
Copyright@    Page 1 

International Journal Research Publication Analysis  

 

 

 

 

DETECTION AND ANALYSIS OF CONFIGURATION DRIFT IN 

INFRASTRUCTURE AS CODE BASED CLOUD SYSTEMS 

 

*Saladi.H.L.S.S.Ganesh, K.Jaswanth, K.Sai Manikanta, G.Raju 

 

Students, Head of the Department, Computer Science and Engineering Department, 

Ideal Institute of Technology, Vidyut Nagar, Kakinada-533005, Andhra Pradesh, India. 

 

Article Received:  08 January 2026 

Article Revised: 28 January 2026    

Published on: 16 February 2026 

  

*Corresponding Author: Saladi.H.L.S.S.Ganesh  

Students, Head of the Department, Computer Science and Engineering Department, 

Ideal Institute of Technology, Vidyut Nagar, Kakinada-533005, Andhra Pradesh, 

India. 

DOI: https://doi-doi.org/101555/ijrpa.4310   

 

ABSTRACT:  

Infrastructure-as-Code (IaC) has emerged as a foundational practice in modern cloud 

computing by enabling automated, consistent, and version-controlled infrastructure 

provisioning. However, dynamic cloud operations and manual interventions frequently 

introduced configuration drift, causing the deployed infrastructure to diverge from the 

intended state defined in IaC specifications. Such drift can lead to security vulnerabilities, 

compliance violations, service instability, and increased operational complexity. While prior 

research has primarily focused on detecting configuration drift, there remains a lack of 

comprehensive approaches that address continuous monitoring, impact analysis, and practical 

integration with DevOps workflows. This paper proposes an automated and systematic 

approach for the detection and analysis of configuration drift in IaC-based cloud systems. The 

proposed system establishes a baseline infrastructure state form IaC repositories and 

continuously compares it with the real-time deployed environment using state comparison 

and rule-based verification techniques. Detected deviations are analysed and logged to 

support informed decision-making by administrators. A prototype implementation using 

widely adopted IaC and cloud technologies demonstrates the feasibility and effectiveness of 

the approach. Experimental results indicate that the proposed system improves infrastructure 

consistency, enhances operational reliability, and supports security and compliance 

requirements in dynamic cloud environments.  

 

 

International Journal Research Publication Analysis 

2026 Volume: 02 Issue: 02      www.ijrpa.com     ISSN 2456-9995 Research Article 

Page: 01-09 

 

 

 

https://doi-doi.org/101555/ijrpa.4310
http://www.ijrpa.com/


Copyright@    Page 2 

International Journal Research Publication Analysis  

 

 

KEYWORDS: Infrastructure-as-Code, Configuration Drift, Cloud Computing, DevOps, 

Cloud Automation, Drift Detection. 

 

Ⅰ. INTRODUCTION 

Cloud computing has changed how companies plan, set up, and handle their computer 

systems. It provides easy scalability, flexibility, and cost savings. As cloud systems become 

more complicated, managing them with old, manual methods has led to more mistakes and 

less efficiency. To solve these problems, Infrastructure-as-Code (IaC) has become a major 

approach. It lets you create and manage computer systems using simple text files that 

machines can read. This makes it easier to track changes, automate processes, and ensure 

consistent setups every time. 

 It is hard to track changes in the setup of cloud environments that use infrastructure as code 

because these environments are large, have many different parts, and keep changing all the 

time. Most current methods check for changes only at certain times or use tools that don't 

give up-to-date information or a full picture. Also, many solutions only find when something 

has changed but don't explain why or how it affects the system. This makes it harder to make 

smart decisions and manage the infrastructure well in advance. 

In this situation, there's a bigger need for automatic and ongoing ways to detect changes in 

infrastructure that don't match the original plans. This helps with modern DevOps methods. 

The paper tackles this by offering an automatic way to find and check configuration drift in 

cloud systems built with infrastructure-as-code. The system creates a standard version of the 

infrastructure from the IaC files and keeps checking it against the actual cloud setup using 

comparisons and rule checks. The study shows through tests how this method improves 

consistency, reliability, and compliance in changing cloud environments. 

 

Ⅱ.    INFRASTRUCTURE-AS-CODE 

Infrastructure-As-Code (Iac): Infrastructure-as-Code (IaC) has become a popular way to 

automate and standardize the setup of cloud infrastructure. Morris (2021) highlighted that IaC 

is a key practice for managing cloud resources using code that is controlled through 

versioning. This helps ensure that deployments are repeatable and consistent. However, the 

study mainly looked at best practices and tools, with little attention given to configuration 

drift after deployment and how to spot it. 

 



Copyright@    Page 3 

International Journal Research Publication Analysis  

 

 

IaC makes operations more efficient by reducing mistakes that happen when people manually 

set up configurations.It also ensures that different environments, like development, testing, 

and production, are kept consistent. By treating infrastructure setups like code, organizations 

can use standard software development techniques such as version control, peer reviews, and 

automated testing. Tools like Terraform, Ansible, and AWS CloudFormation help define 

infrastructure in either declarative or imperative ways, making cloud resource management 

easier and more scalable. 

 

 

 

But even with these benefits, IaC setups can face problems if changes are made directly to the 

actual infrastructure without updating the code that defines it.This mismatch, called 

configuration drift, can reduce the reliability and predictability of the system, leading to 

security issues and operational difficulties. Because of this, it's important to have strong 

monitoring and management in place for IaC-based infrastructure to fully benefit from 

automation and consistency in cloud environments. 

 

Configuration Drift: Configuration drift happens when the actual setup of the deployed 

systems doesn't match the intended setup as described by the company's rules or the code 

used to define the infrastructure. In cloud setups, this often happens because people make 

changes by hand using the cloud platform's tools, fix problems quickly without following 

proper steps, apply updates automatically, or don't follow the same setup rules consistently. 

As time goes on, these changes create differences between what the system was supposed to 

be and how it's actually working. 

 



Copyright@    Page 4 

International Journal Research Publication Analysis  

 

 

Cloud Computing : Cloud computing is a way that lets people access shared computing 

tools like servers, storage, networks, and apps over the internet whenever they need them. It 

takes away the need for companies to own and manage their own physical equipment by 

offering resources that can grow or shrink depending on how much work is being done. This 

model charges you only for what you use, which makes it a good and efficient choice for both 

small and big systems. 

 

DevOps: DevOps is a method used in software development and operations that focuses on 

teamwork, using automated tools, and constantly combining the work of developers and 

operations staff. Its main aim is to make the process of creating software faster while still 

delivering dependable and good-quality software. By bringing together the steps of building, 

testing, releasing, and managing the systems that support software, DevOps helps companies 

adapt quickly to new needs and changes in the market.

[1] TechRadar, “Infrastructure-As-Code Workflow,” 2023. 

[Online]. Available: https://cdn.mos.cms.futurecdn.net/EFgXKNVuN9gZ2wZThqdeYC.jpg. 

 

Ⅲ. PROBLEM STATEMENT AND MOTIVATION 

Managing IaC-Based Cloud Infrastructure: Managing cloud infrastructure using 

Infrastructure-as-Code (IaC) means setting up and controlling cloud resources like servers, 

networks, storage, and security settings through code. This approach allows for automatic and 

consistent setup of infrastructure, which makes deploying systems easier and helps reduce 

mistakes made by people. But as cloud environments get bigger and more complex, 

managing IaC setups becomes harder because there are more changes, resources scale up or 

down often, and different services depend on each other. Keeping the actual setup in the 

cloud matching what is defined in the code needs ongoing checks and validation. If there are 

no good ways to manage these setups, changes can happen without control, leading to 

configuration drift. This can hurt the reliability, security, and compliance of cloud systems. 

So, it's really important to manage IaC-based cloud infrastructure well to keep things stable 

and to get the most out of cloud automation.  

Impact of Configuration Drift: Configuration drift can cause big problems for the stability 

and security of cloud systems that use Infrastructure-as-Code. If the actual setup of the 

system doesn't match what was planned, it can create security issues like incorrect access 

settings, services that are left open, or old security rules. These issues can make it easier for 

unauthorized people to get into the system and steal data. 



Copyright@    Page 5 

International Journal Research Publication Analysis  

 

 

Need for an Automated Drift Detection Mechanism: In today's cloud setups, infrastructure 

settings often change because of scaling, updates, and other operational actions. In systems 

that use Infrastructure-as-Code, it's not efficient or reliable to track these changes manually 

and check if the configuration is consistent. As cloud systems get bigger and more complex, 

manually checking for configuration changes becomes hard and can't keep up with the speed 

of changes. Having an automated way to detect configuration drift is important because it 

helps keep track of the real state of cloud resources and compare it with the intended state 

from the Infrastructure-as-Code files. Automation helps catch configuration changes early, so 

admins can fix issues before they cause security problems, system breakdowns, or 

compliance violations. It also helps with DevOps by keeping environments consistent and 

reducing the work needed to manage them. 

 

Ⅳ. PROPOSED SYSTEM FOR CONFIGURATION DRIFT DETECTION 

IaC Repository and Baseline State Definition: The Infrastructure-as-Code (IaC) repository 

acts as the main place where cloud infrastructure setups are defined and managed. It holds 

files that can be read by machines, which describe how cloud resources should be set up. 

These resources include computers, networks, storage, and security rules. These files are kept 

in a version-controlled system, which helps track changes, understand the history, and go 

back to previous setups if needed. 

Creating a baseline state means setting up a standard configuration that is used to check the 

actual setup against.After using IaC tools to set up the infrastructure, this setup becomes the 

baseline. This baseline shows what the infrastructure is meant to look like and what has been 

approved. It includes details about each resource, how they are connected, and other settings 

based on the IaC files. 

Actual Infrastructure State Collection: Real infrastructure state collection means getting 

up-to-date information about the actual setup of cloud resources that are already in use. This 

helps understand how they are currently working. In the system we’re talking about, this data 

is gathered directly from the cloud using tools that manage infrastructure through code and 

APIs provided by cloud services. The data collected includes things like what type of 

resources are used, their settings, network arrangements, security permissions, and how they 

depend on each other. This data is collected either regularly or whenever needed to make sure 

any changes made outside of the infrastructure-as-code process are picked up. 

By keeping track of the actual state of the infrastructure continuously, the system always has 

the latest information about the resources in place. This allows for accurate comparisons with 



Copyright@    Page 6 

International Journal Research Publication Analysis  

 

 

the standard setup stored in the infrastructure-as-code repository, which is key for spotting 

any differences or drift in configurations. Automating this collection process saves time and 

makes it easier to keep a close eye on cloud environments that change often. 

Rule-Based Drift Identification Logic: Rule-based drift identification logic is used to check 

and find differences between the expected infrastructure setup and the actual setup that's been 

deployed. This method uses set rules to compare important settings like resource details, 

security options, and how different parts of the system depend on each other. When there's a 

difference between what was planned in the infrastructure as code (IaC) and what is actually 

in place, it's considered configuration drift. 

The rule-based system helps find these differences in a clear and organized way, without 

needing complicated machine learning tools. Once the differences are found, they are 

grouped by how serious they are and what kind of issue they are, so administrators can focus 

on the most important ones first. This method ensures that configuration drift is found 

accurately, while keeping things simple, easy to understand, and efficient in cloud systems 

that use IaC. 

 

Ⅴ. RESULT 

To solve the issues with current Infrastructure-as-Code drift management methods, this 

research suggests an automated, ongoing, and tool-free framework for finding and 

understanding configuration drift in cloud systems. The new approach makes sure that the 

actual cloud setup stays the same as the intended setup described in the IaC files. 

The system starts by keeping track of the original infrastructure setup from the IaC files 

stored in a version-controlled system. This original setup is the target configuration for cloud 

resources and acts as a reference for checking drift. A monitoring part checks the real setup in 

the cloud regularly using APIs from the cloud provider, giving up-to-date information on the 

actual resources. 

 

Ⅵ. CHALLENGES 

 Dynamic Nature of Cloud Environments:  Cloud environments are always changing, 

with frequent scaling, updates, and adjustments to resources. Because of these continuous 

changes, it's hard to keep an accurate and current baseline for detecting configuration drift. 

 

 

 

 



Copyright@    Page 7 

International Journal Research Publication Analysis  

 

 

 Manual and Untracked Changes: 

Configuration drift often happens because people make changes manually through cloud 

management tools.These changes are usually not recorded, which makes it harder to spot and 

understand the drift. 

 

 Complex Resource Dependencies: Cloud resources are connected in complex ways 

across networks, security, and computing layers.A small change in one part can affect other 

parts in unexpected ways, making it harder to detect drift. 

 

 Scalability Issues: As the number of cloud resources grows, checking and comparing 

their states becomes slower and more resource-heavy, especially in big setups. 

 

 Tool and Platform Heterogeneity: Different cloud providers and infrastructure-as-code 

tools use different ways to represent configurations. 

This makes it difficult to consistently detect drift across multiple clouds or mixed 

environments. 

 Lack of Real-Time Monitoring: Many current tools check for configuration drift at set 

intervals, not in real time. 

This delay can let drift go unnoticed for a while, leading to potential problems in the system. 

 

Ⅶ. CONCLUSION 

In conclusion, this paper introduces a method for finding and understanding configuration 

drift in cloud systems that use Infrastructure-as-Code (IaC). Configuration drift is a major 

problem in today's cloud environments because frequent changes and manual actions can 

cause the actual infrastructure to move away from the intended setups defined in IaC scripts. 

These changes can harm the security, reliability, and compliance of the system. The system 

proposed in this paper starts by setting up a baseline of the infrastructure from the IaC 

repository and then keeps checking it against the real infrastructure. Using automatic data 

gathering and rules to find drift, the system can spot configuration differences and give useful 

information to administrators. This method lowers the need for manual work, keeps the 

infrastructure consistent, and helps DevOps practices by keeping the actual setup in line with 

the desired one.  

 



Copyright@    Page 8 

International Journal Research Publication Analysis  

 

 

In general, the drift detection method proposed helps make cloud infrastructure more reliable 

and easier to manage. By catching configuration drift early, organizations can stop possible 

problems and security threats, making cloud operations more stable and predictable. 

 

Ⅷ. ACKNOWLEDGEMENT 

We would like to express our thanks to everyone who helped in making this research on 

"Detection and Analysis of Configuration Drift in Infrastructure-as-Code Based Cloud 

Systems" possible. First, we want to say how much we appreciate our research team. Their 

teamwork and smart ideas were very important throughout the whole project. Their 

dedication and knowledge helped us solve many problems related to managing cloud 

infrastructure and finding configuration drift. We also want to thank our institution for 

supporting us. They gave us the tools, resources, and environment needed to carry out this 

research.  

We are grateful to the departments and labs that allowed us to use cloud platforms, tools, and 

infrastructure that were key for our experiments. We also want to thank our mentors and 

colleagues for their helpful feedback and guidance, which greatly improved the quality and 

depth of our work. 

Finally, we acknowledge the work of the wider research community and the developers of the 

tools and technologies we used.Their work and ideas continue to help improve cloud 

automation, DevOps practices, and Infrastructure-as-Code systems. 

 

Ⅸ. REFERENCES 

1. Kief Morris, Infrastructure as Code: Managing Servers in the Cloud, 2nd Edition, 

O'Reilly Media, 2021. 

2. HashiCorp, "Terraform Documentation," https://www.terraform.io/docs/, Accessed: Dec. 

2025. 

3. Michael J. Kavis, Architecting the Cloud: Design Decisions for Cloud Computing Service 

Models (SaaS, PaaS, and IaaS), Wiley, 2014. 

4. P. Modi, D. Patel, and S. Patel, "Detection of Configuration Drift in Cloud Infrastructure: 

A Survey," International Journal of Cloud Computing, vol. 9, no. 2, pp. 45-58, 2023. 

5. B. R. Kandukuri, R. Paturi, and V. Rakshit, "Cloud Security Issues," IEEE International 

Conference on Services Computing, pp. 517-520, 2009. 

6. M. Fowler, Continuous Integration: Improving Software Quality and Reducing Risk, 

Addison-Wesley, 2006. 

https://www.terraform.io/docs/


Copyright@    Page 9 

International Journal Research Publication Analysis  

 

 

7. R. Buyya, C. S. Yeo, and S. Venugopal, "Market-Oriented Cloud Computing: Vision, 

Hype, and Reality for Delivering IT Services as Computing Utilities," 10th IEEE 

International Conference on High Performance Computing and Communications, 2008. 

8. A. Humble and J. Farley, Continuous Delivery: Reliable Software Releases through Build, 

Test, and Deployment Automation, Addison-Wesley, 2010. 


