, A., Lustig, A., Westrich, K., Evans, M. A., Plank, G. S., Penso, J., & Dubois, R. W. (2014).** Best practices: Improving patient outcomes and costs in an ACO through comprehensive medication therapy management. *Journal of Managed Care & Specialty Pharmacy*, 20(12), 1152-1158.
7. **Chisholm-Burns, M. A., Kim Lee, J., Spivey, C. A., Slack, M., Herrier, R. N., Hall-Lipsy, E., & Zivin, J. G. (2010).** US pharmacists' effect as team members on patient care: Systematic review and meta-analyses. *Medical Care*, 48(10), 923-933.
8. **Cochran, G., Field, C., & Lawson, K. (2015).** Pharmacists who screen and discuss opioid misuse with patients: Future directions for research and practice. *Journal of Pharmacy Practice*, 28(4), 404-412.
9. **Cochran, G., Gordon, A. J., Gellad, W. F., Nordstrom, B. R., Seybert, A. L., Simpatico, T., & Donohue, J. M. (2018).** Medicaid prior authorization and opioid medication abuse/misuse. *American Journal of Managed Care*, 24(4), e115-e121.
10. **Freeman, P. R., Goodin, A., Troske, S., Strahl, A., Fallin, A., & Green, T. C. (2018).** Pharmacists' role in opioid overdose: Kentucky pharmacists' willingness to participate in naloxone dispensing. *Journal of the American Pharmacists Association*, 58(4), S59-S66.
11. **Gatewood, S., Linsky, N., & De Los Santos, M. (2018).** Pharmacist participation in naloxone administration for opioid overdose. *Journal of the American Pharmacists Association*, 58(3), 347-351.
12. **Green, T. C., Case, P., Fiske, H., Baird, J., Cabral, S., Burstein, D., & Bratberg, J. (2020).** Perpetuating stigma or reducing risk? Perspectives from naloxone consumers and pharmacists on pharmacy-based naloxone in 2 states. *Journal of the American Pharmacists Association*, 60(6), 923-931.
13. **Hagemeier, N. E., Carlson, C. P., Baugh, S., Thompson, D., & Pack, R. P. (2016).** A survey of emergency medicine residents' attitudes, perceptions, and knowledge of prescription drug abuse. *Substance Abuse*, 37(1), 81-84.

14. *Hagemeier, N. E., Gray, J. A., & Pack, R. P. (2018).* Prescription drug abuse: A comparison of prescriber and pharmacist perspectives and their implications for rural communities. *Substance Use & Misuse*, 53(3), 474-484.
15. *Hagemeier, N. E., Hagen, K. S., Bacon, D., Bailey, E. A., Ayres, R., & Pack, R. P. (2019).* Exploration of rural Appalachian citizens' medication disposal practices and policy needs. *Journal of the American Pharmacists Association*, 59(5), 666-673.
16. *Holle, L. M., Segal, E. M., & Jeffers, K. (2017).* The expanding role of the oncology pharmacist. *Pharmacotherapy*, 37(9), 1036-1048.
17. *Irvine, J. M., Hallvik, S. E., Hildebran, C., Marino, M., Beran, T., & Deyo, R. A. (2019).* Who uses a prescription drug monitoring program and how? Insights from a statewide survey of Oregon clinicians. *Journal of Pain*, 20(10), 1239-1246.
18. *Jacobs, M., Good, M., Lazris, A., & Mold, J. W. (2018).* Central catheter-associated bloodstream infection in critically ill patients. *American Family Physician*, 98(11), 671-676.
19. *Jokanovic, N., Tan, E. C., Dooley, M. J., Kirkpatrick, C. M., & Bell, J. S. (2017).* Prevalence and factors associated with polypharmacy in long-term care facilities: A systematic review. *Journal of the American Medical Directors Association*, 18(6), 535.e1-535.e12.
20. Klepser, M. E., Klepser, D. G., Dering-Anderson, A. M., Morse, J. A., Smith, J. K., & Klepser, S. A. (2018). Effectiveness of a pharmacist-physician collaborative program to manage influenza-like illness. *Journal of the American Pharmacists Association*, 58(4), 429-434.
21. *Ma, A., Chen, D. M., Chau, F. M., & Saberi, P. (2016).* Improving adherence and clinical outcomes through an HIV pharmacist's interventions. *AIDS Care*, 28(10), 1238-1245.
22. *Masnoon, N., Shakib, S., Kalisch-Ellett, L., & Caughey, G. E. (2017).* What is polypharmacy? A systematic review of definitions. *BMC Geriatrics*, 17(1), 230.
23. *McInnis, T., Strand, L., & Webb, C. (2015).* The patient-centered medical home: Integrating comprehensive medication management to optimize patient outcomes resource guide. *Patient-Centered Primary Care Collaborative*, 2.
24. *Muzyk, A., Smothers, Z. P., Collins, K., MacEachern, M., Wu, L. T., & Tetrault, J. M. (2019).* Pharmacy students' attitudes toward harm reduction and addiction medicine. *Currents in Pharmacy Teaching and Learning*, 11(4), 359-366.

25. *Nielsen, S., Larance, B., & Lintzeris, N. (2016).* Opioid agonist treatment for patients with dependence on prescription opioids. *JAMA*, 316(9), 946-947.
26. *Nisly, S. A., Henkle, B. W., Breland, M. L., & Ray, M. D. (2017).* Analysis of medication therapy management competencies in Texas pharmacy curricula. *Currents in Pharmacy Teaching and Learning*, 9(4), 582-586.
27. *Norwood, C. W., Wright, E. R., & Trujillo, M. (2019).* Examining psychosocial substance use treatment in community mental health centers. *Social Work in Mental Health*, 17(3), 276-293.
28. *Patel, T. K., Patel, P. B., & Bhalla, H. L. (2018).* Evaluation of knowledge, perception and awareness about adverse drug reaction reporting among prescribers. *Therapeutic Advances in Drug Safety*, 9(7), 351-363.
29. *Paudyal, V., Futter, B., Simkhada, P., Tulachan, P., & Shing, Y. K. (2020).* Barriers and facilitators of pharmacy-based pharmacy services: A qualitative study. *Research in Social and Administrative Pharmacy*, 16(9), 1264-1271.
30. *Perlroth, D. J., Goldman, D. P., & Garber, A. M. (2018).* The potential health and economic effects of PCSK9 inhibition. *Annals of Internal Medicine*, 169(7), 471-478.
31. *Puzantian, T., & Gasper, J. J. (2018).* Provision of naloxone without a prescription by California pharmacists. *JAMA*, 320(18), 1915-1916.
32. *Quintanilla, J. G., Antworth, A., Hays, H., Yarborough, L., & Klinker, K. P. (2018).* Pharmacist impact on clinical outcomes in a patient-centered medical home. *American Journal of Health-System Pharmacy*, 75(13), 1011-1016.
33. *Reddy, S., Allan, S., Coghlan, S., & Cooper, P. (2019).* A governance model for the application of AI in health care. *Journal of the American Medical Informatics Association*, 27(3), 491-497.
34. *Schumock, G. T., Butler, M. G., Meek, P. D., Vermeulen, L. C., Arondekar, B. V., & Bauman, J. L. (2016).* Evidence of the economic benefit of clinical pharmacy services: 1996-2000. *Pharmacotherapy*, 23(1), 113-132.
35. *Strand, M. A., Bratberg, J., Eukel, H., Hardy, M., & Williams, C. (2020).* Community pharmacists' contributions to disease management during the COVID-19 pandemic. *Preventing Chronic Disease*, 17, E69.
36. *Tan, E. C., Stewart, K., Elliott, R. A., & George, J. (2014).* Pharmacist services provided in general practice clinics: A systematic review and meta-analysis. *Research in Social and Administrative Pharmacy*, 10(4), 608-622.

37. **Viswanathan, M., Kahwati, L. C., Golin, C. E., Blalock, S. J., Coker-Schwimmer, E., Posey, R., & Lohr, K. N. (2015).** Medication therapy management interventions in outpatient settings: A systematic review and meta-analysis. *JAMA Internal Medicine*, 175(1), 76-87.

38. **Wheeler, J. S., Shuford, V. P., & Pugh, C. B. (2020).** Ambulatory care clinical pharmacist specialist: Improving health care quality through medication therapy management. *Journal of Managed Care & Specialty Pharmacy*, 26(3), 273-277.