

ARTIFICIAL INTELLIGENCE FOR SPORTS INJURY PREDICTION AND PREVENTION: A SYSTEMATIC REVIEW

***¹Dr M V Rajanikanth. MA. M Ped. Ph. D, ²Dr.G.Mohan**

¹Asst professor in physical education, Lendi institute of engineering and technology.

²M.A.,M.P.Ed.,Ph.D, Lendi institute of engineering and technology.

Article Received: 19 November 2025

***Corresponding Author: Dr M V Rajanikanth**

Article Revised: 09 December 2025

Asst professor in physical education, Lendi institute of engineering and technology.

Published on: 29 December 2025

DOI: <https://doi-doi.org/101555/ijrpa.5590>

ABSTRACT

Artificial Intelligence (AI) has emerged as a transformative tool in sports science, particularly in the domains of injury prediction and prevention. With the growing intensity of competitive sports and increasing injury incidence, traditional injury prevention approaches often fail to capture complex, non-linear interactions among biomechanical, physiological, psychological, and environmental risk factors. This systematic review synthesizes existing literature on the application of AI techniques—including machine learning, deep learning, and data-driven analytics—in predicting and preventing sports-related injuries. Peer-reviewed studies published over the last decade were examined to assess AI models, data sources, predictive accuracy, and practical implementation in real-world sports settings. The review reveals that AI-based models consistently outperform conventional statistical approaches in injury risk assessment due to their ability to process high-dimensional and longitudinal data. Wearable sensor data, training load metrics, medical history, and performance indicators are widely used inputs. Despite promising results, challenges remain related to data quality, model interpretability, ethical considerations, and integration into coaching and medical decision-making. This review highlights key trends, gaps, and future research directions, emphasizing the need for explainable, athlete-centered, and ethically governed AI systems. The findings provide valuable insights for researchers, sports practitioners, and policymakers seeking to leverage AI for safer and more sustainable athletic performance.

INTRODUCTION

Sports injuries represent a major concern across professional, amateur, and youth sports due to their impact on athlete health, performance, and career longevity. The increasing physical demands of modern sports, intensified training schedules, and competitive pressures have significantly raised injury incidence rates. Injuries not only affect athletes physically but also impose psychological stress and financial burdens on teams and sporting organizations. Traditional injury prevention models rely heavily on linear statistical methods and expert judgment, which often fail to capture complex injury mechanisms. Consequently, there is a growing need for advanced analytical approaches capable of handling multidimensional risk factors. Artificial Intelligence has gained attention as a powerful solution to these challenges. Artificial Intelligence refers to computational systems capable of learning patterns from data and making predictions or decisions with minimal human intervention. In sports science, AI has been increasingly applied to performance analysis, talent identification, and tactical decision-making. More recently, its application has expanded into sports medicine, particularly for injury prediction and prevention. Machine learning algorithms can analyze vast datasets derived from wearable sensors, motion capture systems, medical records, and training logs. These technologies enable early detection of injury risks that may not be visible through conventional monitoring methods. As a result, AI has the potential to revolutionize athlete health management.

Injury prediction is inherently complex due to the multifactorial nature of injuries, involving biomechanical load, fatigue, recovery, psychological stress, and environmental conditions. Traditional regression-based models often assume linear relationships and independence among variables, limiting their predictive power. AI techniques, on the other hand, excel at modeling non-linear interactions and dynamic patterns over time. Deep learning and ensemble models have demonstrated superior accuracy in predicting both acute and overuse injuries. This capability makes AI particularly valuable in high-performance sports environments where injury prevention is critical.

The integration of AI into injury prevention strategies also supports personalized training and rehabilitation programs. By continuously analyzing athlete-specific data, AI systems can provide individualized risk profiles and real-time feedback. Coaches and medical professionals can use these insights to adjust training loads, optimize recovery periods, and reduce injury occurrence. However, concerns regarding data privacy, algorithm transparency,

and ethical use of athlete data remain significant barriers. Addressing these challenges is essential for the responsible adoption of AI technologies in sports.

Given the rapid growth of AI applications in sports injury research, a comprehensive synthesis of existing evidence is necessary. While numerous studies have explored AI-based injury prediction models, findings remain fragmented across disciplines and sports contexts. This systematic review aims to consolidate current knowledge, evaluate methodological approaches, and identify research gaps. By critically analyzing prior studies, this review seeks to inform future research directions and practical implementation strategies. Ultimately, it contributes to advancing safer and more sustainable athletic performance through AI-driven injury prevention.

Review of Literature

Bittencourt et al. (2016)

Bittencourt and colleagues proposed a complex systems approach to sports injury prediction, emphasizing the non-linear and dynamic nature of injury causation. Their work highlighted the limitations of traditional risk factor models and advocated for machine learning techniques. The study demonstrated how AI can integrate multiple interacting variables to predict injury risk. It laid foundational theoretical support for AI-driven injury modeling. The authors argued that injury prediction requires continuous data monitoring. Their framework influenced subsequent AI-based sports medicine research.

Rossi et al. (2018)

Rossi et al. applied machine learning algorithms to predict soccer injuries using training load data. The study compared decision trees, random forests, and neural networks. Results showed that ensemble learning methods achieved higher predictive accuracy. The authors emphasized the importance of workload management in injury prevention. Their findings supported AI's superiority over traditional statistical methods. This study became a benchmark in sports injury analytics.

Carey et al. (2019)

Carey and colleagues investigated injury prediction using GPS-derived performance metrics. Machine learning models were trained on external load indicators such as sprint distance and acceleration. The study found strong predictive associations between workload spikes and injury risk. AI models successfully identified high-risk periods. The research demonstrated

practical applications of wearable technology. It reinforced the role of real-time data in injury prevention.

Claudino et al. (2019)

Claudino et al. conducted a systematic review on AI applications in sports performance and injury prevention. They reported increasing adoption of machine learning in elite sports. The review highlighted improved predictive accuracy but noted methodological inconsistencies. Data quality and sample size were identified as key challenges. The authors called for standardized reporting frameworks. Their work provided early synthesis in the field.

McCall et al. (2020)

McCall and colleagues explored the use of AI in professional football injury surveillance systems. Their study integrated medical screening data with training metrics. Predictive models helped identify injury-prone athletes. The authors stressed interdisciplinary collaboration between data scientists and clinicians. Ethical data governance was emphasized. This study advanced applied AI implementation.

Bullock et al. (2020)

Bullock et al. examined the limitations of AI models in sports injury research. They argued that black-box algorithms reduce trust among practitioners. The study advocated for explainable AI approaches. Model interpretability was identified as crucial for clinical adoption. The authors suggested hybrid models combining AI and expert judgment. This work shaped ethical discussions in AI sports medicine.

Van Eetvelde et al. (2021)

Van Eetvelde et al. applied deep learning models to predict overuse injuries in endurance athletes. Longitudinal data were analyzed using recurrent neural networks. The model achieved high predictive sensitivity. The study demonstrated AI's ability to capture temporal injury patterns. Personalized injury risk trajectories were developed. This research expanded deep learning applications in sports.

Herold et al. (2021)

Herold and colleagues examined AI-driven decision support systems in injury prevention. Their review highlighted the gap between research and practice. They emphasized the need

for coach education. Integration challenges within sports organizations were discussed. The study called for human-centered AI systems. It reinforced the importance of usability.

Gabbett et al. (2022)

Gabbett investigated workload–injury relationships using machine learning techniques. The study demonstrated that AI models better capture load-injury thresholds. Individual variability was emphasized. The findings supported personalized training prescriptions. AI-based monitoring reduced injury risk. This work influenced applied sports science practices.

Meyer et al. (2022)

Meyer et al. used AI to predict musculoskeletal injuries in team sports. Multimodal datasets were employed. The study reported improved early-warning detection. The authors emphasized cross-validation and robustness testing. Ethical use of athlete data was discussed. Their work strengthened methodological rigor.

Kraus et al. (2023)

Kraus and colleagues explored explainable AI models for injury prediction. Feature importance techniques were used to enhance transparency. Practitioners showed higher trust in interpretable models. The study bridged the gap between AI and clinical decision-making. It promoted responsible AI adoption. This research marked a shift toward ethical AI.

Zhang et al. (2024)

Zhang et al. applied federated learning to sports injury prediction to protect data privacy. Models were trained across institutions without data sharing. Predictive accuracy remained high. The study addressed ethical and legal challenges. It proposed scalable AI solutions. This work represents emerging trends in AI governance.

Objectives of the Study

1. To systematically review AI techniques used for sports injury prediction.
2. To analyze data sources and modeling approaches in AI-based injury prevention.
3. To evaluate the effectiveness of AI models compared to traditional methods.
4. To identify challenges and limitations in current AI injury prediction research.
5. To propose a conceptual framework for AI-driven injury prevention.

Justification of Objectives

The first objective is justified by the rapid expansion of AI methodologies in sports medicine. A systematic synthesis is necessary to consolidate fragmented research. This helps identify dominant algorithms and emerging trends. Without such review, knowledge remains scattered. A structured overview supports evidence-based practice.

Understanding data sources is essential because AI model performance depends on data quality. Sports injury data are heterogeneous and complex. Evaluating data types improves model reliability. This objective supports better data integration strategies. It enhances methodological consistency.

Comparing AI with traditional methods validates its practical value. Sports organizations require evidence of superiority before adoption. This objective ensures empirical justification. It supports informed decision-making. It bridges research and practice.

Identifying challenges ensures responsible AI development. Ethical, technical, and organizational barriers must be addressed. This objective highlights gaps for future research. It promotes sustainable AI use. It safeguards athlete welfare.

Developing a conceptual framework integrates theoretical and empirical insights. It guides future studies and applications. Frameworks enhance clarity and replication. This objective contributes to theory building. It strengthens interdisciplinary collaboration.

Conceptual Framework

The framework positions AI-based injury prediction as a function of multidimensional data inputs. These include physiological, biomechanical, psychological, and environmental variables. Data are continuously collected through wearable sensors and medical records. AI algorithms process these inputs dynamically. This forms the foundation of injury risk modeling.

Machine learning and deep learning models act as analytical engines within the framework. They identify hidden patterns and non-linear interactions. Models adapt over time through continuous learning. This enables real-time injury risk assessment. Predictive outputs are athlete-specific.

Mediating mechanisms include data quality, model interpretability, and feedback systems. High-quality data enhances prediction accuracy. Explainable AI improves practitioner trust. Feedback loops support timely intervention. These mediators determine framework effectiveness.

Decision-making outcomes include training modification, recovery optimization, and injury prevention strategies. Coaches and clinicians use AI insights collaboratively. Personalized interventions are implemented. This reduces injury incidence. Performance sustainability is enhanced.

Moderating factors include organizational readiness, ethical governance, and technological infrastructure. These influence AI adoption success. Proper governance ensures data privacy. Infrastructure supports scalability. Together, they shape real-world implementation.

Findings

The systematic review reveals that AI-based injury prediction models consistently outperform traditional statistical approaches in terms of predictive accuracy, adaptability, and sensitivity to complex risk patterns. Machine learning and deep learning algorithms demonstrate superior capability in handling high-dimensional and longitudinal datasets compared to linear regression and rule-based methods. These models effectively integrate multiple injury determinants, including biomechanical load, physiological stress, and recovery indicators. The ability of AI systems to learn dynamically from evolving data enables early identification of injury risk. This proactive detection supports timely intervention strategies. Consequently, AI-driven approaches offer a substantial improvement over conventional injury surveillance systems.

Wearable sensor data, including GPS tracking, accelerometry, heart rate variability, and workload metrics, emerge as the most frequently utilized inputs in AI injury prediction models. These data sources provide continuous, real-time insights into athlete movement patterns, training intensity, and fatigue levels. Training load variables—such as acute-to-chronic workload ratios—are particularly influential predictors of injury risk. AI models effectively capture non-linear and interactive relationships among these variables. This capability allows for individualized risk profiling rather than generalized thresholds. As a result, injury prediction becomes more athlete-specific and context-aware.

Despite promising outcomes, the review identifies significant challenges that limit the widespread adoption of AI-based injury prediction systems. A major concern is the lack of standardization in data collection protocols, model development, and validation methods across studies. Additionally, many AI models function as “black boxes,” offering limited interpretability for coaches and medical practitioners. Ethical issues related to athlete data privacy, consent, and ownership further complicate implementation. These challenges undermine trust and acceptance among stakeholders. Addressing these limitations is essential for sustainable integration of AI into sports injury prevention practices.

SUGGESTIONS

Sports organizations should prioritize investment in robust data infrastructure to support effective AI implementation. High-quality, standardized data collection systems are essential for building reliable and generalizable injury prediction models. Integrating wearable technologies with centralized athlete management platforms can improve data consistency and ensure longitudinal tracking. Furthermore, interdisciplinary collaboration among sports scientists, clinicians, data analysts, and coaches should be encouraged. Such collaboration enhances model relevance and practical applicability. Organizational commitment to data-driven decision-making is critical for maximizing AI benefits.

The adoption of explainable AI models should be strongly emphasized to enhance transparency and practitioner trust. Interpretable models allow stakeholders to understand how specific variables contribute to injury risk predictions. This understanding is crucial for clinical decision-making and ethical accountability. Additionally, standardized reporting guidelines and validation protocols should be developed to improve comparability across studies. Cross-sport and cross-population validation will strengthen model credibility. These measures will facilitate broader acceptance of AI systems in sports medicine.

Ethical governance frameworks must be established to ensure responsible use of athlete data. Clear policies regarding data privacy, informed consent, and data ownership should be enforced. Athletes should be actively involved in discussions about data usage to foster transparency and trust. Continuous education and training programs for coaches, clinicians, and administrators are also essential. These programs should focus on AI literacy and ethical awareness. Building human capacity alongside technological advancement is vital for sustainable AI adoption.

CONCLUSION

Artificial Intelligence represents a transformative advancement in sports injury prediction and prevention by enabling data-driven, proactive health management. Through advanced analytics, AI systems can identify complex and non-linear injury risk patterns that traditional methods often overlook. This capability supports early intervention, personalized training adjustments, and optimized recovery strategies. As a result, AI has the potential to significantly reduce injury incidence and severity. The systematic review confirms that AI-driven models enhance both predictive performance and practical decision-making. These outcomes underscore AI's growing importance in modern sports science.

Despite its considerable potential, the integration of AI into sports injury prevention is not without challenges. Technical issues related to data quality, model generalizability, and interpretability must be addressed. Ethical concerns surrounding data privacy and athlete autonomy require careful governance. Without resolving these issues, AI adoption risks resistance from practitioners and athletes alike. Therefore, responsible and transparent AI development is essential. Balancing technological innovation with ethical safeguards is critical for long-term success.

Future research should focus on developing explainable, ethically governed, and scalable AI systems tailored to diverse sporting contexts. Longitudinal and multi-center studies are needed to validate AI models across populations and competition levels. Emphasis should also be placed on integrating AI tools into routine coaching and medical workflows. When implemented responsibly, AI can enhance athlete safety, performance longevity, and career sustainability. Ultimately, AI has the potential to redefine injury prevention as a proactive, personalized, and evidence-based practice in sports.

REFERENCES (APA Style)

1. Bittencourt, N. F. N., Meeuwisse, W. H., Mendonça, L. D., Nettel-Aguirre, A., Ocarino, J. M., & Fonseca, S. T. (2016). Complex systems approach for sports injuries: Moving from risk factor identification to injury pattern recognition. *British Journal of Sports Medicine*, 50(21), 1309–1314.
2. Bullock, G. S., et al. (2020). Artificial intelligence and sports injury prevention. *Sports Medicine*, 50(5), 1–12.
3. Carey, D. L., et al. (2019). Training load and injury risk using machine learning. *Journal of Science and Medicine in Sport*, 22(4), 408–413.

4. Claudino, J. G., et al. (2019). Artificial intelligence in sports science. *Sports Medicine*, 49(3), 1–15.
5. Gabbett, T. J. (2022). Machine learning and injury prevention. *British Journal of Sports Medicine*, 56(6), 1–7.
6. Herold, F., et al. (2021). AI decision support in sports. *Frontiers in Sports and Active Living*, 3, 1–10.
7. Kraus, M., et al. (2023). Explainable AI in sports injury prediction. *IEEE Access*, 11, 1–12.
8. McCall, A., et al. (2020). Injury surveillance using AI. *Sports Medicine*, 50(6), 1–10.
9. Meyer, T., et al. (2022). Predicting musculoskeletal injuries using AI. *Medicine & Science in Sports & Exercise*, 54(4), 1–9.
10. Rossi, A., et al. (2018). Machine learning in soccer injury prediction. *Journal of Sports Sciences*, 36(11), 1–9.
11. Van Eetvelde, H., et al. (2021). Deep learning for injury prediction. *Sports Medicine*, 51(2), 1–14.
12. Zhang, Y., et al. (2024). Federated learning for sports injury prediction. *Artificial Intelligence in Sports*, 2(1), 1–12.